1
|
Ashibe S, Kobayashi Y, Toishikawa S, Nagao Y. Effects of maternal liver abnormality on in vitro maturation of bovine oocytes. ZYGOTE 2025:1-6. [PMID: 39757829 DOI: 10.1017/s0967199424000352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
In cattle, maternal metabolic health has been suggested to influence oocyte and embryo quality. Here, we examined whether maternal liver abnormalities affected in vitro oocyte maturation by screening meiotic maturation, spindle morphology, actin filaments, and lysosomes. In oocytes from the abnormal liver group, the maturation rate (80.2%) was significantly lower compared to a control group with healthy livers (90.8%; P < 0.05). Mean spindle area in oocytes of the abnormal group (50.4 ± 3.4 μm2) was significantly larger than in the control (40.8 ± 1.6 μm2; P < 0.05). Likewise, mean spindle width in the abnormal group (8.8 ± 0.3 μm) was significantly larger than in the control group (7.8 ± 0.2 μm; P < 0.05). The proportion of cells with correctly aligned chromosomes in the abnormal group (48.0%) was significantly lower than in the control (78.3%; P < 0.05). The number of cortical actin filaments in mature oocytes of the abnormal group (299.3 ± 3.7) was significantly lower than in the control (314.7 ± 3.2; P < 0.05). The number of lysosomes in mature oocytes of the abnormal group (1363.6 ± 39.0) was significantly higher than in the control (1123.4 ± 26.3; P < 0.05). In conclusion, our findings indicate that the quality of in vitro matured oocytes is lower in cattle with liver abnormalities than in healthy cattle.
Collapse
Affiliation(s)
- Shiori Ashibe
- University Farm, Faculty of Agriculture, Utsunomiya University, Utsunomiya, Tochigi 321-4415, Japan
| | - Yui Kobayashi
- University Farm, Faculty of Agriculture, Utsunomiya University, Utsunomiya, Tochigi 321-4415, Japan
| | - Shusuke Toishikawa
- University Farm, Faculty of Agriculture, Utsunomiya University, Utsunomiya, Tochigi 321-4415, Japan
| | - Yoshikazu Nagao
- University Farm, Faculty of Agriculture, Utsunomiya University, Utsunomiya, Tochigi 321-4415, Japan
| |
Collapse
|
2
|
Iyer DP, Khoei HH, van der Weijden VA, Kagawa H, Pradhan SJ, Novatchkova M, McCarthy A, Rayon T, Simon CS, Dunkel I, Wamaitha SE, Elder K, Snell P, Christie L, Schulz EG, Niakan KK, Rivron N, Bulut-Karslioğlu A. mTOR activity paces human blastocyst stage developmental progression. Cell 2024; 187:6566-6583.e22. [PMID: 39332412 PMCID: PMC7617234 DOI: 10.1016/j.cell.2024.08.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/24/2024] [Accepted: 08/23/2024] [Indexed: 09/29/2024]
Abstract
Many mammals can temporally uncouple conception from parturition by pacing down their development around the blastocyst stage. In mice, this dormant state is achieved by decreasing the activity of the growth-regulating mTOR signaling pathway. It is unknown whether this ability is conserved in mammals in general and in humans in particular. Here, we show that decreasing the activity of the mTOR signaling pathway induces human pluripotent stem cells (hPSCs) and blastoids to enter a dormant state with limited proliferation, developmental progression, and capacity to attach to endometrial cells. These in vitro assays show that, similar to other species, the ability to enter dormancy is active in human cells around the blastocyst stage and is reversible at both functional and molecular levels. The pacing of human blastocyst development has potential implications for reproductive therapies.
Collapse
Affiliation(s)
- Dhanur P Iyer
- Stem Cell Chromatin Group, Department of Genome Regulation, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany; Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Heidar Heidari Khoei
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Vera A van der Weijden
- Stem Cell Chromatin Group, Department of Genome Regulation, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Harunobu Kagawa
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Saurabh J Pradhan
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Maria Novatchkova
- Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Afshan McCarthy
- The Human Embryo and Stem Cell Laboratory, Francis Crick Institute, London NW1 1AT, UK
| | - Teresa Rayon
- Epigenetics & Signalling Programmes, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Claire S Simon
- The Human Embryo and Stem Cell Laboratory, Francis Crick Institute, London NW1 1AT, UK
| | - Ilona Dunkel
- Systems Epigenetics, Otto-Warburg-Laboratories, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Sissy E Wamaitha
- The Human Embryo and Stem Cell Laboratory, Francis Crick Institute, London NW1 1AT, UK
| | - Kay Elder
- Bourn Hall Clinic, Bourn, Cambridge CB23 2TN, UK
| | - Phil Snell
- Bourn Hall Clinic, Bourn, Cambridge CB23 2TN, UK
| | | | - Edda G Schulz
- Systems Epigenetics, Otto-Warburg-Laboratories, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Kathy K Niakan
- The Human Embryo and Stem Cell Laboratory, Francis Crick Institute, London NW1 1AT, UK; Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Nicolas Rivron
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria.
| | - Aydan Bulut-Karslioğlu
- Stem Cell Chromatin Group, Department of Genome Regulation, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany.
| |
Collapse
|
3
|
Shahbazi MN, Pasque V. Early human development and stem cell-based human embryo models. Cell Stem Cell 2024; 31:1398-1418. [PMID: 39366361 PMCID: PMC7617107 DOI: 10.1016/j.stem.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/18/2024] [Accepted: 09/02/2024] [Indexed: 10/06/2024]
Abstract
The use of stem cells to model the early human embryo promises to transform our understanding of developmental biology and human reproduction. In this review, we present our current knowledge of the first 2 weeks of human embryo development. We first focus on the distinct cell lineages of the embryo and the derivation of stem cell lines. We then discuss the intercellular crosstalk that guides early embryo development and how this crosstalk is recapitulated in vitro to generate stem cell-based embryo models. We highlight advances in this fast-developing field, discuss current limitations, and provide a vision for the future.
Collapse
Affiliation(s)
| | - Vincent Pasque
- Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium; Leuven Stem Cell Institute & Leuven Institute for Single-Cell Omics (LISCO), Leuven, Belgium.
| |
Collapse
|
4
|
Choi JW, Kim SW, Kim HS, Kang MJ, Kim SA, Han JY, Kim H, Ku SY. Effects of Melatonin, GM-CSF, IGF-1, and LIF in Culture Media on Embryonic Development: Potential Benefits of Individualization. Int J Mol Sci 2024; 25:751. [PMID: 38255823 PMCID: PMC10815572 DOI: 10.3390/ijms25020751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
The implantation of good-quality embryos to the receptive endometrium is essential for successful live birth through in vitro fertilization (IVF). The higher the quality of embryos, the higher the live birth rate per cycle, and so efforts have been made to obtain as many high-quality embryos as possible after fertilization. In addition to an effective controlled ovarian stimulation process to obtain high-quality embryos, the composition of the embryo culture medium in direct contact with embryos in vitro is also important. During embryonic development, under the control of female sex hormones, the fallopian tubes and endometrium create a microenvironment that supplies the nutrients and substances necessary for embryos at each stage. During this process, the development of the embryo is finely regulated by signaling molecules, such as growth factors and cytokines secreted from the epithelial cells of the fallopian tube and uterine endometrium. The development of embryo culture media has continued since the first successful human birth through IVF in 1978. However, there are still limitations to mimicking a microenvironment similar to the reproductive organs of women suitable for embryo development in vitro. Efforts have been made to overcome the harsh in vitro culture environment and obtain high-quality embryos by adding various supplements, such as antioxidants and growth factors, to the embryo culture medium. Recently, there has been an increase in the number of studies on the effect of supplementation in different clinical situations such as old age, recurrent implantation failure (RIF), and unexplained infertility; in addition, anticipation of the potential benefits from individuation is rising. This article reviews the effects of representative supplements in culture media on embryo development.
Collapse
Affiliation(s)
- Jung-Won Choi
- Laboratory of In Vitro Fertilization, Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul 03080, Republic of Korea; (J.-W.C.); (H.-S.K.); (M.-J.K.); (S.-A.K.)
| | - Sung-Woo Kim
- Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul 03080, Republic of Korea; (S.-W.K.); (J.-Y.H.); (H.K.)
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Hee-Sun Kim
- Laboratory of In Vitro Fertilization, Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul 03080, Republic of Korea; (J.-W.C.); (H.-S.K.); (M.-J.K.); (S.-A.K.)
| | - Moon-Joo Kang
- Laboratory of In Vitro Fertilization, Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul 03080, Republic of Korea; (J.-W.C.); (H.-S.K.); (M.-J.K.); (S.-A.K.)
| | - Sung-Ah Kim
- Laboratory of In Vitro Fertilization, Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul 03080, Republic of Korea; (J.-W.C.); (H.-S.K.); (M.-J.K.); (S.-A.K.)
| | - Ji-Yeon Han
- Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul 03080, Republic of Korea; (S.-W.K.); (J.-Y.H.); (H.K.)
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Hoon Kim
- Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul 03080, Republic of Korea; (S.-W.K.); (J.-Y.H.); (H.K.)
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Seung-Yup Ku
- Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul 03080, Republic of Korea; (S.-W.K.); (J.-Y.H.); (H.K.)
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University, Seoul 03080, Republic of Korea
| |
Collapse
|
5
|
Trohl J, Schindler M, Buske M, de Nivelle J, Toto Nienguesso A, Navarrete Santos A. Advanced maternal age leads to changes within the insulin/IGF system and lipid metabolism in the reproductive tract and preimplantation embryo: insights from the rabbit model. Mol Hum Reprod 2023; 29:gaad040. [PMID: 38001038 DOI: 10.1093/molehr/gaad040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 10/16/2023] [Indexed: 11/26/2023] Open
Abstract
Reproductive potential in women declines with age. The impact of ageing on embryo-maternal interactions is still unclear. Rabbits were used as a reproductive model to investigate maternal age-related alterations in reproductive organs and embryos on Day 6 of pregnancy. Blood, ovaries, endometrium, and blastocysts from young (16-20 weeks) and advanced maternal age phase (>108 weeks, old) rabbits were analysed at the mRNA and protein levels to investigate the insulin-like growth factor (IGF) system, lipid metabolism, and stress defence system. Older rabbits had lower numbers of embryos at Day 6 of pregnancy. Plasma insulin and IGF levels were reduced, which was accompanied by paracrine regulation of IGFs and their receptors in ovaries and endometrium. Embryos adapted to hormonal changes as indicated by reduced embryonic IGF1 and 2 levels. Aged reproductive organs increased energy generation from the degradation of fatty acids, leading to higher oxidative stress. Stress markers, including catalase, superoxide dismutase 2, and receptor for advanced glycation end products were elevated in ovaries and endometrium from aged rabbits. Embryonic fatty acid uptake and β-oxidation were increased in both embryonic compartments (embryoblast and trophoblast) in old rabbits, associated with minor changes in the oxidative and glycative stress defence systems. In summary, the insulin/IGF system, lipid metabolism, and stress defence were dysregulated in reproductive tissues of older rabbits, which is consistent with changes in embryonic metabolism and stress defence. These data highlight the crucial influence of maternal age on uterine adaptability and embryo development.
Collapse
Affiliation(s)
- Juliane Trohl
- Department of Anatomy and Cell Biology, Martin Luther University Faculty of Medicine, Halle (Saale), Germany
| | - Maria Schindler
- Department of Anatomy and Cell Biology, Martin Luther University Faculty of Medicine, Halle (Saale), Germany
| | - Maximilian Buske
- Department of Anatomy and Cell Biology, Martin Luther University Faculty of Medicine, Halle (Saale), Germany
| | - Johanna de Nivelle
- Department of Anatomy and Cell Biology, Martin Luther University Faculty of Medicine, Halle (Saale), Germany
| | - Alicia Toto Nienguesso
- Department of Anatomy and Cell Biology, Martin Luther University Faculty of Medicine, Halle (Saale), Germany
| | - Anne Navarrete Santos
- Department of Anatomy and Cell Biology, Martin Luther University Faculty of Medicine, Halle (Saale), Germany
| |
Collapse
|
6
|
Piau TB, de Queiroz Rodrigues A, Paulini F. Insulin-like growth factor (IGF) performance in ovarian function and applications in reproductive biotechnologies. Growth Horm IGF Res 2023; 72-73:101561. [PMID: 38070331 DOI: 10.1016/j.ghir.2023.101561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/25/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023]
Abstract
The role of the insulin-like growth factor (IGF) system has attracted close attention. The activity of IGF binding proteins (IGFBPs) within the ovary has not been fully elucidated to date. These proteins bind to IGF with an equal, or greater, affinity than to the IGF1 receptor, thus being in the main position to regulate IGF signalling, in addition to extending the half-life of IGFs within the bloodstream and promoting IGF storage in specific tissue niches. IGF1 has an important part in cell proliferation, differentiation and apoptosis. Considering the importance of IGFs in oocyte maturation, this review sought to elucidate aspects including: IGF production mechanisms; constituent members of their family and their respective functions; the role that these factors play during folliculogenesis, together with their functions during oocyte maturation and apoptosis, and their performance during luteal development. This review also explores the role of IGFs in biotechnological applications, focusing specifically on animal genetic gain.
