1
|
Mikail M, Azizan TRPT, Noor MHM, Hassim HA, Che'Amat A, Latip MQA. Long-Tailed Macaque ( Macaca fascicularis) Contraception Methods: A Systematic Review. BIOLOGY 2023; 12:848. [PMID: 37372133 DOI: 10.3390/biology12060848] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/30/2023] [Accepted: 06/04/2023] [Indexed: 06/29/2023]
Abstract
The contraception-based approach to wildlife management is a humane and effective alternative to population control methods. Wildlife management only has a few conventional ways to control overpopulation, such as culling, translocation, poisoning, and allowing natural death. Nevertheless, these methods usually have short-term, lethal, and unethical effects. The present systematic review aims to review the knowledge on contraception reported in long-tailed macaques as an alternative to population control. We obtained 719 records from searching CABI, PubMed, ScienceDirect, and Scopus electronic databases. After the screening and selection process, according to PRISMA guidelines, 19 articles that met the eligibility criteria were chosen. Of the 19 articles, 15 were studies on female long-tailed macaque contraception methods (six (6) hormonal and nine (9) non-hormonal). We analyzed four (4) selected articles on male Cynomolgus monkey contraception methods (two (2) hormonal and two (2) non-hormonal). One of the nine (9) articles on female long-tailed macaque contraception reports negative results. Furthermore, only two (2) studies used free-ranging long-tailed macaques as test subjects, while seventeen (17) tested on captive ones. The challenges of long-tailed macaque contraception identified in this review were the effectiveness of the contraceptive, the administration route, the economic feasibility, the distinction between captive and free-ranging Cynomolgus macaques, the choice of permanent or reversible contraception, the capability of contraceptive use for population control, and the lack of studies on the free-ranging long-tailed macaque. Notwithstanding the literature gap on long-tailed macaque contraception for population control, long-tailed macaque contraception exhibits potential as an alternative method to culling long-tailed macaque. Future research should address these obstacles to support the long-tailed macaque contraception as an alternative population control method.
Collapse
Affiliation(s)
- Muhammed Mikail
- Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Wildlife Research Centre, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Tengku Rinalfi Putra Tengku Azizan
- Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Wildlife Research Centre, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Mohd Hezmee Mohd Noor
- Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Hasliza Abu Hassim
- Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Institute of Tropical Agriculture and Food Security (ITAFoS), Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Azlan Che'Amat
- Wildlife Research Centre, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Department Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Mohd Qayyum Ab Latip
- Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Wildlife Research Centre, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Malaysia
| |
Collapse
|
2
|
Cryopreservation of Human Spermatozoa: Functional, Molecular and Clinical Aspects. Int J Mol Sci 2023; 24:ijms24054656. [PMID: 36902084 PMCID: PMC10002855 DOI: 10.3390/ijms24054656] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/17/2023] [Accepted: 02/24/2023] [Indexed: 03/04/2023] Open
Abstract
Cryopreservation is an expanding strategy to allow not only fertility preservation for individuals who need such procedures because of gonadotoxic treatments, active duty in dangerous occupations or social reasons and gamete donation for couples where conception is denied, but also for animal breeding and preservation of endangered animal species. Despite the improvement in semen cryopreservation techniques and the worldwide expansion of semen banks, damage to spermatozoa and the consequent impairment of its functions still remain unsolved problems, conditioning the choice of the technique in assisted reproduction procedures. Although many studies have attempted to find solutions to limit sperm damage following cryopreservation and identify possible markers of damage susceptibility, active research in this field is still required in order to optimize the process. Here, we review the available evidence regarding structural, molecular and functional damage occurring in cryopreserved human spermatozoa and the possible strategies to prevent it and optimize the procedures. Finally, we review the results on assisted reproduction technique (ARTs) outcomes following the use of cryopreserved spermatozoa.
Collapse
|
3
|
α/β-Hydrolase D16B Truncation Results in Premature Sperm Capacitation in Cattle. Int J Mol Sci 2022; 23:ijms23147777. [PMID: 35887122 PMCID: PMC9316559 DOI: 10.3390/ijms23147777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/02/2022] [Accepted: 07/11/2022] [Indexed: 11/16/2022] Open
Abstract
Recently it was shown that a specific form of male infertility in Holstein cattle was caused by a nonsense variant in the α/β-hydrolase domain-containing 16B (ABHD16B) gene resulting in a protein truncation at amino acid position 218 (p.218Q*) and loss of function. Lipidomics showed that the absence of ABHD16B influenced the content of phosphatidylcholine (PC), ceramide (Cer), diacylglycerol (DAG), and sphingomyelin (SM) in variant carrier sperm membranes. However, the exact cause of infertility in affected sires has remained unclear until now. To elucidate the cause of infertility, we analyzed (i) standard sperm parameters (i.e., total sperm number, morphological intact sperm, total sperm motility), (ii) in vitro fertilizability and effects on early embryonic development, and (iii) sperm survival rates (i.e., capacitation time). The affected spermatozoa showed no changes in the usual sperm parameters and were also capable of fertilization in vitro. Furthermore, the absence of ABHD16B did not affect early embryonic development. Based on these results, it was concluded that the affected spermatozoa appeared to be fertilizable per se. Consequently, the actual cause of the inability to fertilize could only be due to a time- and/or place-dependent process after artificial insemination and before fertilization. A process fundamental to the ability to fertilize after insemination is capacitation. Capacitation is a biochemical maturation process that spermatozoa undergo in the female genital tract and is inevitable for the successful fertilization of the oocyte. It is known that the presence and concentration of certain sperm membrane lipids are essential for the correct course of capacitation. However, precisely these lipids are absent in the membrane of spermatozoa affected by the ABHD16B truncation. Since all other causes of fertilization inability were excluded in the previous experiments, consequently, the only remaining hypothesis was that the loss of function of ABHD16B leads to a capacitation disruption. We were able to show that heterozygous and homozygous affected spermatozoa exhibit premature capacitation and therefore decay before fertilization. This effect of the loss of function of ABHD16B has not been described before and our studies now revealed why sires harboring the variant in the ABHD16B gene are infertile.
Collapse
|
4
|
Ahmadi E, Shams-Esfandabadi N, Nazari H, Davoodian N, Kadivar A. Ram epididymal sperm frozen in an extender containing ethylene glycol have higher post-thaw longevity and in vitro fertility. Andrology 2021; 10:604-613. [PMID: 34905299 DOI: 10.1111/andr.13137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Establishing an efficient, simple and inexpensive method for freezing ram epididymal sperm so that the quality and fertility of spermatozoa could be maintained for a longer period after thawing is of great practical value. OBJECTIVES To optimize freezing and thawing protocol for ram epididymal sperm using either ethylene glycol (EG) or glycerol (GLY) as cryoprotectants (CPAs). Then, to evaluate the post-thaw longevity and in vitro fertility of spermatozoa that were frozen and thawed according to the optimized protocol. MATERIALS AND METHODS At first, an optimum protocol for freezing and thawing sperm using EG or GLY were investigated, and the next experiments were performed using the spermatozoa that had been frozen and thawed according to the optimized protocol for each CPA. In the next experiments, frozen-thawed and fresh sperm were diluted in an isotonic culture medium and subsequently incubated at 39°C for 4 h. The motility characteristics and functional membrane integrity (FMI) of spermatozoa were evaluated after thawing, after dilution (t0 ), and after incubation (t4 ). The in vitro fertility of the spermatozoa was assessed at t0 and t4 . RESULTS For both CPAs, the highest motility parameters and FMI was found for spermatozoa frozen at 3 cm above LN2 and thawed at 50 and 65°C (P < 0.05). In comparison to the spermatozoa of GLY group, the spermatozoa of the EG group had higher total and progressive motility at t0 , as well as higher FMI, total and progressive motility, and linearity at t4 (P < 0.05). Fertility of frozen-thawed sperm was higher than that of fresh sperm at t0 (P < 0.05). Incubation treatment increased the fertility of fresh sperm while decreased the fertility of frozen-thawed sperm, and this decline was more severe in GLY than in the EG group. CONCLUSION Based on the findings, EG can be a more suitable CPA for freezing ram epididymal sperm.