Collapse
Affiliation(s)
- Tathyana Benetis Piau
- University of Brasília, Institute of Biological Sciences, Department of Physiological Sciences, Brasília, DF 70910-900, Brazil
| | - Aline de Queiroz Rodrigues
- University of Brasília, Institute of Biological Sciences, Department of Physiological Sciences, Brasília, DF 70910-900, Brazil
| | - Fernanda Paulini
- University of Brasília, Institute of Biological Sciences, Department of Physiological Sciences, Brasília, DF 70910-900, Brazil.
| |
Collapse
|
7
|
Arias ME, Vargas T, Gallardo V, Aguila L, Felmer R. Simple and Efficient Chemically Defined In Vitro Maturation and Embryo Culture System for Bovine Embryos. Animals (Basel) 2022; 12:3057. [PMID: 36359181 PMCID: PMC9654503 DOI: 10.3390/ani12213057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/21/2022] [Accepted: 10/27/2022] [Indexed: 09/19/2023] Open
Abstract
Supplementation of the culture media for in vitro production (IVP) of bovine embryos with fetal bovine serum (FBS) is associated with inconsistent outcomes. The present study sought to replace FBS and BSA by insulin-like growth factor 1 (IGF1), fibroblast growth factor 2 (FGF2) and epidermal growth factor (EGF). In Experiment 1, absence of FBS from maturation medium (MM) did not affect the rate of in vitro maturation, as assessed by the extrusion of the first polar body. However, when gonadotropins and FBS were removed from the MM, the maturation rate was significantly reduced even in the presence of growth factors. Therefore, gonadotropin-supplemented MM medium was established as the base medium for the defined maturation condition. In Experiment 2, the addition of growth factors to gonadotropin-supplemented MM medium supported similar maturation (~90%) compared to the undefined condition (FBS-carrying). In Experiment 3, the addition of growth factors to embryo culture medium showed similar in vitro competence compared to the undefined (FBS) control. In Experiment 4, completely defined conditions (absence of FBS and BSA during in vitro maturation and embryo culture) were tested. A higher cleavage was observed with FGF2 (86%) compared to EGF (77%) and the FBS control (77%), but similar blastocyst rates were observed for FGF2 (24%), EGF (19%) and the FBS control (25%). Embryo quality was similar among groups. Finally, post-thawing survival was higher for FGF2 (94%) compared to the FBS control (77%). Thus, we report a simple defined IVP system for bovine species that generates developmental outcomes and embryos of similar quality than those produced under conditions containing FBS.
Collapse
Affiliation(s)
- María Elena Arias
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Universidad de La Frontera, Temuco 4811322, Chile
- Department of Agricultural Production, Faculty of Agriculture and Environmental Sciences, Universidad de La Frontera, Temuco 4811322, Chile
| | - Tamara Vargas
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Universidad de La Frontera, Temuco 4811322, Chile
| | - Victor Gallardo
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Universidad de La Frontera, Temuco 4811322, Chile
| | - Luis Aguila
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Universidad de La Frontera, Temuco 4811322, Chile
| | - Ricardo Felmer
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Universidad de La Frontera, Temuco 4811322, Chile
- Department of Agricultural Sciences and Natural Resources, Faculty of Agriculture and Environmental Sciences, Universidad de La Frontera, Temuco 4811322, Chile
| |
Collapse
|
8
|
Anagnostopoulou C, Rosas IM, Gugnani N, Desai D, Manoharan M, Singh N, Leonardi Diaz SI, Singh K, Wirka KA, Gupta S, Darbandi S, Chockalingam A, Darbandi M, Boitrelle F, Finelli R, Sallam HN, Agarwal A. An expert commentary on essential equipment, supplies and culture media in the ART laboratory. Panminerva Med 2022; 64:140-155. [PMID: 35146990 DOI: 10.23736/s0031-0808.22.04671-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The ART laboratory is a complex system designed to sustain the fertilization, survival, and culture of the preimplantation embryo to the blastocyst stage. ART outcomes depend on numerous factors, among which are the equipment, supplies and culture media used. The number and type of incubators also may affect ART results. While large incubators may be more suitable for media equilibration, bench-top incubators may provide better embryo culture conditions in separate or smaller chambers and may be coupled with time-lapse systems that allow continuous embryo monitoring. Microscopes are essential for observation, assessment, and micromanipulation. Workstations provide a controlled environment for gamete and embryo handling and their quantity should be adjusted according to the number of ART cycles treated in order to provide a steady and efficient workflow. Continuous maintenance, quality control and monitoring of equipment is essential and quality control devices such as the thermometer, and pH-meter are necessary to maintain optimal culture conditions. Tracking, appropriate delivery and storage conditions, and quality control of all consumables is recommended so that the adequate quantity and quality is available for use. Embryo culture media have evolved: preimplantation embryos are cultured either by sequential media or single-step media that can be used for interrupted or uninterrupted culture. There is currently no sufficient evidence that any individual commercially-available culture system is better than others in terms of embryo viability. In this review, we aim to analyse the various parameters that should be taken into account when choosing the essential equipment, consumables and culture media systems that will create optimal culture conditions and provide the most effective patient treatment.
Collapse
Affiliation(s)
| | - Israel M Rosas
- Citmer Reproductive Medicine, IVF LAB, Mexico City, Mexico
| | - Nivita Gugnani
- BabySoon Fertility and IVF Center, New Delhi, India India Institute of Medical Sciences, Delhi, India
| | - Dimple Desai
- DPU IVF & ENDOSCOPY CENTER, Dr. D. Y. Patil Hospital & Research Centre, Pune, India
| | | | | | | | - Keerti Singh
- Faculty of Medical Sciences, The University of the West Indies, Cave Hill Campus, Barbados
| | - Kelly A Wirka
- Fertility & Endocrinology, Medical Affairs, EMD Serono, USA
| | - Sajal Gupta
- American Center for Reproductive Medicine, Cleveland, Ohio, USA
| | - Sara Darbandi
- Fetal Health Research Center, Hope Generation Foundation, Tehran, Iran.,Gene Therapy and Regenerative Medicine Research Center, Hope Generation Foundation, Tehran, Iran
| | | | - Mahsa Darbandi
- Fetal Health Research Center, Hope Generation Foundation, Tehran, Iran.,Gene Therapy and Regenerative Medicine Research Center, Hope Generation Foundation, Tehran, Iran
| | - Florence Boitrelle
- Reproductive Biology, Fertility Preservation, Andrology, CECOS, Poissy Hospital, Poissy, France.,Department of Biology, Reproduction, Epigenetics, Environment and Development, Paris Saclay University, UVSQ, INRAE, BREED, Jouy-en-Josas, France
| | - Renata Finelli
- American Center for Reproductive Medicine, Cleveland, Ohio, USA
| | - Hassan N Sallam
- Department of Obstetrics and Gynaecology, Alexandria University Faculty of Medicine, Alexandria, Egypt
| | - Ashok Agarwal
- American Center for Reproductive Medicine, Cleveland, Ohio, USA -
| |
Collapse
|
9
|
Liu Y, Masternak MM, Schneider A, Zhi X. Dwarf mice as models for reproductive ageing research. Reprod Biomed Online 2021; 44:5-13. [PMID: 34794884 DOI: 10.1016/j.rbmo.2021.09.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/05/2021] [Accepted: 09/17/2021] [Indexed: 01/10/2023]
Abstract
Dwarf mice are characterized by extremely long lifespan, delayed ovarian ageing, altered metabolism, lower age-related oxidative damage and cancer incidence rate. Snell dwarf, Ames dwarf and growth hormone receptor knockout mice are three commonly used models. Despite studies focusing on ageing and metabolism, the reproductive features of female dwarf mice have also attracted interest over the last decade. Female Snell and Ames dwarf mice have regular oestrous cycles and ovulation rates, as in normal mice, but with a larger ovarian reserve and delayed ovarian ageing. The primordial follicle reserve in dwarf mice is greater than in normal littermates. Anti-Müllerian hormone (AMH) concentration is seven times higher in Ames dwarf mice than in their normal siblings, and ovarian transcriptomic profiling showed distinctive patterns in older Ames dwarf mice, especially enriched in inflammatory and immune response-related pathways. In addition, microRNA profiles also showed distinctive differences in Ames dwarf mice compared with normal control littermates. This review aims to summarize research progress on dwarf mice as models in the reproductive ageing field. Investigations focusing on the mechanisms of their reserved reproductive ability are much needed and are expected to provide additional molecular biological bases for the clinical practice of reproductive medicine in women.
Collapse
Affiliation(s)
- Yujun Liu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital Beijing, PR China; National Clinical Research Center for Obstetrics and Gynecology Beijing, PR China; Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education Beijing, PR China
| | - Michal M Masternak
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando FL, USA; Department of Head and Neck Surgery, Poznan University of Medical Sciences, Poznan, Poland
| | - Augusto Schneider
- Faculdade de Nutrição, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Xu Zhi
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital Beijing, PR China; National Clinical Research Center for Obstetrics and Gynecology Beijing, PR China; Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education Beijing, PR China.
| |
Collapse
|
10
|
Fernandez-Gonzalez L, Kozhevnikova V, Brusentsev E, Jänsch S, Amstislavsky S, Jewgenow K. IGF-I Medium Supplementation Improves Singly Cultured Cat Oocyte Maturation and Embryo Development In Vitro. Animals (Basel) 2021; 11:ani11071909. [PMID: 34198979 PMCID: PMC8300187 DOI: 10.3390/ani11071909] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 06/21/2021] [Accepted: 06/24/2021] [Indexed: 12/25/2022] Open
Abstract
Embryo production is a routine procedure in several species. However, in felids, the effectiveness of this approach is far behind that in the majority of laboratory species. The development of a suitable environment starts with the proper composition of culture media. Therefore, for the improvement of assisted reproduction techniques and their outcome in cats, this is an urgent task. As the addition of insulin-like growth factors (IGF-I, IGF-II) or granulocyte-macrophage colony-stimulating factor (GM-CSF) was beneficial in other mammalian species, this study aims to check whether these components, combined with other factors (such as type of fertilisation or type of culture) can provide a benefit in the felid culture system in current use. Thus, these supplements, in different concentrations and combinations, were merged with the use of two fertilisation techniques and randomly assigned to single or group culturing. The results showed that the addition of IGF-I and/or GM-CSF produced an increase in morula and blastocyst rate in a single culture system. In particular, the supplementation with 20 ng/mL of IGF-I incremented the maturation rate by 10% and significantly increased the morula and blastocyst rates in single culturing. This result is especially remarkable for wild felids, where only a few oocytes and/or embryos are available.
Collapse
Affiliation(s)
- Lorena Fernandez-Gonzalez
- Department of Reproduction Biology, Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Straße 17, 10315 Berlin, Germany; (S.J.); (K.J.)
- Correspondence:
| | - Valeria Kozhevnikova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Prosp. Lavrent’eva 10, 630090 Novosibirsk, Russia; (V.K.); (E.B.); (S.A.)
| | - Eugeny Brusentsev
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Prosp. Lavrent’eva 10, 630090 Novosibirsk, Russia; (V.K.); (E.B.); (S.A.)
| | - Stefanie Jänsch
- Department of Reproduction Biology, Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Straße 17, 10315 Berlin, Germany; (S.J.); (K.J.)
| | - Sergei Amstislavsky
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Prosp. Lavrent’eva 10, 630090 Novosibirsk, Russia; (V.K.); (E.B.); (S.A.)
| | - Katarina Jewgenow
- Department of Reproduction Biology, Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Straße 17, 10315 Berlin, Germany; (S.J.); (K.J.)
| |
Collapse
|
11
|
Wang Q, Ai H, Li X, Tian H, Ning B, Zhang M, La X. Association of miRNA-145 with the occurrence and prognosis of hydrosalpinx-induced defective endometrial receptivity. Bosn J Basic Med Sci 2021; 21:81-92. [PMID: 32343942 PMCID: PMC7861628 DOI: 10.17305/bjbms.2020.4538] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 03/13/2020] [Indexed: 02/07/2023] Open
Abstract
MiR-145 is reported to facilitate inflammation and is also associated with unsuccessful embryonic implantation. Whether miR-145 mediates inflammatory response underlying hydrosalpinx-induced defective endometrial receptivity (ER) remains unclear, and this study attempted to clarify this point. Endometrium samples were collected from hydrosalpinx patients (case, n = 243) and patients with tubal patency/obstruction (control, n = 187). The peripheral blood samples of cases and controls were collected to determine the genotypes of miR-145 SNPs. The value of miR-145 expression in the diagnosis and prognostic estimation of hydrosalpinx was assessed using ROC curve and regression analysis, respectively. Lipopolysaccharide (LPS) cell model was established with endometrial cells, and cells were transfected with miR-145 mimic, inhibitor, or negative control. MiR-145 and cytokine levels were quantified by quantitative reverse transcription PCR or western blot. MiR-145 expression was significantly higher in hydrosalpinx compared to control group, and high miR-145 expression was significantly associated with moderate/severe tube lesion, high pulsatility index (>1.06), and high resistance index (>0.61) in hydrosalpinx patients. ROC curve analysis indicated that monitoring miR-145 expression may be useful for the diagnosis of hydrosalpinx (AUC = 0.704). A alleles of rs41291957 (G>A) and rs353292 (G>A) were significantly associated with an increased risk of hydrosalpinx compared to G allele (p < 0.05), yet the mutant allele of rs353291 (A>G) and rs4705343 (T>C) significantly reduced susceptibility to hydrosalpinx compared to the wild type allele. Treatments with miR-145 mimic and LPS in endometrial cells significantly increased the levels of transforming growth factor-β1, tumor necrosis factor -α, interleukin (IL)-6, and IL-8 compared to negative control, while treatment with miR-145 inhibitor decreased the cytokine levels. In conclusion, abnormally expressed miR-145 may be involved in hydrosalpinx-induced ER defects by regulating the inflammatory response.
Collapse
Affiliation(s)
- Qingli Wang
- Department of Reproductive Medicine Center, The First Affiliated Hospital of XinJiang Medical University, Urumqi, XinJiang, China
| | - Haiquan Ai
- Department of Reproductive Medicine Center, The First Affiliated Hospital of XinJiang Medical University, Urumqi, XinJiang, China
| | - Xia Li
- Department of Reproductive Medicine Center, The First Affiliated Hospital of XinJiang Medical University, Urumqi, XinJiang, China
| | - Haiqing Tian
- Department of Reproductive Medicine Center, The First Affiliated Hospital of XinJiang Medical University, Urumqi, XinJiang, China
| | - Bingxue Ning
- Department of Reproductive Medicine Center, The First Affiliated Hospital of XinJiang Medical University, Urumqi, XinJiang, China
| | - Meng Zhang
- Department of Reproductive Medicine Center, The First Affiliated Hospital of XinJiang Medical University, Urumqi, XinJiang, China
| | - Xiaolin La
- Department of Reproductive Medicine Center, The First Affiliated Hospital of XinJiang Medical University, Urumqi, XinJiang, China
| |
Collapse
|
12
|
Gurner KH, Truong TT, Harvey AJ, Gardner DK. A combination of growth factors and cytokines alter preimplantation mouse embryo development, foetal development and gene expression profiles. Mol Hum Reprod 2020; 26:953-970. [DOI: 10.1093/molehr/gaaa072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/29/2020] [Indexed: 12/15/2022] Open
Abstract
Abstract
Within the maternal tract, the preimplantation embryo is exposed to an array of growth factors (GFs) and cytokines, most of which are absent from culture media used in clinical IVF. Whilst the addition of individual GFs and cytokines to embryo culture media can improve preimplantation mouse embryo development, there is a lack of evidence on the combined synergistic effects of GFs and cytokines on embryo development and further foetal growth. Therefore, in this study, the effect of a combined group of GFs and cytokines on mouse preimplantation embryo development and subsequent foetal development and gene expression profiles was investigated. Supplementation of embryo culture media with an optimised combination of GFs and cytokines (0.05 ng/ml vascular endothelial GF, 1 ng/ml platelet-derived GF, 0.13 ng/ml insulin-like GF 1, 0.026 ng/ml insulin-like GF 2 and 1 ng/ml granulocyte colony-stimulating factor) had no effect on embryo morphokinetics but significantly increased trophectoderm cell number (P = 0.0002) and total cell number (P = 0.024). Treatment with this combination of GFs and cytokines also significantly increased blastocyst outgrowth area (P < 0.05) and, following embryo transfer, increased foetal weight (P = 0.027), crown-rump length (P = 0.017) and overall morphological development (P = 0.027). RNA-seq analysis of in vitro derived foetuses identified concurrent alterations to the transcriptional profiles of liver and placental tissues compared with those developed in vivo, with greater changes observed in the GF and cytokine treated group. Together these data highlight the importance of balancing the actions of such factors for the regulation of normal development and emphasise the need for further studies investigating this prior to clinical implementation.
Collapse
Affiliation(s)
- Kathryn H Gurner
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Thi T Truong
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Alexandra J Harvey
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - David K Gardner
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
- Melbourne IVF, East Melbourne, VIC 3002, Australia
| |
Collapse
|
13
|
Armstrong S, MacKenzie J, Woodward B, Pacey A, Farquhar C. GM-CSF (granulocyte macrophage colony-stimulating factor) supplementation in culture media for women undergoing assisted reproduction. Cochrane Database Syst Rev 2020; 7:CD013497. [PMID: 32672358 PMCID: PMC7390393 DOI: 10.1002/14651858.cd013497.pub2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
BACKGROUND GM-CSF (granulocyte macrophage colony-stimulating factor) is a growth factor that is used to supplement culture media in an effort to improve clinical outcomes for those undergoing assisted reproduction. It is worth noting that the use of GM-CSF-supplemented culture media often adds a further cost to the price of an in vitro fertilisation (IVF) cycle. The purpose of this review was to assess the available evidence from randomised controlled trials (RCTs) on the effectiveness and safety of GM-CSF-supplemented culture media. OBJECTIVES To assess the effectiveness and safety of GM-CSF-supplemented human embryo culture media versus culture media not supplemented with GM-CSF, in women or couples undergoing assisted reproduction. SEARCH METHODS We used standard methodology recommended by Cochrane. We searched the Cochrane Gynaecology and Fertility Group Trials Register, CENTRAL, MEDLINE, Embase, CINAHL, LILACS, DARE, OpenGrey, PubMed, Google Scholar, and two trials registers on 15 October 2019, checked references of relevant papers and communicated with experts in the field. SELECTION CRITERIA We included RCTs comparing GM-CSF (including G-CSF (granulocyte colony-stimulating factor))-supplemented embryo culture media versus any other non-GM-CSF-supplemented embryo culture media (control) in women undergoing assisted reproduction. DATA COLLECTION AND ANALYSIS We used standard methodological procedures recommended by Cochrane. The primary review outcomes were live birth and miscarriage rate. The secondary outcomes were clinical pregnancy, multiple gestation, preterm birth, birth defects, aneuploidy, and stillbirth rates. We assessed the quality of the evidence using GRADE methodology. We undertook one comparison, GM-CSF-supplemented culture media versus culture media not supplemented with GM-CSF, for those undergoing assisted reproduction. MAIN RESULTS We included five studies, the data for three of which (1532 participants) were meta-analysed. We are uncertain whether GM-CSF-supplemented culture media makes any difference to the live-birth rate when compared to using conventional culture media not supplemented with GM-CSF (odds ratio (OR) 1.19, 95% confidence interval (CI) 0.93 to 1.52, 2 RCTs, N = 1432, I2 = 69%, low-quality evidence). The evidence suggests that if the rate of live birth associated with conventional culture media not supplemented with GM-CSF was 22%, the rate with the use of GM-CSF-supplemented culture media would be between 21% and 30%. We are uncertain whether GM-CSF-supplemented culture media makes any difference to the miscarriage rate when compared to using conventional culture media not supplemented with GM-CSF (OR 0.75, 95% CI 0.41 to 1.36, 2 RCTs, N = 1432, I2 = 0%, low-quality evidence). This evidence suggests that if the miscarriage rate associated with conventional culture media not supplemented with GM-CSF was 4%, the rate with the use of GM-CSF-supplemented culture media would be between 2% and 5%. Furthermore, we are uncertain whether GM-CSF-supplemented culture media makes any difference to the following outcomes: clinical pregnancy (OR 1.16, 95% CI 0.93 to 1.45, 3 RCTs, N = 1532 women, I2 = 67%, low-quality evidence); multiple gestation (OR 1.24, 95% CI 0.73 to 2.10, 2 RCTs, N = 1432, I2 = 35%, very low-quality evidence); preterm birth (OR 1.20, 95% CI 0.70 to 2.04, 2 RCTs, N = 1432, I2 = 76%, very low-quality evidence); birth defects (OR 1.33, 95% CI 0.59 to 3.01, I2 = 0%, 2 RCTs, N = 1432, low-quality evidence); and aneuploidy (OR 0.34, 95% CI 0.03 to 3.26, I2 = 0%, 2 RCTs, N = 1432, low-quality evidence). We were unable to undertake analysis of stillbirth, as there were no events in either arm of the two studies that assessed this outcome. AUTHORS' CONCLUSIONS Due to the very low to low quality of the evidence, we cannot be certain whether GM-CSF is any more or less effective than culture media not supplemented with GM-CSF for clinical outcomes that reflect effectiveness and safety. It is important that independent information on the available evidence is made accessible to those considering using GM-CSF-supplemented culture media. The claims from marketing information that GM-CSF has a positive effect on pregnancy rates are not supported by the available evidence presented here; further well-designed, properly powered RCTs are needed to lend certainty to the evidence.
Collapse
Affiliation(s)
- Sarah Armstrong
- Department of Oncology & Metabolism, Academic Unit of Reproductive and Developmental Medicine, The University of Sheffield, Sheffield, UK
| | - Jeanette MacKenzie
- Fertility Plus, Women's Health, Auckland District Health Board, Auckland, New Zealand
| | | | - Allan Pacey
- Department of Oncology & Metabolism, Academic Unit of Reproductive and Developmental Medicine, The University of Sheffield, Sheffield, UK
| | - Cindy Farquhar
- Department of Obstetrics and Gynaecology, University of Auckland, Auckland, New Zealand
| |
Collapse
|
14
|
Wilson Y, Morris ID, Kimber SJ, Brison DR. The role of Trp53 in the mouse embryonic response to DNA damage. Mol Hum Reprod 2020; 25:397-407. [PMID: 31227838 DOI: 10.1093/molehr/gaz029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 05/23/2019] [Accepted: 05/31/2019] [Indexed: 12/23/2022] Open
Abstract
Apoptosis occurs primarily in the blastocyst inner cell mass, cells of which go on to form the foetus. Apoptosis is likely to play a role in ensuring the genetic integrity of the foetus, yet little is known about its regulation. In this study, the role of the mouse gene, transformation-related protein 53 (Trp53) in the response of embryos to in vitro culture and environmentally induced DNA damage was investigated using embryos from a Trp53 knockout mouse model. In vivo-derived blastocysts were compared to control embryos X-irradiated at the two-cell stage and cultured to Day 5. An analysis of DNA by comet assay demonstrated that 1.5 Gy X-irradiation directly induced damage in cultured two-cell mouse embryos; this was correlated with retarded development to blastocyst stage and increased apoptosis at the blastocyst stage but not prior to this. Trp53 null embryos developed to blastocysts at a higher frequency and with higher cell numbers than wild-type embryos. Trp53 also mediates apoptosis in conditions of low levels of DNA damage, in vivo or in vitro in the absence of irradiation. However, following DNA damage induced by X-irradiation, apoptosis is induced by Trp53 independent as well as dependent mechanisms. These data suggest that Trp53 and apoptosis play important roles in normal mouse embryonic development both in vitro and in vivo and in response to DNA damage. Therefore, clinical ART practices that alter apoptosis in human embryos and/or select embryos for transfer, which potentially lack a functional Trp53 gene, need to be carefully considered.