Collapse
Affiliation(s)
- Ebrahim Ahmadi
- Research Institute of Animal Embryo Technology, Shahrekord University, Shahrekord, Iran
| | - Naser Shams-Esfandabadi
- Research Institute of Animal Embryo Technology, Shahrekord University, Shahrekord, Iran.,Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| | - Hassan Nazari
- Research Institute of Animal Embryo Technology, Shahrekord University, Shahrekord, Iran
| | - Najmeh Davoodian
- Research Institute of Animal Embryo Technology, Shahrekord University, Shahrekord, Iran
| | - Ali Kadivar
- Research Institute of Animal Embryo Technology, Shahrekord University, Shahrekord, Iran.,Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| |
Collapse
|
5
|
An Update on Semen Physiology, Technologies, and Selection Techniques for the Advancement of In Vitro Equine Embryo Production: Section I. Animals (Basel) 2021; 11:ani11113248. [PMID: 34827983 PMCID: PMC8614440 DOI: 10.3390/ani11113248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 12/05/2022] Open
Abstract
Simple Summary Male fertility is often estimated by simple sperm assessment, and therefore, it is crucial to establish species-specific baselines for normal sperm parameters. In this paper, sperm physiology, function, and common abnormalities in stallions will be reviewed. Abstract As the use of assisted reproductive technologies (ART) and in vitro embryo production (IVP) expand in the equine industry, it has become necessary to further our understanding of semen physiology as it applies to overall fertility. This segment of our two-section review will focus on normal sperm parameters, beginning with development and extending through the basic morphology of mature spermatozoa, as well as common issues with male factor infertility in IVP. Ultimately, the relevance of sperm parameters to overall male factor fertility in equine IVP will be assessed.
Collapse
|
6
|
Denisenko V, Chistyakova I, Volkova N, Volkova L, Iolchiev B, Kuzmina T. The Modulation of Functional Status of Bovine Spermatozoa by Progesterone. Animals (Basel) 2021; 11:ani11061788. [PMID: 34203892 PMCID: PMC8232648 DOI: 10.3390/ani11061788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/10/2021] [Accepted: 06/10/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Progesterone is an endogenous steroid hormone, which can induce capacitation and/or acrosome reactions in semen of certain mammalian species. Our study aimed to investigate the effect of progesterone on the functional status of fresh bovine spermatozoa using a chlortetracycline fluorescent probe. Results showed that heparin induced capacitation in spermatozoa incubated with or without progesterone. The destruction of microfilaments by an inhibitor of cytochalasin D blocked the stimulating effect of heparin. Steroid hormone in mixture with prolactin stimulated the acrosome reaction in spermatozoa, which was blocked by an inhibitor of microtubule polymerization (nocodazole). At the acrosome stage, prolactin provided the undergoing of acrosome reaction in male gametes. This effect was noted both in the presence and absence of progesterone and inhibited by nocodazole. The supplementation of dibutyryl cyclic adenosine monophosphate during the acrosome reaction to progesterone-untreated spermatozoa did not cause changes in proportion of acrosome-reacted cells. However, when progesterone was added during capacitation, a significant increase in the proportion of capacitated cells was noted, which was inhibited by nocodazole. Thus, progesterone under the action of prolactin and dibutyryl cyclic adenosine monophosphate determines the functional status of fresh spermatozoa, which indicates progesterone-modulating effect on the indicators of post-ejaculatory maturation of male gametes. Abstract The aim of this study is to identify the effects of progesterone (PRG) on the capacitation and the acrosome reaction in bovine spermatozoa. The fresh sperm samples were incubated with and without capacitation inductors (heparin, dibutyryl cyclic adenosine monophosphate (dbcAMP)), hormones (prolactin (PRL), PRG), inhibitors of microfilaments (cytochalasin D) and microtubules (nocodazole) during capacitation and acrosome reactions. The functional status of spermatozoa was examined using the chlortetracycline assay. Supplementation of heparin stimulated capacitation in the presence and absence of PRG. Cytochalasin D blocked the stimulating effect of heparin on capacitation. The addition of PRL during capacitation (without PRG) did not affect the functional status of spermatozoa, while in PRG-treated cells PRL stimulated the acrosome reaction. PRL (with and without PRG) increased the acrosome reaction in capacitated cells. These PRL-dependent effects were inhibited by nocodazole. During the acrosome reaction, in presence of dbcAMP, PRG decreased the proportion of acrosome-reacted cells compared to PRG-untreated cells. This effect in PRG-treated cells was canceled in the presence of nocodazole. In conclusion, PRG under the action of PRL and dbcAMP determines the changes in the functional status of native sperm cells, which indicates PRG modulating effect on the indicators of post-ejaculatory maturation of spermatozoa.
Collapse
Affiliation(s)
- Vitaly Denisenko
- Branch of Federal Research Center for Animal Husbandry Named after Academy Member L.K. Ernst, Russian Research Institute of Genetic and Breeding Farm Animals, 196601 Saint-Petersburg, Russia; (V.D.); (I.C.)
| | - Irena Chistyakova
- Branch of Federal Research Center for Animal Husbandry Named after Academy Member L.K. Ernst, Russian Research Institute of Genetic and Breeding Farm Animals, 196601 Saint-Petersburg, Russia; (V.D.); (I.C.)
| | - Natalia Volkova
- Federal Research Center for Animal Husbandry Named after Academy Member L.K. Ernst, 142132 Moscow, Russia; (N.V.); (L.V.); (B.I.)
| | - Ludmila Volkova
- Federal Research Center for Animal Husbandry Named after Academy Member L.K. Ernst, 142132 Moscow, Russia; (N.V.); (L.V.); (B.I.)
| | - Baylar Iolchiev
- Federal Research Center for Animal Husbandry Named after Academy Member L.K. Ernst, 142132 Moscow, Russia; (N.V.); (L.V.); (B.I.)
| | - Tatyana Kuzmina
- Branch of Federal Research Center for Animal Husbandry Named after Academy Member L.K. Ernst, Russian Research Institute of Genetic and Breeding Farm Animals, 196601 Saint-Petersburg, Russia; (V.D.); (I.C.)
- Correspondence: ; Tel.: +7-9213-92-19-47
| |
Collapse
|
7
|
Buanayuda GW, Lunardhi H, Mansur IG. Effect of In-Vitro Alpha Lipoic Acid Addition on Spermatozoa Motility in Sperm Preparation Process. FOLIA MEDICA INDONESIANA 2021. [DOI: 10.20473/fmi.v55i4.24382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Infertility is a problem for husband and wife, in the last 20 years the number of infertile couples has tended to increase by around 6.5 million pairs. The infertile couple can use the intrauterine insemination method to obtain offspring if a conventional method approach cannot be performed. Insemination requires a sperm preparation stage in which there are centrifugation and resuspension procedures that tend to produce excess reactive oxygen species (ROS). Excessive ROS will damage the motility of the spermatozoa. This study aims to prove the addition of alpha lipoic acid (ALA) as an antioxidant in the process of sperm preparation to improve and maintain better sperm motility. This research is a laboratory study with an experimental research design. The sample consisted of 10 infertile men who visited the Andrology section of the Sayyidah Jakarta Mother and Child Hospital (RSIA), where each ejaculate from the patient would be divided into 3 groups namely (k1) fresh semen as a control group, (k2) sperm preparation group without ALA, (k3) group of sperm preparation with the addition of ALA. The motility of spermatozoa was observed with the WHO 1999 method for 4 hours in units of percent. Progressive motility in k3 (47.95 ± 3.617) was higher than in k2 (38.05 ± 3.278) statistically significantly different after 3 hours of observation (p<0.0001). Progressive motility in k3 (78.8 ± 5.841) was higher than k1 (56.55 ± 7.511) from the initial observation (p <0.0001). The progressive motility of k2 (76.05 ± 6.768) was higher than k1 (56.55 ± 7.511) from the start of the observation (0.0001). It can be concluded that the addition of ALA in the sperm preparation process increases and maintains progressive motility that is better than sperm preparation without ALA addition after 3 hours of observation.
Collapse
|
8
|
Romero-Aguirregomezcorta J, Soriano-Úbeda C, Matás C. Involvement of nitric oxide during in vitro oocyte maturation, sperm capacitation and in vitro fertilization in pig. Res Vet Sci 2020; 134:150-158. [PMID: 33387755 DOI: 10.1016/j.rvsc.2020.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 12/15/2020] [Accepted: 12/22/2020] [Indexed: 11/27/2022]
Abstract
The importance of porcine species for meat production is undeniable. Due to the genetic, anatomical, and physiological similarities with humans, from a biomedical point of view, pig is considered an ideal animal model for the study and development of new therapies for human diseases. The in vitro production (IVP) of porcine embryos has become widespread as a result of these qualities and there is significant demand for these embryos for research purposes. However, the efficiency of porcine embryo IVP remains very low, which hinders its use as a model for research. The high degree of polyspermic fertilization is the main problem that affects in vitro fertilization (IVF) in porcine species. Furthermore, oocyte in vitro maturation (IVM) is another important step that could be related to polyspermic fertilization and low embryo production. The presence of nitric oxide synthase (NOS), the enzyme that produces nitric oxide (NO), has been detected in the oviduct, the ovary, the oocyte and the sperm cell of porcine species. Its functions include regulating oviductal activity, ovulation, acquisition of meiotic competence, oocyte activation, sperm capacitation, and gamete interaction. Therefore, in this review, we summarize the current knowledge on the role of NO/NOS system in each of the steps that lead to the production of porcine embryos in an in vitro environment, i.e. IVM, sperm capacitation, IVF, and embryo culture. We also discuss the possible ways in which the NO/NOS system could be used to enhance IVP of porcine embryos.