Collapse
Affiliation(s)
- Yvonne Wilson
- Department of Reproductive Medicine, Saint Mary's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Sciences Centre, Oxford Road, Manchester M13 9WL, UK
| | - Ian D Morris
- Hull York Medical School, University of York, Heslington, York YO10 5DD, UK
| | - Susan J Kimber
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Daniel R Brison
- Department of Reproductive Medicine, Saint Mary's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Sciences Centre, Oxford Road, Manchester M13 9WL, UK.,Maternal and Fetal Health Research, Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
15
|
Kölle S, Hughes B, Steele H. Early embryo-maternal communication in the oviduct: A review. Mol Reprod Dev 2020; 87:650-662. [PMID: 32506761 DOI: 10.1002/mrd.23352] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/05/2020] [Accepted: 05/10/2020] [Indexed: 12/11/2022]
Abstract
An intact embryo-maternal communication is critical for the establishment of a successful pregnancy. To date, a huge number of studies have been performed describing the complex process of embryo-maternal signaling within the uterus. However, recent studies indicate that the early embryo communicates with the oviductal cells shortly after fertilizationand that this is important for the successful establishment of pregnancy. Only if the early embryo is capable to signal the mother within a precise timeframe and to garner a response, will the embryo be able to survive and reach the uterus. This review will give an overview of all the experimental designs which have investigated embryo-maternal interaction in the oviduct. In addition to that, it will provide a comprehensive analysis of the findings to date elucidating the morphological and molecular changes in the oviduct which are induced by the presence of the early embryo highlighting how the tubal responses affect embryo development and survival.
Collapse
Affiliation(s)
- Sabine Kölle
- Health Sciences Centre, School of Medicine, University College Dublin, Dublin, Ireland
| | - Barbara Hughes
- Health Sciences Centre, School of Medicine, University College Dublin, Dublin, Ireland
| | - Heather Steele
- Health Sciences Centre, School of Medicine, University College Dublin, Dublin, Ireland
| |
Collapse
|
16
|
Muhammad T, Li M, Wang J, Huang T, Zhao S, Zhao H, Liu H, Chen ZJ. Roles of insulin-like growth factor II in regulating female reproductive physiology. SCIENCE CHINA-LIFE SCIENCES 2020; 63:849-865. [PMID: 32291558 DOI: 10.1007/s11427-019-1646-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 03/12/2020] [Indexed: 12/20/2022]
Abstract
The number of growth factors involved in female fertility has been extensively studied, but reluctance to add essential growth factors in culture media has limited progress in optimizing embryonic growth and implantation outcomes, a situation that has ultimately led to reduced pregnancy outcomes. Insulin-like growth factor II (IGF-II) is the most intricately regulated of all known reproduction-related growth factors characterized to date, and is perhaps the predominant growth factor in human ovarian follicles. This review aims to concisely summarize what is known about the role of IGF-II in follicular development, oocyte maturation, embryonic development, implantation success, placentation, fetal growth, and in reducing placental cell apoptosis, as well as present strategies that use growth factors in culture systems to improve the developmental potential of oocytes and embryos in different species. Synthesizing the present knowledge about the physiological roles of IGF-II in follicular development, oocyte maturation, and early embryonic development should, on the one hand, deepen our overall understanding of the potential beneficial effects of growth factors in female reproduction and on the other hand support development (optimization) of improved outcomes for assisted reproductive technologies.
Collapse
Affiliation(s)
- Tahir Muhammad
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China.,Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China.,Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, 250012, China
| | - Mengjing Li
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China.,Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China.,Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, 250012, China
| | - Jianfeng Wang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China.,Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China.,Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, 250012, China
| | - Tao Huang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China.,Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China.,Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, 250012, China
| | - Shigang Zhao
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China.,Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China.,Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, 250012, China
| | - Han Zhao
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China.,Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China.,Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, 250012, China
| | - Hongbin Liu
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China. .,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China. .,Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China. .,Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, 250012, China.
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China. .,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China. .,Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China. .,Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, 250012, China. .,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200000, China. .,Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200000, China.
| |
Collapse
|
17
|
Aboul-Soud MA. cDNA Cloning of a Bovine Insulin-like growth factor-1 from Egyptian Buffalos and Expression of its Recombinant Protein in Escherichia coli. ARQ BRAS MED VET ZOO 2020. [DOI: 10.1590/1678-4162-11646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ABSTRACT Insulin-like growth factor-1 (IGF-1) is regarded as a crucial clinically significant therapeutic agent against several pathological conditions. Recently, recombinant DNA (rDNA) technology has enabled the production of many drugs of rDNA-origin including IGF-1. Securing a readily available supply of IGF-1 is invaluable to clinical research and biotechnological domains. In this work, the cloning of a full-length bovine IGF-1 cDNA and the successful expression of its cognate recombinant IGF-1 protein is reported. Single-strand cDNA was prepared from liver tissues, through the specific reverse transcription (RT) of IGF-1 mRNA. Subsequently, a PCR amplicon of ~543bp was successfully amplified. Recombinant pTARGET™ vector harboring IGF-1 insert was successfully cloned into competent E. coli JM109 cells. SDS-PAGE analysis revealed that the recombinant IGF-1 has been expressed at the expected size of 7.6kDa. The outcome provides a robust basis for transecting the recombinant pTARGETTM vector, harboring the IGF-1 cDNA insert, into mammalian cells. Optimal initial glucose concentration was found to be 10g/l with corresponding protein concentration of 6.2g/l. The proliferative biological activity crude recombinant IGF-1 protein was verified on HeLa cell lines. This is envisaged to facilitate large-scale production of recombinant IGF-1 protein, thereby enabling thorough investigation of its clinical and pharmaceutical effects.
Collapse
|
18
|
Wamaitha SE, Grybel KJ, Alanis-Lobato G, Gerri C, Ogushi S, McCarthy A, Mahadevaiah SK, Healy L, Lea RA, Molina-Arcas M, Devito LG, Elder K, Snell P, Christie L, Downward J, Turner JMA, Niakan KK. IGF1-mediated human embryonic stem cell self-renewal recapitulates the embryonic niche. Nat Commun 2020; 11:764. [PMID: 32034154 PMCID: PMC7005693 DOI: 10.1038/s41467-020-14629-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 01/23/2020] [Indexed: 02/05/2023] Open
Abstract
Our understanding of the signalling pathways regulating early human development is limited, despite their fundamental biological importance. Here, we mine transcriptomics datasets to investigate signalling in the human embryo and identify expression for the insulin and insulin growth factor 1 (IGF1) receptors, along with IGF1 ligand. Consequently, we generate a minimal chemically-defined culture medium in which IGF1 together with Activin maintain self-renewal in the absence of fibroblast growth factor (FGF) signalling. Under these conditions, we derive several pluripotent stem cell lines that express pluripotency-associated genes, retain high viability and a normal karyotype, and can be genetically modified or differentiated into multiple cell lineages. We also identify active phosphoinositide 3-kinase (PI3K)/AKT/mTOR signalling in early human embryos, and in both primed and naïve pluripotent culture conditions. This demonstrates that signalling insights from human blastocysts can be used to define culture conditions that more closely recapitulate the embryonic niche.
Collapse
Affiliation(s)
- Sissy E Wamaitha
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Department of Molecular, Cell and Developmental Biology, and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA, 90095, USA
| | - Katarzyna J Grybel
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Gregorio Alanis-Lobato
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Claudia Gerri
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Sugako Ogushi
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Sex Chromosome Biology Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Afshan McCarthy
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | | | - Lyn Healy
- Human Embryo and Stem Cell Unit, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Rebecca A Lea
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Miriam Molina-Arcas
- Oncogene Biology Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Liani G Devito
- Human Embryo and Stem Cell Unit, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Kay Elder
- Bourn Hall Clinic, Bourn, Cambridge, CB23 2TN, UK
| | - Phil Snell
- Bourn Hall Clinic, Bourn, Cambridge, CB23 2TN, UK
| | | | - Julian Downward
- Oncogene Biology Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - James M A Turner
- Sex Chromosome Biology Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Kathy K Niakan
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
| |
Collapse
|
19
|
Armstrong S, MacKenzie J, Woodward B, Pacey A, Farquhar C. GM-CSF (granulocyte macrophage colony stimulating factor) supplementation in culture media for women undergoing assisted reproductive technology (ART). Hippokratia 2019. [DOI: 10.1002/14651858.cd013497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Sarah Armstrong
- The University of Sheffield; Department of Oncology & Metabolism, Academic Unit of Reproductive and Developmental Medicine; Academic Unit of Reproductive and Developmental Medicine Level 4, The Jessop Wing Sheffield UK S10 2SF
| | - Jeanette MacKenzie
- Fertility Plus, Women's Health, Auckland District Health Board; Auckland New Zealand
| | | | - Allan Pacey
- The University of Sheffield; Department of Oncology & Metabolism, Academic Unit of Reproductive and Developmental Medicine; Academic Unit of Reproductive and Developmental Medicine Level 4, The Jessop Wing Sheffield UK S10 2SF
| | - Cindy Farquhar
- University of Auckland; Department of Obstetrics and Gynaecology; FMHS Park Road Grafton Auckland New Zealand 1003
| |
Collapse
|
20
|
Yu M, Cui X, Wang H, Liu J, Qin H, Liu S, Yan Q. FUT8 drives the proliferation and invasion of trophoblastic cells via IGF-1/IGF-1R signaling pathway. Placenta 2018; 75:45-53. [PMID: 30712666 DOI: 10.1016/j.placenta.2018.11.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 11/07/2018] [Accepted: 11/15/2018] [Indexed: 10/27/2022]
Abstract
INTRODUCTION Trophoblast proliferation and invasion are essential for embryo implantation and placentation. Protein glycosylation is one of the most common and vital post-translational modifications, regulates protein physical and biochemical properties. FUT8 is the only known fucosyltransferase responsible for catalyzing α1,6-fucosylation in mammals, and α1,6-fucosylated glycoproteins are found to participate in various physiopathological processes. However, whether FUT8/α1,6-fucosylation modulates the functions of trophoblastic cells remains elusive. METHODS FUT8 in human placenta villi during 6-8 gestational weeks and trophoblastic cells were detected by Western blot and immunofluorescent staining. α1,6-fucosylation in tissues or cells were measured by Lectin LCA (Lens culinaris) fluorescent staining and Lectin blot. FUT8 expression was down-regulated by siRNA transfection in JAR and JEG-3 cells, and cell viability, motility and invasiveness ability were detected by the functional experiments. α1,6-fucosylation of insulin-like growth factor receptor (IGF-1R) was examined by immunoprecipitation, and the amount of phosphorylated IGF-1R was detected in FUT8 down-regulated JAR cells. RESULTS Human placenta villi and trophoblastic cells expressed FUT8/α1,6-fucosylation. Knockdown FUT8 by siRNA transfection suppressed the proliferation, epithelial-mesenchymal transition, migration and invasion of JAR and JEG-3 cells. Furthermore, we found that FUT8 modified the α1,6-fucosylation of IGF-1R, and regulated IGF-1 dependent activation of IGF-1R, MAPK and PI3K/Akt signaling pathways in JAR cells. CONCLUSIONS Our results implicate a critical role for FUT8 in maintaining the normal functions of trophoblastic cells, suggesting manipulating FUT8 may be an effective approach in pregnancy.
Collapse
Affiliation(s)
- Ming Yu
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian, People's Republic of China
| | - Xinyuan Cui
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian, People's Republic of China
| | - Hao Wang
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian, People's Republic of China
| | - Jianwei Liu
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian, People's Republic of China
| | - Huamin Qin
- Department of Pathology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, China
| | - Shuai Liu
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian, People's Republic of China.
| | - Qiu Yan
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian, People's Republic of China.
| |
Collapse
|
21
|
Irani M, Nasioudis D, Witkin SS, Gunnala V, Spandorfer SD. High serum IGF-1 levels are associated with pregnancy loss following frozen-thawed euploid embryo transfer cycles. J Reprod Immunol 2018; 127:7-10. [PMID: 29574310 DOI: 10.1016/j.jri.2018.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 02/05/2018] [Accepted: 03/16/2018] [Indexed: 10/17/2022]
Abstract
An elevated level of insulin growth factor (IGF-1) in rat uterine fluid has been shown to exert detrimental effects of embryo development possibly leading to an increase in pregnancy loss. Interestingly, the administration of somatostatin to rats undergoing superovulation reduced IGF-1 levels in uterine luminal fluid and thus reversed its deleterious effects on embryo development and increased the number of normal embryos. Therefore, we investigated whether serum levels of IGF-1 correlate with the incidence of pregnancy loss following IVF. To account for aneuploidy and the effect of hormonal supplementation on serum IGF levels, we only included natural frozen-thawed euploid embryo transfer (N-FET) cycles. Sera collected in the follicular phase (cycle day 10) were tested for levels of IGF-1, IGF-2, and IGF-binding protein 1 (IGFBP-1) using quantitative ELISA. A total of 156 N-FET cycles were included: 120 resulted in a live birth whereas 36 led to a first trimester pregnancy loss. Women with a pregnancy loss had significantly higher serum IGF-1 levels compared to those who achieved a live birth (18.0 ± 1.1 vs. 14.6 ± 0.7 ng/mL, respectively). The two groups had comparable serum IGF-2 and IGFBP-1 levels. There was no significant difference in maternal age, body mass index, gravidity, parity, number of prior miscarriages, peak endometrial thickness, or infertility diagnosis between the two groups. In conclusion, women undergoing euploid blastocyst transfer with elevated serum IGF-1 concentrations may be at increased risk of pregnancy loss. This may constitute a novel molecular explanation of pregnancy loss of euploid conceptus.
Collapse
Affiliation(s)
- Mohamad Irani
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY 10021, United States
| | - Dimitrios Nasioudis
- Division of Immunology and Infectious Diseases, Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY 10021, United States
| | - Steven S Witkin
- Division of Immunology and Infectious Diseases, Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY 10021, United States
| | - Vinay Gunnala
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY 10021, United States
| | - Steven D Spandorfer
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY 10021, United States.
| |
Collapse
|
22
|
Lysophosphatidic acid increases in vitro maturation efficiency via uPA-uPAR signaling pathway in cumulus cells. Theriogenology 2018; 113:197-207. [PMID: 29554602 DOI: 10.1016/j.theriogenology.2018.02.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 02/24/2018] [Accepted: 02/24/2018] [Indexed: 11/23/2022]
Abstract
Lysophosphatidic acid (LPA) is a phospholipid-derived signaling molecule with biological activities, such as stimulating cell proliferation, differentiation and migration. In the present study, we examined the effect of LPA on porcine oocytes during in vitro maturation (IVM) and subsequent embryonic development following parthenogenetic activation (PA) and in vitro fertilization (IVF). During IVM, the maturation medium was supplemented with various concentrations of LPA (0, 10, 30, and 60 μM). After 42 h of IVM, the 30 μM LPA-treated group showed a significant (P <0.05) increase in nuclear maturation and intracellular glutathione (GSH) levels compared with the other groups. The 30 μM LPA-treated group exhibited a significant decrease in intracellular reactive oxygen species (ROS) levels compared with the other groups. In PA, the 30 μM LPA-treated group had significantly higher cleavage (CL) and blastocyst (BL) rates compared with those of the other LPA-treated groups. In IVF, the 30 μM LPA-treated group had significantly higher CL and BL rates than the other LPA-treated groups. The expression of the developmental competence gene (proliferating cell nuclear antigen, PCNA) in the oocytes and cumulus cells of the individuals in the 30 μM LPA-treated group was significantly increased compared with the control group. In addition, the specific expression of urokinase Plasminogen Activator (uPA) and uPA Receptor (uPAR) in cumulus cells was significantly increased in the 30 μM LPA-treated group. The western blotting results revealed that LPA improves the activities of p38 mitogen-activated protein kinase (MAPK) and epidermal growth factor (EGF) by enhanced phosphorylation. In conclusion, treatment with 30 μM LPA during IVM promotes enhances the EGF-EGFR signaling pathway, resulting in cumulus cell expansion. And then, this treatment improves the developmental potential of PA and IVF porcine embryos by enhancing nuclear and cytoplasmic maturation and reducing ROS.
Collapse
|
23
|
Co-culture of human embryos with autologous cumulus cell clusters and its beneficial impact of secreted growth factors on preimplantation development as compared to standard embryo culture in assisted reproductive technologies (ART). MIDDLE EAST FERTILITY SOCIETY JOURNAL 2017. [DOI: 10.1016/j.mefs.2017.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
24
|
Laskowski D, Båge R, Humblot P, Andersson G, Sirard MA, Sjunnesson Y. Insulin during in vitro oocyte maturation has an impact on development, mitochondria, and cytoskeleton in bovine day 8 blastocysts. Theriogenology 2017; 101:15-25. [DOI: 10.1016/j.theriogenology.2017.06.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 05/30/2017] [Accepted: 06/04/2017] [Indexed: 01/07/2023]
|
25
|
Ekizceli G, Inan S, Oktem G, Onur E, Ozbilgin K. Assessment of mTOR pathway molecules during implantation in rats. Biotech Histochem 2017; 92:450-458. [DOI: 10.1080/10520295.2017.1350749] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- G. Ekizceli
- Department of Histology and Embryology, Uludag University Faculty of Medicine, Bursa
| | - S. Inan
- Department of Histology and Embryology, Izmir University of Economics, Faculty of Medicine, Izmir
| | - G. Oktem
- Department of Histology and Embryology, Ege University, Faculty of Medicine, Izmir
| | - E. Onur
- Department of Medical Biochemistry, Celal Bayar University, Faculty of Medicine, Manisa
| | - K. Ozbilgin
- Department of Histology and Embryology, Celal Bayar University, Faculty of Medicine, Manisa, Turkey
| |
Collapse
|
26
|
Chen P, Pan Y, Cui Y, Wen Z, Liu P, He H, Li Q, Peng X, Zhao T, Yu S. Insulin-like growth factor I enhances the developmental competence of yak embryos by modulating aquaporin 3. Reprod Domest Anim 2017; 52:825-835. [DOI: 10.1111/rda.12985] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 03/19/2017] [Indexed: 12/27/2022]
Affiliation(s)
- P Chen
- Gansu Province Livestock Embryo Engineering Research Center; College of Veterinary Medicine; Gansu Agricultural University; Lanzhou China
| | - Y Pan
- Gansu Province Livestock Embryo Engineering Research Center; College of Veterinary Medicine; Gansu Agricultural University; Lanzhou China
| | - Y Cui
- Gansu Province Livestock Embryo Engineering Research Center; College of Veterinary Medicine; Gansu Agricultural University; Lanzhou China
| | - Z Wen
- Gansu Province Livestock Embryo Engineering Research Center; College of Veterinary Medicine; Gansu Agricultural University; Lanzhou China
| | - P Liu
- Gansu Province Livestock Embryo Engineering Research Center; College of Veterinary Medicine; Gansu Agricultural University; Lanzhou China
| | - H He
- Gansu Province Livestock Embryo Engineering Research Center; College of Veterinary Medicine; Gansu Agricultural University; Lanzhou China
| | - Q Li
- Gansu Province Livestock Embryo Engineering Research Center; College of Veterinary Medicine; Gansu Agricultural University; Lanzhou China
| | - X Peng
- Gansu Province Livestock Embryo Engineering Research Center; College of Veterinary Medicine; Gansu Agricultural University; Lanzhou China
| | - T Zhao
- Gansu Province Livestock Embryo Engineering Research Center; College of Veterinary Medicine; Gansu Agricultural University; Lanzhou China
| | - S Yu
- Gansu Province Livestock Embryo Engineering Research Center; College of Veterinary Medicine; Gansu Agricultural University; Lanzhou China
| |
Collapse
|
27
|
Clark AR, Kruger JA. Mathematical modeling of the female reproductive system: from oocyte to delivery. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2016; 9. [PMID: 27612162 DOI: 10.1002/wsbm.1353] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 06/08/2016] [Accepted: 06/28/2016] [Indexed: 12/30/2022]
Abstract
From ovulation to delivery, and through the menstrual cycle, the female reproductive system undergoes many dynamic changes to provide an optimal environment for the embryo to implant, and to develop successfully. It is difficult ethically and practically to observe the system over the timescales involved in growth and development (often hours to days). Even in carefully monitored conditions clinicians and biologists can only see snapshots of the development process. Mathematical models are emerging as a key means to supplement our knowledge of the reproductive process, and to tease apart complexity in the reproductive system. These models have been used successfully to test existing hypotheses regarding the mechanisms of female infertility and pathological fetal development, and also to provide new experimentally testable hypotheses regarding the process of development. This new knowledge has allowed for improvements in assisted reproductive technologies and is moving toward translation to clinical practice via multiscale assessments of the dynamics of ovulation, development in pregnancy, and the timing and mechanics of delivery. WIREs Syst Biol Med 2017, 9:e1353. doi: 10.1002/wsbm.1353 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Alys R Clark
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Jennifer A Kruger
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| |
Collapse
|
28
|
Nasu K, Itoh H, Yuge A, Kawano Y, Narahara H. Insulin-like Growth Factor-I Regulates Vascular Endothelial Growth Factor Secretion by Human Oviductal Epithelial Cells and Stromal Fibroblasts. ACTA ACUST UNITED AC 2016; 13:368-71. [PMID: 16713312 DOI: 10.1016/j.jsgi.2006.03.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2006] [Indexed: 10/24/2022]
Abstract
OBJECTIVE The aim of the current study is to evaluate the effect of insulin-like growth factor-I (IGF-I) on the production of vascular endothelial growth factor (VEGF) in the human fallopian tube. METHODS Human oviductal epithelial cells (OEC) and oviductal stromal fibroblasts (OSF) were isolated from the ampullary segment of the fallopian tubes of six premenopausal patients in the proliferative phase of the menstrual cycle. The secretion of VEGF165 by cultured OEC and OSF in response to IGF-I was measured using an enzyme-linked immunosorbent assay (ELISA). RESULTS The secretion of VEGF165 was detected in cultured OEC and OSF under untreated conditions. The secretion of VEGF165 was significantly stimulated with IGF-I administration in these cells. CONCLUSION The present findings suggest that IGF-I in the local environment may stimulate oviductal vascular permeability by inducing the production of VEGF by oviductal cells through autocrine and paracrine mechanisms. The modulation of the VEGF production in the fallopian tube may contribute to the normal and pathologic processes of oviductal fluid secretion by regulating oviductal vascular permeability during the menstrual cycle and in the peri-implantation period.
Collapse
Affiliation(s)
- Kaei Nasu
- Department of Obstetrics and Gynecology, Faculty of Medicine, Oita University, Yufu-shi, Oita, Japan.
| | | | | | | | | |
Collapse
|
29
|
Tsui KH, Lin LT, Chang R, Huang BS, Cheng JT, Wang PH. Effects of dehydroepiandrosterone supplementation on women with poor ovarian response: A preliminary report and review. Taiwan J Obstet Gynecol 2016; 54:131-6. [PMID: 25951716 DOI: 10.1016/j.tjog.2014.07.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2014] [Indexed: 10/23/2022] Open
Abstract
OBJECTIVE To investigate the effect of dehydroepiandrosterone (DHEA) supplementation on women with poor ovarian response (POR). MATERIALS AND METHODS Women with POR treated with flexible daily gonadotropin-releasing hormone antagonist in vitro fertilization (IVF) cycles at The Reproductive Center in Kaohsiung Veterans General Hospital between January 2013 and October 2013, were enrolled for this prospective study. When patients failed to become pregnant during the first IVF cycle, they were treated with DHEA supplementation (30 mg, 3 times a day, orally) for 3 months (mean 12.2 weeks) before the next IVF cycle. Parameters of biochemical, ultrasound and treatment outcomes were compared before and after DHEA supplementation. RESULTS Ten patients with a mean age of 36.6 ± 4.2 years were identified. After DHEA treatment, there was a significant increase in antral follicle count, from 2.8 ± 1.0 to 4.1 ± 1.2 (p < 0.05), and anti-Müllerian hormone, from 0.4 ± 0.2 ng/mL to 0.84 ± 0.2 ng/mL (p < 0.001). A significant decrease of Day 3 follicle-stimulating hormone and estradiol, from 14.4 ± 1.7 mIU/mL to 10.1 ± 0.7 mIU/mL and from 51.2 ± 6.3 pg/mL to 35.2 ± 4.2 pg/mL, respectively (both p < 0.001), was noted. Increased numbers of retrieved oocytes (from 2.4 ± 1.1 to 4.2 ± 1.2; p < 0.01), fertilized oocytes (from 1.7 ± 0.5 to 3.8 ± 1.1; p < 0.001), Day 3 embryos (from 1.7 ± 0.5 to 3.7 ± 1.1; p < 0.001) and transferred embryos (from 1.7 ± 0.8 to 2.8 ± 0.8; p < 0.01) were also seen in these women with POR after DHEA treatment. Three women became pregnant after DHEA treatment. CONCLUSION The potential benefits of DHEA supplementation in women with POR were suggested by the biochemical parameters and IVF outcomes.