Collapse
Affiliation(s)
- Jon Romero-Aguirregomezcorta
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Bizkaia, Spain; Department of Physiology, Faculty of Veterinary Science, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", University of Murcia, Murcia, Spain; Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Murcia, Spain
| | - Cristina Soriano-Úbeda
- Department of Physiology, Faculty of Veterinary Science, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", University of Murcia, Murcia, Spain; Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Murcia, Spain; Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Carmen Matás
- Department of Physiology, Faculty of Veterinary Science, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", University of Murcia, Murcia, Spain; Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Murcia, Spain.
| |
Collapse
|
9
|
Chiarante N, Alonso CAI, Plaza J, Lottero-Leconte R, Arroyo-Salvo C, Yaneff A, Osycka-Salut CE, Davio C, Miragaya M, Perez-Martinez S. Cyclic AMP efflux through MRP4 regulates actin dynamics signalling pathway and sperm motility in bovines. Sci Rep 2020; 10:15619. [PMID: 32973195 PMCID: PMC7518284 DOI: 10.1038/s41598-020-72425-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/27/2020] [Indexed: 11/15/2022] Open
Abstract
Previously we demonstrated that multidrug resistance-associated protein 4 transporter (MRP4) mediates cAMP efflux in bovine spermatozoa and that extracellular cAMP (ecAMP) triggers events associated to capacitation. Here, we deepen the study of the role of MRP4 in bovine sperm function by using MK571, an MRP4 inhibitor. The incubation of spermatozoa with MK571 during 45 min inhibited capacitation-associated events. MRP4 was localized in post-acrosomal region and mid-piece at 15 min capacitation, while at 45 min it was mainly located in the acrosome. After 15 min, MK571 decreased total sperm motility (TM), progressive motility (PM) and several kinematic parameters. The addition of ecAMP rescued MK571 effect and ecAMP alone increased the percentage of motile sperm and kinematics parameters. Since actin cytoskeleton plays essential roles in the regulation of sperm motility, we investigated if MRP4 activity might affect actin polymerization. After 15 min capacitation, an increase in F-actin was observed, which was inhibited by MK571. This effect was reverted by the addition of ecAMP. Furthermore, ecAMP alone increased F-actin levels while no F-actin was detected with ecAMP in the presence of PKA inhibitors. Our results support the importance of cAMP efflux through MRP4 in sperm capacitation and suggest its involvement in the regulation of actin polymerization and motility.
Collapse
Affiliation(s)
- Nicolás Chiarante
- Universidad Buenos Aires (UBA), Facultad de Medicina, (CONICET-UBA) Centro de Estudios Farmacológicos y Botánicos (CEFYBO), C1121ABG, Buenos Aires, Argentina
| | - Carlos A I Alonso
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Jessica Plaza
- Facultad de Ciencias Veterinarias, Instituto de Investigación y Tecnología en Reproducción Animal (INITRA), UBA, Buenos Aires, Argentina
| | - Raquel Lottero-Leconte
- Universidad Buenos Aires (UBA), Facultad de Medicina, (CONICET-UBA) Centro de Estudios Farmacológicos y Botánicos (CEFYBO), C1121ABG, Buenos Aires, Argentina
| | - Camila Arroyo-Salvo
- Universidad Buenos Aires (UBA), Facultad de Medicina, (CONICET-UBA) Centro de Estudios Farmacológicos y Botánicos (CEFYBO), C1121ABG, Buenos Aires, Argentina
| | - Agustín Yaneff
- Instituto de Investigaciones Farmacológicas (ININFA) (UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, C1113AAD, Buenos Aires, Argentina
| | - Claudia E Osycka-Salut
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (IIIB-UNSAM/CONICET), Campus Miguelete, Avenida 25 de Mayo y Francia, San Martín, B1650HMP, Buenos Aires, Argentina
| | - Carlos Davio
- Instituto de Investigaciones Farmacológicas (ININFA) (UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, C1113AAD, Buenos Aires, Argentina
| | - Marcelo Miragaya
- Facultad de Ciencias Veterinarias, Instituto de Investigación y Tecnología en Reproducción Animal (INITRA), UBA, Buenos Aires, Argentina
| | - Silvina Perez-Martinez
- Universidad Buenos Aires (UBA), Facultad de Medicina, (CONICET-UBA) Centro de Estudios Farmacológicos y Botánicos (CEFYBO), C1121ABG, Buenos Aires, Argentina.
| |
Collapse
|
10
|
Kwon WS, Kim YJ, Ryu DY, Kwon KJ, Song WH, Rahman MS, Pang MG. Fms-like tyrosine kinase 3 is a key factor of male fertility. Theriogenology 2018; 126:145-152. [PMID: 30553232 DOI: 10.1016/j.theriogenology.2018.12.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 10/30/2018] [Accepted: 12/05/2018] [Indexed: 01/14/2023]
Abstract
Fms-like tyrosine kinase 3 (FLT3) is a type III kinase that is highly expressed in seminal plasma of infertile men. FLT3 activation can be blocked by inhibition of its phosphorylation using the nontoxic and selective inhibitor, quizartinib. We investigated the function of FLT3 and the corresponding effects of quizartinib in mouse spermatozoa. Spermatozoa were treated with different concentrations (0.1, 1, 10, 20, and 30 μM) of quizartinib for 90 min at 37 °C in 5% CO2 in air. FLT3 was detected in capacitated and non-capacitated spermatozoa. While the level of FLT3 was unaffected, the levels of phospho-FLT3 were significantly altered in spermatozoa by quizartinib. Exposure of spermatozoa to higher concentrations of quizartinib significantly altered sperm viability, motility, motion kinematics, levels of intracellular ATP, and capacitation status. Fertilization and early embryonic development were suppressed by quizartinib. This may have occurred as a consequence of decreased protein kinase A (PKA) activity and tyrosine phosphorylation. The inhibition of FLT3 by quizartinib may affect the fertilization and embryonic development by reducing tyrosine phosphorylation through a PKA-dependent pathway. Our data implicate FLT3 as a biomarker for diagnosis and prognosis of male fertility. In addition, quizartinib has potential for development as a new contraceptive agent.
Collapse
Affiliation(s)
- Woo-Sung Kwon
- Department of Animal Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do, 37224, Republic of Korea
| | - Ye-Ji Kim
- Department of Animal Science & Technology, Chung-Ang University, Anseong, Gyeonggi-Do, 17546, Republic of Korea
| | - Do-Yeal Ryu
- Department of Animal Science & Technology, Chung-Ang University, Anseong, Gyeonggi-Do, 17546, Republic of Korea
| | - Ki-Jin Kwon
- Department of Animal Science & Technology, Chung-Ang University, Anseong, Gyeonggi-Do, 17546, Republic of Korea
| | - Won-Hee Song
- Department of Animal Science & Technology, Chung-Ang University, Anseong, Gyeonggi-Do, 17546, Republic of Korea
| | - Md Saidur Rahman
- Department of Animal Science & Technology, Chung-Ang University, Anseong, Gyeonggi-Do, 17546, Republic of Korea
| | - Myung-Geol Pang
- Department of Animal Science & Technology, Chung-Ang University, Anseong, Gyeonggi-Do, 17546, Republic of Korea.
| |
Collapse
|
11
|
Simon C, Greening DW, Bolumar D, Balaguer N, Salamonsen LA, Vilella F. Extracellular Vesicles in Human Reproduction in Health and Disease. Endocr Rev 2018; 39:292-332. [PMID: 29390102 DOI: 10.1210/er.2017-00229] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 01/25/2018] [Indexed: 02/07/2023]
Abstract
Extensive evidence suggests that the release of membrane-enclosed compartments, more commonly known as extracellular vesicles (EVs), is a potent newly identified mechanism of cell-to-cell communication both in normal physiology and in pathological conditions. This review presents evidence about the formation and release of different EVs, their definitive markers and cargo content in reproductive physiological processes, and their capacity to convey information between cells through the transfer of functional protein and genetic information to alter phenotype and function of recipient cells associated with reproductive biology. In the male reproductive tract, epididymosomes and prostasomes participate in regulating sperm motility activation, capacitation, and acrosome reaction. In the female reproductive tract, follicular fluid, oviduct/tube, and uterine cavity EVs are considered as vehicles to carry information during oocyte maturation, fertilization, and embryo-maternal crosstalk. EVs via their cargo might be also involved in the triggering, maintenance, and progression of reproductive- and obstetric-related pathologies such as endometriosis, polycystic ovarian syndrome, preeclampsia, gestational diabetes, and erectile dysfunction. In this review, we provide current knowledge on the present and future use of EVs not only as biomarkers, but also as therapeutic targeting agents, mainly as vectors for drug or compound delivery into target cells and tissues.