Collapse
Affiliation(s)
- Kuan-Hao Tsui
- Department of Biological Science, National Sun Yat-Sen University, Kaohsiung, Taiwan; Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan; Department of Obstetrics and Gynecology, National Yang-Ming University School of Medicine, Taipei, Taiwan; Department of Pharmacy and Graduate Institute of Pharmaceutical Technology, Tajen University, Yanpu, Taiwan
| | - Li-Te Lin
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan; Department of Obstetrics and Gynecology, National Yang-Ming University School of Medicine, Taipei, Taiwan; Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Su-Ao and Yuanshan Branch, Ilan, Taiwan
| | - Renin Chang
- Department of Emergency Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Ben-Shian Huang
- Department of Obstetrics and Gynecology, National Yang-Ming University School of Medicine, Taipei, Taiwan; Department of Obstetrics and Gynecology, National Yang-Ming University Hospital, Ilan, Taiwan
| | - Jiin-Tsuey Cheng
- Department of Biological Science, National Sun Yat-Sen University, Kaohsiung, Taiwan.
| | - Peng-Hui Wang
- Department of Obstetrics and Gynecology, National Yang-Ming University School of Medicine, Taipei, Taiwan; Department of Obstetrics and Gynecology, National Yang-Ming University Hospital, Ilan, Taiwan; Division of Gynecology, Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei, Taiwan; Immunology Center, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
30
|
Noli L, Capalbo A, Ogilvie C, Khalaf Y, Ilic D. Discordant Growth of Monozygotic Twins Starts at the Blastocyst Stage: A Case Study. Stem Cell Reports 2015; 5:946-953. [PMID: 26584541 PMCID: PMC4682124 DOI: 10.1016/j.stemcr.2015.10.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Revised: 10/08/2015] [Accepted: 10/08/2015] [Indexed: 11/24/2022] Open
Abstract
Discordant growth is a common complication of monochorionic/diamniotic pregnancies; in approximately 50% of cases, the cause is unknown. The case presented here suggests that discordant growth of monozygotic twins could start during preimplantation development. Two inner cell masses (ICMs) within the same blastocyst may originate in uneven splitting of a single “parental” ICM, or the two ICMs may be formed independently de novo. We studied the transcriptomes of two morphologically distinct ICMs within a single blastocyst using high-resolution RNA sequencing. The data indicated that the two ICM were at different stages of development; one was in the earliest stages of lineage commitment, while the other had already differentiated into epiblast and primitive endoderm. IGF1-mediated signaling is likely to play a key role in ICM growth and to be the major driver behind these differences. Two ICMs within the same blastocyst were at different stages of development IGF1-mediated signaling is likely to be the major driver behind these differences The expression pattern of YAP1 is different in human embryos from in the mouse
Collapse
Affiliation(s)
- Laila Noli
- Division of Women's Health, Faculty of Life Sciences and Medicine, King's College London and Assisted Conception Unit, Guy's Hospital, London SE1 9RT, UK
| | - Antonio Capalbo
- GENERA: Centre for Reproductive Medicine, Clinica Valle Giulia, 00197 Rome, Italy; GENETYX: Molecular Genetics Laboratory, Via Fermi 1, 36063 Marostica, Italy
| | | | - Yacoub Khalaf
- Division of Women's Health, Faculty of Life Sciences and Medicine, King's College London and Assisted Conception Unit, Guy's Hospital, London SE1 9RT, UK
| | - Dusko Ilic
- Division of Women's Health, Faculty of Life Sciences and Medicine, King's College London and Assisted Conception Unit, Guy's Hospital, London SE1 9RT, UK.
| |
Collapse
|
31
|
Ramer I, Kanninen TT, Sisti G, Witkin SS, Spandorfer SD. Association of in vitro fertilization outcome with circulating insulin-like growth factor components prior to cycle initiation. Am J Obstet Gynecol 2015; 213:356.e1-6. [PMID: 25935785 DOI: 10.1016/j.ajog.2015.04.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 04/13/2015] [Accepted: 04/23/2015] [Indexed: 01/24/2023]
Abstract
OBJECTIVE Components of the insulin-like growth factor (IGF) system enhance in vitro embryo quality and implantation rates in both animal models and human in vitro fertilization (IVF). We evaluated whether differences in serum levels of these components in women prior to initiation of an IVF cycle would be predictive of subsequent outcome. STUDY DESIGN In this retrospective study sera from women obtained at day 2 of their IVF cycle (at baseline before stimulation) were assayed for IGF-I, IGF-II, and IGF binding protein (BP)-1 by enzyme-linked immunosorbent assay. Samples from 54 women with a live birth, 38 with a transient biochemical pregnancy, 45 with a spontaneous abortion, 54 who did not become pregnant, and 35 who had an ectopic pregnancy were available for analysis. Associations between the assays and outcome were evaluated by the Kruskal-Wallis test and receiver operating characteristic analysis. RESULTS There were no differences in the number of oocytes retrieved, oocyte quality, fertilization rates, or embryo grade between groups. Median concentrations of IGF-I were elevated in women with a live birth (29.1 ng/mL) as compared to women with a biochemical pregnancy (25.6 ng/mL), with spontaneous abortion (21.2 ng/mL), who were not pregnant (18.7 pg/mL), or who had an ectopic pregnancy (4.2 pg/mL) (P < .001). Conversely, median levels of IGF-II were reduced in women with a live birth (294.5 ng/mL) as opposed to 357.5, 393.6, 407.2, and 426.9 ng/mL in women with a biochemical pregnancy, with ectopic pregnancy, with spontaneous abortion, or who were not pregnant, respectively (P < .001). Median IGFBP-1 concentrations were markedly elevated in women with a live birth (23.6 ng/mL) compared to 18.3, 14.1, 13.8, and 9.5 ng/mL in women with a biochemical pregnancy, with spontaneous abortion, who were not pregnant, or with an ectopic pregnancy (P < .001). The combination of IGF-I and IGFBP-1 best predicted the occurrence of a live birth with an area under the curve of 0.892. CONCLUSION Maternal serum levels of IGF-I, IGF-II, and IGFBP-1 prior to initiation of an IVF cycle are correlated with the likelihood of a live birth. Alterations in maternal IGF system components may influence oocyte quality or the success of early postfertilization events and embryo implantation.
Collapse
Affiliation(s)
- Ilana Ramer
- Division of Immunology and Infectious Diseases, Department of Obstetrics and Gynecology, Weill Cornell Medical College, New York, NY; Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medical College, New York, NY
| | - Tomi T Kanninen
- Division of Immunology and Infectious Diseases, Department of Obstetrics and Gynecology, Weill Cornell Medical College, New York, NY
| | - Giovanni Sisti
- Division of Immunology and Infectious Diseases, Department of Obstetrics and Gynecology, Weill Cornell Medical College, New York, NY
| | - Steven S Witkin
- Division of Immunology and Infectious Diseases, Department of Obstetrics and Gynecology, Weill Cornell Medical College, New York, NY
| | - Steven D Spandorfer
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medical College, New York, NY.
| |
Collapse
|
32
|
Schmaltz-Panneau B, Locatelli Y, Uzbekova S, Perreau C, Mermillod P. Bovine Oviduct Epithelial Cells Dedifferentiate Partly in Culture, While Maintaining their Ability to Improve Early Embryo Development Rate and Quality. Reprod Domest Anim 2015; 50:719-29. [DOI: 10.1111/rda.12556] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 05/17/2015] [Indexed: 11/28/2022]
Affiliation(s)
- B Schmaltz-Panneau
- UMR7247; Physiologie de la Reproduction et des Comportements; INRA; Nouzilly France
| | - Y Locatelli
- UMR7247; Physiologie de la Reproduction et des Comportements; INRA; Nouzilly France
- Parc de la Haute Touche; Muséum National d'Histoire Naturelle; Obterre France
| | - S Uzbekova
- UMR7247; Physiologie de la Reproduction et des Comportements; INRA; Nouzilly France
| | - C Perreau
- UMR7247; Physiologie de la Reproduction et des Comportements; INRA; Nouzilly France
| | - P Mermillod
- UMR7247; Physiologie de la Reproduction et des Comportements; INRA; Nouzilly France
| |
Collapse
|
33
|
Würfel W. Der frühe Embryo. GYNAKOLOGISCHE ENDOKRINOLOGIE 2015. [DOI: 10.1007/s10304-015-0002-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
34
|
Female tract cytokines and developmental programming in embryos. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 843:173-213. [PMID: 25956299 DOI: 10.1007/978-1-4939-2480-6_7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In the physiological situation, cytokines are pivotal mediators of communication between the maternal tract and the embryo. Compelling evidence shows that cytokines emanating from the oviduct and uterus confer a sophisticated mechanism for 'fine-tuning' of embryo development, influencing a range of cellular events from cell survival and metabolism, through division and differentiation, and potentially exerting long-term impact through epigenetic remodelling. The balance between survival agents, including GM-CSF, CSF1, LIF, HB-EGF and IGFII, against apoptosis-inducing factors such as TNFα, TRAIL and IFNg, influence the course of preimplantation development, causing embryos to develop normally, adapt to varying maternal environments, or in some cases to arrest and undergo demise. Maternal cytokine-mediated pathways help mediate the biological effects of embryo programming, embryo plasticity and adaptation, and maternal tract quality control. Thus maternal cytokines exert influence not only on fertility and pregnancy progression but on the developmental trajectory and health of offspring. Defining a clear understanding of the biology of cytokine networks influencing the embryo is essential to support optimal outcomes in natural and assisted conception.
Collapse
|
35
|
Green CJ, Fraser ST, Day ML. Insulin-like growth factor 1 increases apical fibronectin in blastocysts to increase blastocyst attachment to endometrial epithelial cells in vitro. Hum Reprod 2014; 30:284-98. [PMID: 25432925 DOI: 10.1093/humrep/deu309] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
STUDY QUESTION Does insulin-like growth factor 1 (IGF1) increase adhesion competency of blastocysts to increase attachment to uterine epithelial cells in vitro? SUMMARY ANSWER IGF1 increases apical fibronectin on blastocysts to increase attachment and invasion in an in vitro model of implantation. WHAT IS KNOWN ALREADY Fibronectin integrin interactions are important in attachment of blastocysts to uterine epithelial cells at implantation. STUDY DESIGN, SIZE, DURATION Mouse blastocysts (hatched or near completion of hatching) were cultured in serum starved (SS) medium with varying treatments for 24, 48 or 72 h. Treatments included 10 ng/ml IGF1 in the presence or absence of the PI3 kinase inhibitor LY294002, an IGF1 receptor (IGF1R) neutralizing antibody or fibronectin. Effects of treatments on blastocysts were measured by attachment of blastocysts to Ishikawa cells, blastocyst outgrowth and fibronectin and focal adhesion kinase (FAK) localization and expression. Blastocysts were randomly allocated into control and treatment groups and experiments were repeated a minimum of three times with varying numbers of blastocysts used in each experiment. FAK and integrin protein expression on Ishikawa cells was quantified in the presence or absence of IGF1. PARTICIPANTS/MATERIALS, SETTING, METHODS Fibronectin expression and localization in blastocysts was studied using immunofluorescence and confocal microscopy. Global surface expression of integrin αvβ3, β3 and β1 was measured in Ishikawa cells using flow cytometry. Expression levels of phosphorylated FAK and total FAK were measured in Ishikawa cells and blastocysts by western blot and image J analysis. Blastocyst outgrowth was quantified using image J analysis. MAIN RESULTS AND THE ROLE OF CHANCE The presence of IGF1 significantly increased mouse blastocyst attachment to Ishikawa cells compared with SS conditions (P < 0.01). IGF1 treatment resulted in distinct apical fibronectin staining on blastocysts, which was reduced by the PI3 kinase inhibitor LY294002. This coincided with a significant increase in blastocyst outgrowth in the presence of IGF1 (P < 0.01) or fibronectin (P < 0.001), which was abolished by LY294002 (P < 0.001). Apical expression of integrin αvβ3, β3 and β1 in Ishikawa cells was unaltered by IGF1. However, IGF1 increased phosphorylated FAK (P < 0.05) and total FAK expression in Ishikawa cells. FAK signalling is linked to integrin activation and can affect the integrins' ability to bind and recognize extracellular matrix proteins such as fibronectin. Treatment of blastocysts with IGF1 before co-culture with Ishikawa cells increased their attachment (P < 0.05). This effect was abolished in the presence of LY294002 (P < 0.001) or an IGF1R neutralizing antibody (P < 0.05). LIMITATIONS, REASONS FOR CAUTION This study uses an in vitro model of attachment that uses mouse blastocysts and human endometrial cells. This involves a species crossover and although this use has been well documented as a model for attachment (as human embryo numbers are limited) the results should be interpreted carefully. WIDER IMPLICATIONS OF THE FINDINGS This study presents mechanisms by which IGF1 improves attachment of blastocysts to Ishikawa cells and documents for the first time how IGF1 can increase adhesion competency in blastocysts. Failure of the blastocyst to implant is the major cause of human assisted reproductive technology (ART) failure. As growth factors are absent during embryo culture, their addition to embryo culture medium is a potential avenue to improve IVF success. In particular, IGF1 could prove to be a potential treatment for blastocysts before transfer to the uterus in an ART setting.
Collapse
Affiliation(s)
- Charmaine J Green
- Discipline of Physiology, Bosch Institute, Sydney Medical School, University of Sydney, K25 - Medical Foundation Building, Sydney 2006, Australia
| | - Stuart T Fraser
- Discipline of Physiology, Bosch Institute, Sydney Medical School, University of Sydney, K25 - Medical Foundation Building, Sydney 2006, Australia Discipline of Anatomy and Histology, Sydney Medical School, University of Sydney, K25 - Medical Foundation Building, Sydney 2006, Australia
| | - Margot L Day
- Discipline of Physiology, Bosch Institute, Sydney Medical School, University of Sydney, K25 - Medical Foundation Building, Sydney 2006, Australia
| |
Collapse
|
36
|
Abstract
The UK Association of Clinical Embryologists held a workshop on Culture Systems for assisted conception in Sheffield on 22 May 2013. The meeting was organised in the light of the availability of numerous commercial products for the culture of human preimplantation embryos in vitro and the absence of data comparing the performance of these products. Expert opinions were presented, along with survey data provided by participating IVF Centres. The workshop highlighted the lack of a sound evidence base to support the selection of any one commercial product over another, and raised concerns over the lack of information defining precisely the composition of media, and the potential for adverse long-term effects of such products following their use in assisted conception.
Collapse
Affiliation(s)
- Virginia N Bolton
- Assisted Conception Unit, Guy's & St Thomas' NHS Foundation Trust, Guy's Hospital , Great Maze Pond, London , UK
| | | | | | | |
Collapse
|
37
|
Abstract
BACKGROUND The advances in the world of IVF during the last decades have been rapid and impressive and culture media play a major role in this success. Until the 1980s fertility centers made their media in house. Nowadays, there are numerous commercially available culture media that contain various components including nutrients, vitamins and growth factors. This review goes through the past, present and future of IVF culture media and explores their composition and quality assessment. METHODS A computerized search was performed in PubMed regarding IVF culture media including results from 1929 until March 2014. Information was gathered from the websites of companies who market culture media, advertising material, instructions for use and certificates of analysis. The regulation regarding IVF media mainly in the European Union (EU) but also in non-European countries was explored. RESULTS The keyword 'IVF culture media' gave 923 results in PubMed and 'embryo culture media' 12 068 results dating from 1912 until March 2014, depicting the increased scientific activity in this field. The commercialization of IVF culture media has increased the standards bringing a great variety of options into clinical practice. However, it has led to reduced transparency and comparisons of brand names that do not facilitate the scientific dialogue. Furthermore, there is some evidence suggesting that suboptimal culture conditions could cause long-term reprogramming in the embryo as the periconception period is particularly susceptible to epigenetic alterations. IVF media are now classified as class III medical devices and only CE (Conformité Européene)-marked media should be used in the EU. CONCLUSION The CE marking of IVF culture media is a significant development in the field. However, the quality and efficiency of culture media should be monitored closely. Well-designed randomized controlled trials, large epidemiological studies and full transparency should be the next steps. Reliable, standardized models assessing multiple end-points and post-implantation development should replace the mouse embryo assay. Structured long-term follow-up of children conceived by assisted reproduction technologies and traceability are of paramount importance.
Collapse
Affiliation(s)
- Elpiniki Chronopoulou
- Institute for Women's Health, University College London, 86-96 Chenies Mews, London WC1E 6HX, UK
| | - Joyce C Harper
- UCL Centre for PG and D, Institute for Women's Health, University College London, London, UK The Centre for Reproductive and Genetic Health, UCLH, London, UK
| |
Collapse
|
38
|
Satrapa RA, Razza EM, Castilho ACS, Simões RAL, Silva CF, Nabhan T, Pegorer MF, Barros CM. Differential Expression of IGF Family Members in Heat-Stressed Embryos ProducedIn Vitrofrom OPU-Derived Oocytes of Nelore (Bos indicus) and Holstein (Bos taurus) Cows. Reprod Domest Anim 2013; 48:1043-8. [DOI: 10.1111/rda.12211] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 06/03/2013] [Indexed: 11/26/2022]
Affiliation(s)
- RA Satrapa
- Department of Pharmacology; University of Sao Paulo State; Botucatu Brazil
| | - EM Razza
- Department of Pharmacology; University of Sao Paulo State; Botucatu Brazil
| | - ACS Castilho
- Department of Pharmacology; University of Sao Paulo State; Botucatu Brazil
| | - RAL Simões
- Department of Pharmacology; University of Sao Paulo State; Botucatu Brazil
| | - CF Silva
- Department of Pharmacology; University of Sao Paulo State; Botucatu Brazil
| | - T Nabhan
- Department of Pharmacology; University of Sao Paulo State; Botucatu Brazil
| | - MF Pegorer
- Department of Animal Reproduction; University of Sao Paulo State; Botucatu Brazil
| | - CM Barros
- Department of Pharmacology; University of Sao Paulo State; Botucatu Brazil
| |
Collapse
|
39
|
Ziebe S, Loft A, Povlsen BB, Erb K, Agerholm I, Aasted M, Gabrielsen A, Hnida C, Zobel DP, Munding B, Bendz SH, Robertson SA. A randomized clinical trial to evaluate the effect of granulocyte-macrophage colony-stimulating factor (GM-CSF) in embryo culture medium for in vitro fertilization. Fertil Steril 2013; 99:1600-9. [DOI: 10.1016/j.fertnstert.2012.12.043] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 12/10/2012] [Accepted: 12/26/2012] [Indexed: 10/27/2022]
|
40
|
Differential expression of members of the IGF system in OPU-derived oocytes from Nelore (Bos indicus) and Holstein (Bos taurus) cows. Anim Reprod Sci 2013; 138:155-8. [DOI: 10.1016/j.anireprosci.2013.02.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 02/19/2013] [Accepted: 02/28/2013] [Indexed: 11/17/2022]
|
41
|
Chiamenti A, Filho C, Moura M, Paula-Lopes F, Neves J, Neto C, Gonçalves P, Lima P, Oliveira M. Use of retinyl acetate, retinoic acid and insulin-like growth factor-I (IGF-I) to enhance goat embryo production. Acta Vet Hung 2013; 61:116-24. [PMID: 23439296 DOI: 10.1556/avet.2012.058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Experiments were carried out to investigate the beneficial effects of retinyl acetate (RAc) and retinoic acid (RA) on goat oocyte maturation as well as the effects of insulin-like growth factor-I (IGF-I), RAc and RA during embryo culture under chemically defined conditions. In Experiment 1, in vitro maturation (IVM) was performed in a chemically defined basic maturation medium (bMM) supplemented with 0.3 μM RAc or 0.5 μM RA. Presumptive zygotes and embryos (2-4 cells) were cultured in droplets of potassium simplex optimised medium (KSOM); however, none of the embryos reached the blastocyst stage. In Experiment 2, oocytes were matured in bMM + RAc or bMM + RA. Presumptive zygotes and 2- to 4-cell embryos were placed in fresh KSOM droplets supplemented with RAc, RA, IGF-I, RAc+IGF-I or RA+IGF-I. In Experiment 1, addition of RAc and RA to bMM increased (P < 0.05) the proportion of 2- to 4-cell embryos reaching the morula stage as compared to the control. In Experiment 2, supplementation of embryo culture media with retinoids and IGF-I increased (P < 0.05) the proportion of 2- to 4-cell stage embryos developing to the morula and blastocyst stage. Our data demonstrate that goat embryo production in chemically defined media could be improved by exogenous RAc or RA and by the interaction between retinoids and IGF-I, and that goat embryos can be produced in vitro from oocytes following protocols similar to those currently used for cattle.
Collapse
Affiliation(s)
| | - Cristiano Filho
- 2 Laboratório de Biotécnicas Reprodutivas do Departamento de Medicina Veterinária da Universidade Federal Rural de Pernambuco (UFRPE) Av. Dom Manoel de Medeiros s/n, Dois Irmãos CEP 52171-900 Recife-PE Brazil
| | - Marcelo Moura
- 2 Laboratório de Biotécnicas Reprodutivas do Departamento de Medicina Veterinária da Universidade Federal Rural de Pernambuco (UFRPE) Av. Dom Manoel de Medeiros s/n, Dois Irmãos CEP 52171-900 Recife-PE Brazil
| | | | - Jairo Neves
- 4 Faculdade de Agronomia e Medicina Veterinária da Universidade de Brasília Brasília/DF Brazil
| | - Cícero Neto
- 5 Universidade Federal de Alagoas Maceió/AL Brazil
| | | | - Paulo Lima
- 2 Laboratório de Biotécnicas Reprodutivas do Departamento de Medicina Veterinária da Universidade Federal Rural de Pernambuco (UFRPE) Av. Dom Manoel de Medeiros s/n, Dois Irmãos CEP 52171-900 Recife-PE Brazil
| | - Marcos Oliveira
- 2 Laboratório de Biotécnicas Reprodutivas do Departamento de Medicina Veterinária da Universidade Federal Rural de Pernambuco (UFRPE) Av. Dom Manoel de Medeiros s/n, Dois Irmãos CEP 52171-900 Recife-PE Brazil
| |
Collapse
|
42
|
Van Sinderen M, Menkhorst E, Winship A, Cuman C, Dimitriadis E. Preimplantation human blastocyst-endometrial interactions: the role of inflammatory mediators. Am J Reprod Immunol 2012; 69:427-40. [PMID: 23176081 DOI: 10.1111/aji.12038] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 10/15/2012] [Indexed: 01/24/2023] Open
Abstract
Immune factors such as cytokines, chemokines, and growth factors are known to play important roles in the preimplantation interactions and communication between the blastocyst and receptive endometrium. This crucial dialog occurs during the stages when the blastocyst is in the uterine cavity immediately preceding implantation and the establishment of pregnancy. Human preimplantation processes are difficult to study due to restrictions on tissue availability. This review focuses on the expression and role of immune factors in human blastocyst-endometrial dialog during the very early stages of implantation. It highlights the importance of immune regulators and the need to develop new models to study human implantation.
Collapse
|
43
|
Thieme R, Schindler M, Ramin N, Fischer S, Mühleck B, Fischer B, Navarrete Santos A. Insulin growth factor adjustment in preimplantation rabbit blastocysts and uterine tissues in response to maternal type 1 diabetes. Mol Cell Endocrinol 2012; 358:96-103. [PMID: 22465205 DOI: 10.1016/j.mce.2012.03.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 02/17/2012] [Accepted: 03/12/2012] [Indexed: 12/16/2022]
Abstract
Insulin-like growth factors (IGFs) are well-known regulators of embryonic growth and differentiation. IGF function is closely related to insulin action. IGFs are available to the preimplantation embryo through maternal blood (endocrine action), uterine secretions (paracrine action) and by the embryo itself (autocrine action). In rabbit blastocysts, embryonic IGF1 and IGF2 are specifically strong in the embryoblast (ICM). Signalling of IGFs and insulin in blastocysts follows the classical pathway with Erk1/2 and Akt kinase activation. The aim of this study was to analyse signalling of IGFs in experimental insulin dependent diabetes (exp IDD) in pregnancy, employing a diabetic rabbit model with uterine hypoinsulinemia and hyperglycaemia. Exp IDD was induced in female rabbits by alloxan treatment prior to mating. At 6 days p.c., the maternal and embryonic IGFs were quantified by RT-PCR and ELISA. In pregnant females, hepatic IGF1 expression and IGF1 serum levels were decreased while IGF1 and IGF2 were increased in endometrium. In blastocysts, IGF1 RNA and protein was approx. 7.5-fold and 2-fold higher, respectively, than in controls from normoglycemic females. In cultured control blastocysts supplemented with IGF1 or insulin in vitro for 1 or 12 h, IGF1 and insulin receptors as well as IGF1 and IGF2 were downregulated. In cultured T1D blastocysts activation of Akt and Erk1/2 was impaired with lower amounts of total Akt and Erk1/2 protein and a reduced phosphorylation capacity after IGF1 supplementation. Our data show that the IGF axis is severely altered in embryo-maternal interactions in exp IDD pregnancy. Both, the endometrium and the blastocyst produce more IGF1 and IGF2. The increased endogenous IGF1 and IGF2 expression by the blastocyst compensates for the loss of systemic insulin and IGF. However, this counterbalance does not fill the gap of the reduced insulin/IGF sensitivity, leading to a developmental delay of blastocysts in exp IDD pregnancy.