Collapse
Affiliation(s)
- Carlos Simon
- Igenomix Foundation, Valencia, Spain.,Instituto de Investigación Sanitaria Hospital Clínico (INCLIVA), Valencia, Spain.,Department of Pediatrics, Obstetrics and Gynecology, School of Medicine, Valencia University, Valencia, Spain.,Department of Obstetrics and Gynecology, Stanford University, Palo Alto, California
| | - David W Greening
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - David Bolumar
- Igenomix Foundation, Valencia, Spain.,Instituto de Investigación Sanitaria Hospital Clínico (INCLIVA), Valencia, Spain
| | - Nuria Balaguer
- Igenomix Foundation, Valencia, Spain.,Instituto de Investigación Sanitaria Hospital Clínico (INCLIVA), Valencia, Spain
| | - Lois A Salamonsen
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Felipe Vilella
- Igenomix Foundation, Valencia, Spain.,Instituto de Investigación Sanitaria Hospital Clínico (INCLIVA), Valencia, Spain.,Department of Obstetrics and Gynecology, Stanford University, Palo Alto, California
| |
Collapse
|
12
|
Alonso CAI, Osycka-Salut CE, Castellano L, Cesari A, Di Siervi N, Mutto A, Johannisson A, Morrell JM, Davio C, Perez-Martinez S. Extracellular cAMP activates molecular signalling pathways associated with sperm capacitation in bovines. Mol Hum Reprod 2018; 23:521-534. [PMID: 28521061 DOI: 10.1093/molehr/gax030] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 05/17/2017] [Indexed: 11/13/2022] Open
Abstract
STUDY QUESTION Is extracellular cAMP involved in the regulation of signalling pathways in bovine sperm capacitation? SUMMARY ANSWER Extracellular cAMP induces sperm capacitation through the activation of different signalling pathways that involve phospholipase C (PLC), PKC/ERK1-2 signalling and an increase in sperm Ca2+ levels, as well as soluble AC and cAMP/protein kinase A (PKA) signalling. WHAT IS KNOWN ALREADY In order to fertilize the oocyte, ejaculated spermatozoa must undergo a series of changes in the female reproductive tract, known as capacitation. This correlates with a number of membrane and metabolic modifications that include an increased influx of bicarbonate and Ca2+, activation of a soluble adenylyl cyclase (sAC) to produce cAMP, PKA activation, protein tyrosine phosphorylation and the development of hyperactivated motility. We previously reported that cAMP efflux by Multidrug Resistance Protein 4 (MRP4) occurs during sperm capacitation and the pharmacological blockade of this inhibits the process. Moreover, the supplementation of incubation media with cAMP abolishes the inhibition and leads to sperm capacitation, suggesting that extracellular cAMP regulates crucial signalling cascades involved in this process. STUDY DESIGN, SIZE, DURATION Bovine sperm were selected by the wool glass column method, and washed by centrifugation in BSA-Free Tyrode's Albumin Lactate Pyruvate (sp-TALP). Pellets were resuspended then diluted for each treatment. For in vitro capacitation, 10 to 15 × 106 SPZ/ml were incubated in 0.3% BSA sp-TALP at 38.5°C for 45 min under different experimental conditions. To evaluate the role of extracellular cAMP on different events associated with sperm capacitation, 10 nM cAMP was added to the incubation medium as well as different inhibitors of enzymes associated with signalling transduction pathways: U73122 (PLC inhibitor, 10 μM), Gö6983 (PKC inhibitor, 10 μM), PD98059 (ERK-1/2 inhibitor, 30 μM), H89 and KT (PKA inhibitors, 50 μM and 100 nM, respectively), KH7 (sAC inhibitor, 10 μM), BAPTA-AM (intracellular Ca2+ chelator, 50 μM), EGTA (10 μM) and Probenecid (MRPs general inhibitor, 500 μM). In addition, assays for binding to oviductal epithelial cells and IVF were carried out to test the effect of cAMP compared with other known capacitant agents such as heparin (60 μg/ml) and bicarbonate (40 mM). PARTICIPANTS/MATERIALS, SETTING, METHODS Straws of frozen bovine semen (20-25 × 106 spermatozoa/ml) were kindly provided by Las Lilas, CIALE and CIAVT Artificial Insemination Centers. The methods used in this work include western blot, immunohistochemistry, flow cytometry, computer-assisted semen analysis, live imaging of Ca2+ and fluorescence scanning. At least three independent assays with bull samples of proven fertility were carried. MAIN RESULTS AND THE ROLE OF CHANCE In the present study, we elucidate the molecular events induced by extracellular cAMP. Our results showed that external cAMP induces sperm capacitation, depending upon the action of PLC. Downstream, this enzyme increased ERK1-2 activation through PKC and elicited a rise in sperm Ca2+ levels (P < 0.01). Moreover, extracellular cAMP-induced capacitation also depended on the activity of sAC and PKA, and increased tyrosine phosphorylation, indicating that the nucleotide exerts a broad range of responses. In addition, extracellular cAMP-induced sperm hyperactivation and concomitantly increased the proportion of spermatozoa with high mitochondrial activity (P < 0.01). Finally, cAMP increased the in vitro fertilization rate compared to control conditions (P < 0.001). LARGE SCALE DATA None. LIMITATIONS, REASONS FOR CAUTION This is an in vitro study performed with bovine cryopreserved spermatozoa. Studies in other species and with fresh samples are needed to extrapolate these data. WIDER IMPLICATIONS OF THE FINDINGS These findings strongly suggest an important role of extracellular cAMP in the regulation of the signalling pathways involved in the acquisition of bull sperm fertilizing capability. The data presented here indicate that not only a rise, but also a regulation of cAMP levels is necessary to ensure sperm fertilizing ability. Thus, exclusion of the nucleotide to the extracellular space might be essential to guarantee the achievement of a cAMP tone, needed for all capacitation-associated events to take place. Moreover, the ability of cAMP to trigger such broad and complex signalling events allows us to hypothesize that cAMP is a self-produced autocrine/paracrine factor, and supports the emerging paradigm that spermatozoa do not compete but, in fact, communicate with each other. A precise understanding of the functional competence of mammalian spermatozoa is essential to generate clinical advances in the treatment of infertility and the development of novel contraceptive strategies. STUDY FUNDING AND COMPETING INTEREST(S) This work was supported by Consejo Nacional de Investigaciones Científicas y Técnicas [PIP0 496 to S.P.-M.], Agencia Nacional de Promoción Científica y Tecológica [PICT 2012-1195 and PICT2014-2325 to S.P.-M., and PICT 2013-2050 to C.D.], Boehringer Ingelheim Funds, and the Swedish Farmers Foundation [SLF-H13300339 to J.M.]. The authors declare there are no conflicts of interests.
Collapse
Affiliation(s)
- Carlos Agustín I Alonso
- Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Consejo Nacional de Investigaciones Científicas Técnicas, Facultad de Medicina (CONICET-UBA), Paraguay 2155 (C1121ABG), Ciudad de Buenos Aires, Argentina
| | - Claudia E Osycka-Salut
- Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde, Instituto Tecnológico de Chascomús, Consejo Nacional de Investigaciones Científicas Técnicas (IIB/UNTECH-CONICET), Universidad Nacional de San Martín, Matheu 3910 (1650), Buenos Aires, Argentina
| | - Luciana Castellano
- Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Consejo Nacional de Investigaciones Científicas Técnicas, Facultad de Medicina (CONICET-UBA), Paraguay 2155 (C1121ABG), Ciudad de Buenos Aires, Argentina
| | - Andreína Cesari
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata (IIB-CONICET-UNMDP), Funes 3250 (7600), Mar del Plata, Argentina
| | - Nicolás Di Siervi
- Instituto de Investigaciones Farmacológicas, Consejo Nacional de Investigaciones Científicas Técnicas, Facultad de Farmacia y Bioquímica (ININFA-UBA-CONICET), Junín 954 (C1113AAD) Ciudad de Buenos Aires, Argentina
| | - Adrián Mutto
- Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde, Instituto Tecnológico de Chascomús, Consejo Nacional de Investigaciones Científicas Técnicas (IIB/UNTECH-CONICET), Universidad Nacional de San Martín, Matheu 3910 (1650), Buenos Aires, Argentina
| | - Anders Johannisson
- Department of Clinical Sciences, Division of Reproduction, Swedish University of Agricultural Sciences (SE-750 07), Uppsala, Sweden
| | - Jane M Morrell
- Department of Clinical Sciences, Division of Reproduction, Swedish University of Agricultural Sciences (SE-750 07), Uppsala, Sweden
| | - Carlos Davio
- Instituto de Investigaciones Farmacológicas, Consejo Nacional de Investigaciones Científicas Técnicas, Facultad de Farmacia y Bioquímica (ININFA-UBA-CONICET), Junín 954 (C1113AAD) Ciudad de Buenos Aires, Argentina
| | - Silvina Perez-Martinez
- Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Consejo Nacional de Investigaciones Científicas Técnicas, Facultad de Medicina (CONICET-UBA), Paraguay 2155 (C1121ABG), Ciudad de Buenos Aires, Argentina
| |
Collapse
|
13
|
Kwon WS, Shin DH, Ryu DY, Khatun A, Rahman MS, Pang MG. Applications of capacitation status for litter size enhancement in various pig breeds. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2017; 31:842-850. [PMID: 29268576 PMCID: PMC5933982 DOI: 10.5713/ajas.17.0760] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 11/19/2017] [Accepted: 12/02/2017] [Indexed: 11/27/2022]
Abstract
Objective Several studies have reported the development of new molecular methods for the prognosis and diagnosis of male fertility based on biomarkers aimed at overcoming the limitations of conventional male fertility analysis tools. However, further studies are needed for the field application of these methods. Therefore, alternative methods based on existing semen analysis methods are required to improve production efficiency in the animal industry. Methods we examined the possibility of improving litter size in various pig breeds using combined Hoechst 33258/chlortetracycline fluorescence (H33258/CTC) staining. The correlation between field fertility and capacitation status by combined H33258/CTC staining in different ejaculates spermatozoa (n = 3) from an individual boar (20 Landrace, 20 Yorkshire, and 20 Duroc) was evaluated as well as overall accuracy. Results The acrosome reacted (AR) pattern after capacitation (%) was positively correlated with the litter size of Landrace, Yorkshire, and Duroc pigs and the overall accuracy was 75%, 75%, and 70% in Landrace, Yorkshire, and Duroc pigs, respectively. The difference (Δ) in AR pattern before and after capacitation was positively correlated with the litter size of Landrace, Yorkshire, and Duroc pigs and the overall accuracy was 80%, 65%, and 55% in Landrace, Yorkshire, and Duroc pigs, respectively. However, the difference (Δ) in capacitated (B) pattern before and after capacitation was negatively correlated with the litter size of Landrace pigs and the overall accuracy was 75%. Moreover, average litter size was significantly altered according to different combined H33258/CTC staining parameters. Conclusion These results show that combined H33258/CTC staining may be used to predict male fertility in various breeds. However, the selection of specific efficiency combined H33258/CTC staining parameters requires further consideration. Taken together, these findings suggest that combined H33258/CTC staining may constitute an alternative method for predicting male fertility until such time as fertility-related biomarkers are further validated.
Collapse
Affiliation(s)
- Woo-Sung Kwon
- Department of Animal Biotechnology, Kyungpook National University, Sangju 37224, Korea
| | - Dong-Ha Shin
- Department of Animal Science & Technology, Chung-Ang University, Anseong 17546, Korea
| | - Do-Yeal Ryu
- Department of Animal Science & Technology, Chung-Ang University, Anseong 17546, Korea
| | - Amena Khatun
- Department of Animal Science & Technology, Chung-Ang University, Anseong 17546, Korea
| | - Md Saidur Rahman
- Department of Animal Science & Technology, Chung-Ang University, Anseong 17546, Korea
| | - Myung-Geol Pang
- Department of Animal Science & Technology, Chung-Ang University, Anseong 17546, Korea
| |
Collapse
|
14
|
Pérez-Cerezales S, Ramos-Ibeas P, Acuña OS, Avilés M, Coy P, Rizos D, Gutiérrez-Adán A. The oviduct: from sperm selection to the epigenetic landscape of the embryo†. Biol Reprod 2017; 98:262-276. [DOI: 10.1093/biolre/iox173] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 12/07/2017] [Indexed: 01/02/2023] Open
Affiliation(s)
- Serafín Pérez-Cerezales
- Departmento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Priscila Ramos-Ibeas
- School of Agriculture, Food Science and Veterinary Medicine, College of Life Sciences, University College Dublin, Belfield, Dublin, Ireland
| | - Omar Salvador Acuña
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Sinaloa, Culiacán, Mexico
| | - Manuel Avilés
- Departamento de Biología Celular e Histología, Facultad de Medicina, Universidad de Murcia, Murcia, Spain
- Departamento de Biología de la Reproducción, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca Murcia, Spain
| | - Pilar Coy
- Departamento de Biología de la Reproducción, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca Murcia, Spain
- Physiology of Reproduction Group, Departamento de Fisiología, Facultad de Veterinaria, Universidad de Murcia-Campus Mare Nostrum, Murcia, Spain
| | - Dimitrios Rizos
- Departmento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Alfonso Gutiérrez-Adán
- Departmento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| |
Collapse
|
15
|
Impaired sperm maturation in conditional Lcn6 knockout mice†. Biol Reprod 2017; 98:28-41. [DOI: 10.1093/biolre/iox128] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 10/12/2017] [Indexed: 12/23/2022] Open
|
16
|
Sedimentation properties in density gradients correspond with levels of sperm DNA fragmentation, chromatin compaction and binding affinity to hyaluronic acid. Reprod Biomed Online 2017; 34:298-311. [DOI: 10.1016/j.rbmo.2016.11.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 11/17/2016] [Accepted: 11/22/2016] [Indexed: 01/02/2023]
|
17
|
Bondarenko O, Dzyuba B, Rodina M, Cosson J. Role of Ca2+ in the IVM of spermatozoa from the sterlet Acipenser ruthenus. Reprod Fertil Dev 2017; 29:1319-1328. [DOI: 10.1071/rd16145] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 04/20/2016] [Indexed: 12/13/2022] Open
Abstract
The role of Ca2+ in sturgeon sperm maturation and motility was investigated. Sperm from mature male sterlets (Acipenser ruthenus) were collected from the Wolffian duct and testis 24 h after hormone induction. Testicular spermatozoa (TS) were incubated in Wolffian duct seminal fluid (WDSF) for 5 min at 20°C and were designated ‘TS after IVM’ (TSM). Sperm motility was activated in media with different ion compositions, with motility parameters analysed from standard video microscopy records. To investigate the role of calcium transport in the IVM process, IVM was performed (5 min at 20°C) in the presence of 2 mM EGTA, 100 µM Verapamil or 100 µM Tetracaine. No motility was observed in the case of TS (10 mM Tris, 25 mM NaCl, 50 mM Sucr with or without the addition of 2 mM EGTA). Both incubation of TS in WDSF and supplementation of the activation medium with Ca2+ led to sperm motility. The minimal Ca2+ concentration required for motility activation of Wolffian duct spermatozoa, TS and TSM was determined (1–2 nM for Wolffian duct spermatozoa and TSM; approximately 0.6 mM for TS). Motility was obtained after the addition of verapamil to the incubation medium during IVM, whereas the addition of EGTA completely suppressed motility, implying Ca2+ involvement in sturgeon sperm maturation. Further studies into the roles of Ca2+ transport in sturgeon sperm maturation and motility are required.
Collapse
|
18
|
Ferré LB, Bogliotti Y, Chitwood JL, Fresno C, Ortega HH, Kjelland ME, Ross PJ. Effect of spermatozoa motility hyperactivation factors and gamete coincubation duration on in vitro bovine embryo development using flow cytometrically sorted spermatozoa. Reprod Fertil Dev 2017; 29:805-814. [DOI: 10.1071/rd15289] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 12/01/2015] [Indexed: 12/26/2022] Open
Abstract
The aim of the present study was to evaluate the effects of sperm motility enhancers and different IVF times on cleavage, polyspermy, blastocyst formation, embryo quality and hatching ability. In Experiment 1, sex-sorted X chromosome-bearing Bos taurus spermatozoa were incubated for 30 min before 18 h fertilisation with hyperactivating factors, namely 10 mM caffeine (CA), 5 mM theophylline (TH), 10 mM caffeine and 5 mM theophylline (CA + TH); and untreated spermatozoa (control). In Experiment 2, matured B. taurus oocytes were fertilised using a short (8 h) or standard (18 h) fertilisation length, comparing two different fertilisation media, namely synthetic oviducal fluid (SOF) fertilisation medium (SOF-FERT) and M199 fertilisation medium (M199-FERT). Cleavage and blastocyst formation rates were significantly higher in the CA + TH group (77% and 27%, respectively) compared with the control group (71% and 21%, respectively). Cleavage rates and blastocyst formation were significantly lower for the shortest fertilisation time (8 h) in M199-FERT medium (42% and 12%, respectively). The SOF-FERT medium with an 8 h fertilisation time resulted in the highest cleavage rates and blastocyst formation (74% and 29%, respectively). The SOF-FERT medium produced the highest embryo quality (50% Grade 1) and hatching rate (66%). Motility enhancers did not affect polyspermy rates, whereas polyspermy was affected when fertilisation length was extended from 8 h (3%) to 18 h (9%) and in M199-FERT (14%) compared with SOF-FERT (6%). We conclude that adding the motility enhancers CA and TH to sex sorted spermatozoa and Tyrode’s albumin lactate pyruvate (TALP)-Sperm can improve cleavage and embryo development rates without increasing polyspermy. In addition, shortening the oocyte–sperm coincubation time (8 h) resulted in similar overall embryo performance rates compared with the prolonged (18 h) interval.