Collapse
Affiliation(s)
- René Thieme
- Department of Anatomy and Cell Biology, Martin Luther University Faculty of Medicine, Halle (Saale), Germany
| | | | | | | | | | | | | |
Collapse
|
44
|
Derivation, culture and retinal pigment epithelial differentiation of human embryonic stem cells using human fibroblast feeder cells. J Assist Reprod Genet 2012; 29:735-44. [PMID: 22661130 DOI: 10.1007/s10815-012-9802-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 05/20/2012] [Indexed: 01/08/2023] Open
Abstract
PURPOSE Retinal pigment epithelium cells derived from human embryonic stem cells (ESCs) could be useful for restoring retinal function in age-related macular degeneration. However the use of non-human feeder cells to support the growth of ESCs for clinical applications raises the concern of possible contamination because of direct contact between animal and human cells. METHODS In this study, we produced human ESCs using human fibroblast feeder layers isolated from foreskin and abdominal tissues. Using this system, human ESCs differentiated into retinal pigment epithelium cells in differentiation medium. RESULTS Seven human ESC lines were established from 18 blastocysts. These human ESCs showed normal morphology, expressed all expected cell surface markers, had the ability to form embryoid bodies upon culture in vitro and teratomas after injection into SCID mice, and differentiated further into derivatives of all three germ layers. Under conditions of committed differentiation, these human ESCs could differentiate into retinal pigment epithelium cells after 2 months in culture. CONCLUSIONS The results of this study demonstrated that human foreskin/abdominal fibroblasts have the potential to support the derivation and long-term culture of human ESCs, which can then be used to generate retinal pigment epithelium cells with characteristic morphology and molecular markers. This technique avoids the concerns of contamination from animal feeder layers during human ESC derivation, culture and differentiation, and will thus facilitate the development of retinal pigment epithelium cell transplantation therapy.
Collapse
|
45
|
Velazquez MA, Hadeler KG, Herrmann D, Kues WA, Rémy B, Beckers JF, Niemann H. In vivo oocyte IGF-1 priming increases inner cell mass proliferation of in vitro-formed bovine blastocysts. Theriogenology 2012; 78:517-27. [PMID: 22538004 DOI: 10.1016/j.theriogenology.2012.02.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 01/29/2012] [Accepted: 02/22/2012] [Indexed: 11/29/2022]
Abstract
Studies addressing the effects of supraphysiological levels of IGF-1 on oocyte developmental competence are relevant for unravelling conditions resulting in high bioavailability of IGF-1, such as the polycystic ovary syndrome (PCOS). This study investigated the effects of supraphysiological levels of IGF-1 during in vivo folliculogenesis on the morula-blastocyst transition in bovine embryos. Compacted morulae were non-surgically collected and frozen for subsequent mRNA expression analysis (IGF1R, IGBP3, TP53, AKT1, SLC2A1, SLC2A3, and SLC2A8), or underwent confocal microscopy analysis for protein localization (IGF1R and TP53), or were cultured in vitro for 24 h. In vitro-formed blastocysts were subjected to differential cell staining. The mRNA expression of SLC2A8 was higher in morulae collected from cows treated with IGF-1. Both IGF1R and TP53 protein were present in the plasma membrane and cytoplasm. IGF-1 treatment did not affect protein localization of both IGF1R and TP53. In vitro-formed blastocysts derived from morulae recovered from IGF-1-treated cows displayed a higher number of cells in the inner cell mass (ICM). Total cell number (TCN) of in vitro-formed blastocysts was not affected. A higher mean ICM/TCN proportion was observed in in vitro-formed blastocysts derived from morulae collected from cows treated with IGF-1. The percentage of in vitro-formed blastocysts displaying a low ICM/TCN proportion was decreased by IGF-1 treatment. In vitro-formed blastocysts with a high ICM/TCN proportion were only detected in IGF-1 treated cows. Results show that even a short in vivo exposure of oocytes to a supraphysiological IGF-1 microenvironment can increase ICM cell proliferation in vitro during the morula to blastocyst transition.
Collapse
Affiliation(s)
- M A Velazquez
- Institute of Farm Animal Genetics, Biotechnology, Friedrich-Loeffler-Institut, Höltystraße 10, Mariensee, 31535 Neustadt, Germany
| | | | | | | | | | | | | |
Collapse
|
46
|
Thieme R, Ramin N, Fischer S, Püschel B, Fischer B, Santos AN. Gastrulation in rabbit blastocysts depends on insulin and insulin-like-growth-factor 1. Mol Cell Endocrinol 2012; 348:112-9. [PMID: 21827825 DOI: 10.1016/j.mce.2011.07.044] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 07/24/2011] [Accepted: 07/24/2011] [Indexed: 11/26/2022]
Abstract
Insulin and insulin-like-growth-factor 1 (IGF1) are components of the uterine secretions. As potent growth factors they influence early embryo development. The underlying molecular mechanisms are largely unknown. Here we report on the effects of insulin and IGF1 on early gastrulation in rabbit blastocysts. We have studied blastocysts grown in vivo in metabolically healthy rabbits, in rabbits with type 1 diabetes and in vitro in the presence or absence of insulin or IGF1. Embryonic disc morphology and expression of Brachyury, Wnt3a and Wnt4 were analysed by qPCR and IHC. Pre-gastrulated blastocysts (stage 0/1) cultured with insulin or IGF1 showed a significantly higher capacity to form the posterior mesoderm and primitive streak (stage 2 and 3) than blastocysts cultured without growth factors. In gastrulating blastocysts the levels of the mesoderm-specific transcription factor Brachyury and the Wnt signalling molecules Wnt3a and Wnt4 showed a stage-specific expression pattern with Brachyury transcripts increasing from stage 0/1 to 3. Wnt4 protein was found spread over the whole embryoblast. Insulin induced Wnt3a, Wnt4 and Brachyury expression in a temporal- and stage-specific pattern. Only blastocysts cultured with insulin reached the Wnt3a, Wnt4 and Brachyury expression levels of stage 2 in vivo blastocysts, indicating that insulin is required for Wnt3a, Wnt4 and Brachyury expression during gastrulation. Insulin-induced Wnt3a and Wnt4 expression preceded Brachyury. Wnt3a-induced expression could be depleted by MEK1 inhibition (PD98059). Involvement of insulin in embryonic Wnt3a expression was further shown in vivo with Wnt3a expression being notably down regulated in stage 2 blastocysts from rabbits with type 1 diabetes. Blastocysts grown in diabetic rabbits are retarded in development, a finding which supports our current results that insulin is highly likely required for early mesoderm formation in rabbit blastocysts by inducing a distinct spatiotemporal expression profile of Wnt3a, Wnt4 and Brachyury.
Collapse
Affiliation(s)
- René Thieme
- Department of Anatomy and Cell Biology, Martin Luther University Faculty of Medicine, 06108 Halle (Saale), Germany.
| | | | | | | | | | | |
Collapse
|
47
|
Abstract
Despite the fact that the fundamental principle underlying the most common method of culture media constitution is that of mimicking the natural environment of the preimplantation embryo, one major difference that remains between current embryo culture media and in vivo conditions is the absence of growth factors in vitro. Numerous growth factors are known to be present in the in vivo environment of human and nonhuman preimplantation embryos, often with peak concentrations corresponding to when fertilization and preimplantation embryo growth would occur. Although these growth factors are found in very small concentrations, they have a profound effect on tissue growth and differentiation through attachment to factor-specific receptors on cell surfaces. Receptors for many different growth factors have also been detected in human preimplantation embryos. Preimplantation embryos themselves express many growth factors. The growth factors and receptors are metabolically costly to produce, and thus their presence in the environment of the preimplantation embryo and in the embryo respectively strongly implies that embryos are designed to encounter and respond to the corresponding factors. Studies of embryo coculture also indirectly suggest that growth factors can improve in vitro development. Several animal and human studies attest to a probable beneficial effect of addition of growth factors to culture media. However, there is still ambiguity regarding the exact role of growth factors in embryonic development, the optimal dose of growth factors to be added to culture media, the combinatorial effect and endocrine of growth factors in embryonic development.
Collapse
Affiliation(s)
- Aparna Hegde
- Department of OB/GYN, Division of Reproductive Endocrinology and Infertility, Stanford University, Stanford, CA, USA
| | | |
Collapse
|
48
|
SAKAGAMI N, UMEKI H, NISHINO O, UCHIYAMA H, ICHIKAWA K, TAKESHITA K, KANEKO E, AKIYAMA K, KOBAYASHI S, TAMADA H. Normal Calves Produced After Transfer of Embryos Cultured in a Chemically Defined Medium Supplemented with Epidermal Growth Factor and Insulin-like Growth Factor I Following Ovum Pick Up and In Vitro Fertilization in Japanese Black Cows. J Reprod Dev 2012; 58:140-6. [DOI: 10.1262/jrd.11-050m] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Nobutada SAKAGAMI
- Livestock Industry Technology Station, Kanagawa Agricultural Technology Center, Kanagawa 243-0417, Japan
| | - Hidenobu UMEKI
- Oita Prefectural Agriculture, Forestry and Fisheries Research Center Livestock Research Institute, Ooita 878-0201, Japan
| | - Osamu NISHINO
- Nara Prefectural Livestock Technology Center, Nara 633-1302, Japan
| | - Hiroko UCHIYAMA
- Miyazaki Prefectural Livestock Research Institute, Miyazaki 889-4411, Japan
| | - Kyoko ICHIKAWA
- Kochi Prefectural Livestock Research Institute, Kochi 789-1233, Japan
| | - Kazuhisa TAKESHITA
- Yamaguchi Prefectural Livestock Experiment Station, Yamaguchi 759-2221, Japan
| | - Etsushi KANEKO
- Livestock Industry Technology Station, Kanagawa Agricultural Technology Center, Kanagawa 243-0417, Japan
| | - Kiyoshi AKIYAMA
- Livestock Industry Technology Station, Kanagawa Agricultural Technology Center, Kanagawa 243-0417, Japan
| | - Shuji KOBAYASHI
- National Livestock Breeding Center, Fukushima 961-8511, Japan
| | - Hiromichi TAMADA
- Department of Advanced Pathobiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka 598-8531, Japan
| |
Collapse
|
49
|
Harper J, Cristina Magli M, Lundin K, Barratt CLR, Brison D. When and how should new technology be introduced into the IVF laboratory? Hum Reprod 2011; 27:303-13. [DOI: 10.1093/humrep/der414] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
50
|
Abstract
A reduction in calorie intake [caloric restriction (CR)] appears to consistently decrease the biological rate of aging in a variety of organisms as well as protect against age-associated diseases including chronic inflammatory disorders such as cardiovascular disease and diabetes. Although the mechanisms behind this observation are not fully understood, identification of the main metabolic pathways affected by CR has generated interest in finding molecular targets that could be modulated by CR mimetics. This review describes the general concepts of CR and CR mimetics as well as discusses evidence related to their effects on inflammation and chronic inflammatory disorders. Additionally, emerging evidence related to the effects of CR on periodontal disease in non-human primates is presented. While the implementation of this type of dietary intervention appears to be challenging in our modern society where obesity is a major public health problem, CR mimetics could offer a promising alternative to control and perhaps prevent several chronic inflammatory disorders including periodontal disease.
Collapse
Affiliation(s)
- O A González
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington 40536-0305, USA.
| | | | | | | |
Collapse
|