Collapse
|
19
|
Abstract
Fertilization is the culminating event of sexual reproduction, which involves the union of the sperm and egg to form a single, genetically distinct organism. Despite the fundamental role of fertilization, the basic mechanisms involved have remained poorly understood. However, these mechanisms must involve an ordered schedule of cellular recognition events between the sperm and egg to ensure successful fusion. In this article, we review recent progress in our molecular understanding of mammalian fertilization, highlighting the areas in which genetic approaches have been particularly informative and focusing especially on the roles of secreted and cell surface proteins, expressed in a sex-specific manner, that mediate sperm-egg interactions. We discuss how the sperm interacts with the female reproductive tract, zona pellucida, and the oolemma. Finally, we review recent progress made in elucidating the mechanisms that reduce polyspermy and ensure that eggs normally fuse with only a single sperm.
Collapse
Affiliation(s)
- Enrica Bianchi
- Cell Surface Signalling Laboratory, Wellcome Trust Sanger Institute, Cambridge CB10 1SA, United Kingdom; ,
| | - Gavin J Wright
- Cell Surface Signalling Laboratory, Wellcome Trust Sanger Institute, Cambridge CB10 1SA, United Kingdom; ,
| |
Collapse
|
20
|
Tan Z, Zhou J, Chen H, Zou Q, Weng S, Luo T, Tang Y. Toxic effects of 2,4-dichlorophenoxyacetic acid on human sperm function in vitro . J Toxicol Sci 2016; 41:543-9. [PMID: 27432240 DOI: 10.2131/jts.41.543] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Zhengyu Tan
- Department of Urology, The Third Xiangya Hospital, The Central South University, China
| | - Jun Zhou
- Department of Urology, The Third Xiangya Hospital, The Central South University, China
| | - Houyang Chen
- Reproductive Medical Center, Jiangxi Provincial Maternal and Child Health Hospital, China
| | - Qianxing Zou
- Institute of Life Science, Nanchang University, China
| | - Shiqi Weng
- Institute of Life Science, Nanchang University, China
| | - Tao Luo
- Institute of Life Science, Nanchang University, China
| | - Yuxin Tang
- Department of Urology, The Third Xiangya Hospital, The Central South University, China
| |
Collapse
|
21
|
Roy D, Dey S, Majumder GC, Bhattacharyya D. Role of epididymal anti sticking factor in sperm capacitation. Biochem Biophys Res Commun 2015; 463:948-53. [PMID: 26100206 DOI: 10.1016/j.bbrc.2015.06.040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Accepted: 06/04/2015] [Indexed: 11/26/2022]
Abstract
Sperm capacitation depends on several features like hormones, ions, intracellular signaling, sperm associated molecules, etc. Anti sticking factor (ASF) is a novel sperm surface associated glycoprotein isolated from epididymal plasma. Function of ASF in vivo has not been revealed yet. The current study is an attempt to highlight the surface localization of ASF and corresponding biochemical changes that occurs in sperm cells during in vitro capacitation. In the presence of 1 nM ASF, percentage of bicarbonate and BSA induced capacitated cells in modified Tyrode medium (7.2) decreased from 72.45% to 16.25% as per Merocyanine 540 (M540)/DAPI stained flowcytometric analysis. Indirect immunocytostaining and western blot analysis shows that the amount of sperm surface bound residual ASF decline during in vitro capacitation. ASF at its effective concentrations notably reduced the bicarbonate and BSA induced cholesterol efflux. These data help in concluding ASF as a majorly responsible molecule that maintains caprine sperm membrane integrity by inhibiting cholesterol efflux. As the capacitation process, progress at in vitro condition, ASF is found to be released from the sperm surface and cell moved from non-capacitated to the capacitated state.
Collapse
Affiliation(s)
- Debarun Roy
- Division of Cryobiology, Centre for Rural and Cryogenic Technologies, Jadavpur University, Kolkata 700032, West Bengal, India
| | - Souvik Dey
- Division of Cryobiology, Centre for Rural and Cryogenic Technologies, Jadavpur University, Kolkata 700032, West Bengal, India
| | - Gopal C Majumder
- Division of Cryobiology, Centre for Rural and Cryogenic Technologies, Jadavpur University, Kolkata 700032, West Bengal, India
| | - Debdas Bhattacharyya
- Division of Cryobiology, Centre for Rural and Cryogenic Technologies, Jadavpur University, Kolkata 700032, West Bengal, India.
| |
Collapse
|
22
|
Covarrubias AA, Yeste M, Salazar E, Ramírez-Reveco A, Rodriguez Gil JE, Concha II. The Wnt1 ligand/Frizzled 3 receptor system plays a regulatory role in the achievement of the ‘in vitro’ capacitation and subsequent ‘in vitro’ acrosome exocytosis of porcine spermatozoa. Andrology 2015; 3:357-67. [DOI: 10.1111/andr.12011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 12/22/2014] [Accepted: 12/30/2014] [Indexed: 11/27/2022]
Affiliation(s)
- A. A. Covarrubias
- Facultad de Ciencias; Instituto de Bioquímica y Microbiología; Universidad Austral de Chile; Valdivia Chile
| | - M. Yeste
- Facultat de Veterinària; Unitat de Reproducció Animal; Universitat Autònoma de Barcelona; Bellaterra Barcelona Spain
| | - E. Salazar
- Facultad de Ciencias; Instituto de Bioquímica y Microbiología; Universidad Austral de Chile; Valdivia Chile
| | - A. Ramírez-Reveco
- Facultad de Ciencias Veterinaria; Instituto de Ciencia Animal; Universidad Austral de Chile; Valdivia Chile
| | - J. E. Rodriguez Gil
- Facultat de Veterinària; Unitat de Reproducció Animal; Universitat Autònoma de Barcelona; Bellaterra Barcelona Spain
| | - I. I. Concha
- Facultad de Ciencias; Instituto de Bioquímica y Microbiología; Universidad Austral de Chile; Valdivia Chile
| |
Collapse
|
23
|
Rahman MS, Kwon WS, Lee JS, Kim J, Yoon SJ, Park YJ, You YA, Hwang S, Pang MG. Sodium nitroprusside suppresses male fertility in vitro. Andrology 2014; 2:899-909. [PMID: 25180787 DOI: 10.1111/j.2047-2927.2014.00273.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 07/30/2014] [Accepted: 08/11/2014] [Indexed: 11/28/2022]
Abstract
Sodium nitroprusside is a nitric oxide donor involved in the regulation of the motility, hyperactivation, capacitation, and acrosome reaction (AR) of spermatozoa. However, the molecular mechanism underlying this regulation has not yet been elucidated. Therefore, this study was designed to evaluate the molecular basis for the effects of sodium nitroprusside on different processes in spermatozoa and its consequences on subsequent oocyte fertilization and embryo development. In this in vitro study, mouse spermatozoa were incubated with various concentrations of sodium nitroprusside (1, 10, and 100 μM) for 90 min. Our results showed that sodium nitroprusside inhibited sperm motility and motion kinematics in a dose-dependent manner by significantly enhancing intracellular iron and reactive oxygen species (ROS), and decreasing Ca(2+), and adenosine triphosphate levels in spermatozoa. Moreover, short-term exposure of spermatozoa to sodium nitroprusside increased the tyrosine phosphorylation of sperm proteins involved in PKA-dependent regulation of intracellular calcium levels, which induced a robust AR. Finally, sodium nitroprusside significantly decreased the rates of fertilization and blastocyst formation during embryo development. Based on these results, we propose that sodium nitroprusside increases ROS production and precocious AR may alter overall sperm physiology, leading to poor fertilization and compromised embryonic development.
Collapse
Affiliation(s)
- M S Rahman
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Calcium influx and male fertility in the context of the sperm proteome: an update. BIOMED RESEARCH INTERNATIONAL 2014; 2014:841615. [PMID: 24877140 PMCID: PMC4022195 DOI: 10.1155/2014/841615] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 01/14/2014] [Indexed: 01/06/2023]
Abstract
Freshly ejaculated spermatozoa are incapable or poorly capable of fertilizing an oocyte. The fertilization aptness of spermatozoa depends on the appropriate and time-dependent acquisition of hyperactivation, chemotaxis, capacitation, and the acrosome reaction, where calcium (Ca2+) is extensively involved in almost every step. A literature review showed that several ion channel proteins are likely responsible for regulation of the Ca2+ uptake in spermatozoa. Therefore, manipulation of the functions of channel proteins is closely related to Ca2+ influx, ultimately affecting male fertility. Recently, it has been shown that, together with different physiological stimuli, protein-protein interaction also modifies the Ca2+ influx mechanism in spermatozoa. Modern proteomic analyses have identified several sperm proteins, and, therefore, these findings might provide further insight into understanding the Ca2+ influx, protein functions, and regulation of fertility. The objective of this review was to synthesize the published findings on the Ca2+ influx mechanism in mammalian spermatozoa and its implications for the regulation of male fertility in the context of sperm proteins. Finally, Pathway Studio (9.0) was used to catalog the sperm proteins that regulate the Ca2+ influx signaling by using the information available from the PubMed database following a MedScan Reader (5.0) search.
Collapse
|
25
|
Nozawa YI, Yao E, Gacayan R, Xu SM, Chuang PT. Mammalian Fused is essential for sperm head shaping and periaxonemal structure formation during spermatogenesis. Dev Biol 2014; 388:170-80. [PMID: 24525297 DOI: 10.1016/j.ydbio.2014.02.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 01/29/2014] [Accepted: 02/02/2014] [Indexed: 02/08/2023]
Abstract
During mammalian spermatogenesis, the diploid spermatogonia mature into haploid spermatozoa through a highly controlled process of mitosis, meiosis and post-meiotic morphological remodeling (spermiogenesis). Despite important progress made in this area, the molecular mechanisms underpinning this transformation are poorly understood. Our analysis of the expression and function of the putative serine-threonine kinase Fused (Fu) provides critical insight into key steps in spermatogenesis. In this report, we demonstrate that conditional inactivation of Fu in male germ cells results in infertility due to diminished sperm count, abnormal head shaping, decapitation and motility defects of the sperm. Interestingly, mutant flagellar axonemes are intact but exhibit altered periaxonemal structures that affect motility. These data suggest that Fu plays a central role in shaping the sperm head and controlling the organization of the periaxonemal structures in the flagellum. We show that Fu localizes to multiple tubulin-containing or microtubule-organizing structures, including the manchette and the acrosome-acroplaxome complex that are involved in spermatid head shaping. In addition, Fu interacts with the outer dense fiber protein Odf1, a major component of the periaxonemal structures in the sperm flagellum, and Kif27, which is detected in the manchette. We propose that disrupted Fu function in these structures underlies the head and flagellar defects in Fu-deficient sperm. Since a majority of human male infertility syndromes stem from reduced sperm motility and structural defects, uncovering Fu׳s role in spermiogenesis provides new insight into the causes of sterility and the biology of reproduction.
Collapse
Affiliation(s)
- Yoko Inès Nozawa
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158, United States
| | - Erica Yao
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158, United States
| | - Rhodora Gacayan
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158, United States
| | - Shan-Mei Xu
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158, United States
| | - Pao-Tien Chuang
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158, United States.
| |
Collapse
|
26
|
Mortimer D, Barratt CLR, Björndahl L, de Jager C, Jequier AM, Muller CH. What should it take to describe a substance or product as 'sperm-safe'. Hum Reprod Update 2013; 19 Suppl 1:i1-45. [PMID: 23552271 DOI: 10.1093/humupd/dmt008] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Male reproductive potential continues to be adversely affected by many environmental, industrial and pharmaceutical toxins. Pre-emptive testing for reproductive toxicological (side-)effects remains limited, or even non-existent. Many products that come into direct contact with spermatozoa lack adequate testing for the absence of adverse effects, and numerous products that are intended for exposure to spermatozoa have only a general assumption of safety based on the absence of evidence of actual harm. Such assumptions can have unfortunate adverse impacts on at-risk individuals (e.g. couples who are trying to conceive), illustrating a clear need for appropriate up-front testing to establish actual 'sperm safety'. METHODS After compiling a list of general areas within the review's scope, relevant literature and other information was obtained from the authors' personal professional libraries and archives, and supplemented as necessary using PubMed and Google searches. Review by co-authors identified and eliminated errors of omission or bias. RESULTS This review provides an overview of the broad range of substances, materials and products that can affect male fertility, especially through sperm fertilizing ability, along with a discussion of practical methods and bioassays for their evaluation. It is concluded that products can only be claimed to be 'sperm-safe' after performing objective, properly designed experimental studies; extrapolation from supposed predicate products or other assumptions cannot be trusted. CONCLUSIONS We call for adopting the precautionary principle, especially when exposure to a product might affect not only a couple's fertility potential but also the health of resulting offspring and perhaps future generations.
Collapse
Affiliation(s)
- David Mortimer
- Oozoa Biomedical Inc., Caulfeild Village, West Vancouver, BC, Canada.
| | | | | | | | | | | |
Collapse
|
27
|
Kwon WS, Park YJ, Mohamed ESA, Pang MG. Voltage-dependent anion channels are a key factor of male fertility. Fertil Steril 2013; 99:354-61. [DOI: 10.1016/j.fertnstert.2012.09.021] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 09/10/2012] [Accepted: 09/10/2012] [Indexed: 10/27/2022]
|
28
|
Rahman MS, Lee JS, Kwon WS, Pang MG. Sperm proteomics: road to male fertility and contraception. Int J Endocrinol 2013; 2013:360986. [PMID: 24363670 PMCID: PMC3864079 DOI: 10.1155/2013/360986] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 11/01/2013] [Accepted: 11/02/2013] [Indexed: 12/23/2022] Open
Abstract
Spermatozoa are highly specialized cells that can be easily obtained and purified. Mature spermatozoa are transcriptionally and translationally inactive and incapable of protein synthesis. In addition, spermatozoa contain relatively higher amounts of membrane proteins compared to other cells; therefore, they are very suitable for proteomic studies. Recently, the application of proteomic approaches such as the two-dimensional polyacrylamide gel electrophoresis, mass spectrometry, and differential in-gel electrophoresis has identified several sperm-specific proteins. These findings have provided a further understanding of protein functions involved in different sperm processes as well as of the differentiation of normal state from an abnormal one. In addition, studies on the sperm proteome have demonstrated the importance of spermatozoal posttranslational modifications and their ability to induce physiological changes responsible for fertilization. Large-scale proteomic studies to identify hundreds to thousands of sperm proteins will ultimately result in the development of novel biomarkers that may help to detect fertility, the state of complete contraception, and beyond. Eventually, these protein biomarkers will allow for a better diagnosis of sperm dysfunctions and aid in drug development. This paper reviews the recent scientific publications available from the PubMed database to address sperm proteomics and its potential application to characterize male fertility and contraception.
Collapse
Affiliation(s)
- Md Saidur Rahman
- Department of Animal Science and Technology, School of Bioresource and Bioscience, Chung-Ang University, 4726 Seodong-daero, Anseong, Gyeonggi-Do 456-756, Republic of Korea
| | - June-Sub Lee
- Department of Animal Science and Technology, School of Bioresource and Bioscience, Chung-Ang University, 4726 Seodong-daero, Anseong, Gyeonggi-Do 456-756, Republic of Korea
| | - Woo-Sung Kwon
- Department of Animal Science and Technology, School of Bioresource and Bioscience, Chung-Ang University, 4726 Seodong-daero, Anseong, Gyeonggi-Do 456-756, Republic of Korea
| | - Myung-Geol Pang
- Department of Animal Science and Technology, School of Bioresource and Bioscience, Chung-Ang University, 4726 Seodong-daero, Anseong, Gyeonggi-Do 456-756, Republic of Korea
- *Myung-Geol Pang:
| |
Collapse
|
29
|
Hou Y, Hou Y, He S, Xing R. The novel insights into spatiotemporal cell biology and its schematic frame, triple W. J Cell Physiol 2012; 227:1787-90. [DOI: 10.1002/jcp.22952] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
30
|
Sánchez R, Deppe M, Schulz M, Bravo P, Villegas J, Morales P, Risopatrón J. Participation of the sperm proteasome during in vitro fertilisation and the acrosome reaction in cattle. Andrologia 2011; 43:114-20. [PMID: 21382065 DOI: 10.1111/j.1439-0272.2009.01031.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
In this work, we have investigated the role of the bovine sperm proteasome during in vitro fertilisation (IVF) and the acrosome reaction (AR). Motile spermatozoa, obtained by a swim-up method in Sperm-Talp medium, were capacitated for 3.5 h and incubated in the presence or absence of the specific proteasome inhibitor epoxomicin for 30 and 60 min. Then, the spermatozoa were co-incubated with mature bovine cumulus oocytes and after 48 h the cleavage rate of inseminated oocytes was evaluated. In addition, we evaluated the participation of the sperm proteasome during the progesterone-induced AR. Capacitated spermatozoa were incubated for 30 min with or without epoxomicin, then progesterone was added and the ARs were evaluated using the dual fluorescent staining technique 'Hoechst and chlortetracycline'. The results indicate that the proteasome inhibitor decreased the cleavage rate of oocytes inseminated with treated spermatozoa. In addition, acrosomal exocytosis levels were statistically significantly higher in the samples treated with the AR inducer progesterone than in control samples in the absence of the inducer. However, the progesterone-induced AR was significantly reduced by previous treatment of the spermatozoa with epoxomicin (P < 0.001). These observations indicate that the bovine sperm proteasome participates in the IVF and AR processes.
Collapse
Affiliation(s)
- R Sánchez
- Department of Preclinical Science, Faculty of Medicine, BIOREN-CEBIOR, Universidad De La Frontera, Temuco, Chile.
| | | | | | | | | | | | | |
Collapse
|
31
|
Aquila S, Guido C, Santoro A, Perrotta I, Laezza C, Bifulco M, Sebastiano A. Human sperm anatomy: ultrastructural localization of the cannabinoid1 receptor and a potential role of anandamide in sperm survival and acrosome reaction. Anat Rec (Hoboken) 2010; 293:298-309. [PMID: 19938110 DOI: 10.1002/ar.21042] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Recently, the endocannabinoid (EC) system and the presence of CB1 receptor (CB1-R), have been identified in human sperm. However, the effects of EC receptor ligands such as anandamide (N-arachidonoylethanolamine) and the role of EC system in male fertility is still largely unexplored. In the present study, we investigated the ultrastructural compartmentalization of CB1-R and analyzed the effects of its stimulation by using a stable analog of anandamide, 2-methylarachidonyl-2'-fluoro-ethylamide (MET-F-AEA). We focused particularly on sperm survival and acrosin activity. The study of human sperm anatomy by transmission electron microscopy with immunogold analysis revealed the location of the CB1-R prevalently in the sperm membranes of the head and interestingly on the mitochondria. The effect of different concentrations of MET-F-AEA from 100 nM to 1 microM evidenced a significant decrease of sperm survival. Interestingly, we analyzed this negative effect at molecular level, testing the EC action on different known sperm survival targets. MET-F-AEA-treatment decreased both pBCL2 and pAkt, two prosurvival proteins, and increased pPTEN expression which is the main regulator of the PI3K/Akt pathway. Moreover, a biphasic effect was observed with increasing MET-F-AEA concentrations on the acrosin activity. The blockage of the CB1-R by using its selective antagonist SR141716 (rimonabant) induced an opposite action on sperm survival supporting a role for this receptor in the biology of the male gamete.
Collapse
Affiliation(s)
- Saveria Aquila
- Department of Pharmaco-Biology, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | | | | | | | | | | | | |
Collapse
|
32
|
Grunewald S, Baumann T, Paasch U, Glander HJ. Capacitation and Acrosome Reaction in Nonapoptotic Human Spermatozoa. Ann N Y Acad Sci 2006; 1090:138-46. [PMID: 17384256 DOI: 10.1196/annals.1378.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Capacitation and acrosome reaction (AR) of human spermatozoa are prerequisites for fertilization. Annexin-V-MACS is able to separate apoptotic from nonapoptotic sperm on the basis of their externalization of phosphatidylserine (EPS). The nonapoptotic (EPS-) fraction is characterized by the lowest amounts of membrane alterations, caspase activation, disrupted mitochondrial potential, and DNA fragmentation. The aim of our study was to investigate the separation effect of Annexin-V-MACS on capacitation and AR in nonapoptotic sperm. Semen specimens from 10 healthy donors were separated into 2 samples each, one was left untreated (control) and the second was subjected to Annexin-V-MACS. Two aliquots of both, the control as well as the EPS- fraction after Annexin-V-MACS, were incubated in HTF at 37 degrees C, 5% CO2 for 3 h either with 3% BSA (capacitation) or without additives. Capacitation was monitored by tyrosine phosphorylation (TyrP) using Western blot technique. AR was determined by labeling with CD46-FITC before and after stimulation with calcium-ionophore A23187, followed by flow cytometric evaluation of the percentage of CD46+ sperm. Densitometric analyses of the 105-kDa and 80-kDa bands of the TyrP Western blots demonstrated highest TyrP in the capacitated EPS- aliquots. There was no difference in spontaneous AR in all groups. AR was best inducible in EPS-negative sperm after capacitation. Nonapoptotic human spermatozoa with intact plasma membranes are characterized by superior ability to capacitate and consequently by maximum potential to perform AR after stimulation. Selection of EPS-negative sperm may be of advantage for assisted reproduction in order to prepare the sperm subpopulation with the highest fertilizing potential.
Collapse
Affiliation(s)
- Sonja Grunewald
- European Academy of Andrology Center, University of Leipzig, Philipp-Rosenthal-Str. 23-25, 04103 Leipzig, Germany.
| | | | | | | |
Collapse
|
33
|
Sharma RS, Gaur KK, Pal PC, Manocha M, Tomar D, Khan AA, Tripathi V, Chattree V, Kriplani A. Semen characteristics: Advancement in andrological assessment. Indian J Clin Biochem 2005; 20:173-83. [PMID: 23105519 PMCID: PMC3454170 DOI: 10.1007/bf02893067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Progress in diagnosis of infertility, has been dramatically increased during the past decades with changes occurring in virtually all aspects of infertility research, thus providing innovative diagnostic testing and sophisticated instrumentation for improved management and treatment of infertility. There are about 50% of infertile couples who are suffering because of male infertility. Semen examination is a basic investigation for these infertile couples. It not only reveals the quantity and quality of sperm but also the quality of the seminal plasma, which is essential for normal sperm function. In this review, the recent advancement in investigation procedures has been analyzed which are very important in clinical practice to (a) evaluate the sperm fertilizing ability (Acrosin, aniline blue, HOS), (b) characterization of male accessory sex glands secretions (Fructose, alpha-glucosidase, PSA) and (c) the management of azoospermic patients. It is believed that use of such diagnostic procedures will facilitate wide selection of patients for whom an effective therapy might be then possible.
Collapse
Affiliation(s)
- R S Sharma
- Division of RHN, Indian Council of Medical Research, All India Institute of Medical Sciences, 110 029 New Delhi, India
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
In addition to the scientific issues associated with male contraception, there are a variety of other concerns that must be addressed before new male contraceptives reach the market. Cultural attitudes toward contraception will play a role both in the acceptability of any contraceptive and in compliance and usage. Delivery methods must also be considered; different methods are favored depending on the social context. Prevention of sexually transmitted diseases by a combined contraceptive/microbicidal treatment is a laudable goal, and may enhance public acceptance of a male contraceptive. This review is the result of a workshop that was convened to address these topics.
Collapse
Affiliation(s)
- R John Lye
- Department of Cell Biology, University of Virginia Health System, Charlottesville, VA 22908-0732, USA.
| | | | | | | |
Collapse
|
35
|
Llanos MN, Ronco AM, Aguirre MC. Specific strychnine binding sites on acrosome-associated membranes of golden hamster spermatozoa. Biochem Biophys Res Commun 2003; 306:376-81. [PMID: 12804573 DOI: 10.1016/s0006-291x(03)00981-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study demonstrates for the first time, that membrane vesicles originated from the hamster sperm head after the occurrence of the acrosome reaction, possess specific strychnine binding sites. [3H]Strychnine binding was saturable and reversible, being displaced by unlabeled strychnine (IC(50)=26.7+/-2.3 microM). Kinetic analysis revealed one binding site with K(d)=120nM and B(max)=142fmol/10(6) spermatozoa. Glycine receptor agonists beta-alanine and taurine inhibited strychnine binding by 20-30%. Surprisingly, glycine stimulated binding by about 40-50%. Results obtained in this study strongly suggest the presence of glycine receptors-with distinctive kinetic properties on the periacrosomal plasma membrane of hamster spermatozoa. Localization of this receptor fits well with its previously proposed role in acrosomal exocytosis during mammalian fertilization.
Collapse
Affiliation(s)
- Miguel N Llanos
- Unidad de Hormonas y Receptores, INTA, Universidad de Chile, Casilla # 138-11, Santiago, Chile.
| | | | | |
Collapse
|
36
|
|
37
|
Hemachand T, Gopalakrishnan B, Salunke DM, Totey SM, Shaha C. Sperm plasma-membrane-associated glutathione S-transferases as gamete recognition molecules. J Cell Sci 2002; 115:2053-65. [PMID: 11973347 DOI: 10.1242/jcs.115.10.2053] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Glutathione S-transferases (GSTs) are enzymes that detoxify electrophilic compounds. Earlier studies from our laboratory showed that anti-GST antibodies interfered with the fertilising ability of spermatozoa from Capra hircus (goat) in vitro, suggesting that GSTs are localised at the cell surface. In this study, we provide evidence for the presence of GSTs of 24 kDa on the sperm plasma membrane attached by non-covalent interactions. The GST activity associated with the spermatozoal plasma membrane was significantly higher than the activity present in the plasma membranes of brain cells,hepatocytes, spleenocytes and ventriculocytes. Analysis of GST isoforms demonstrates the presence of GST Pi and Mu on the sperm plasma membranes. Both isoforms were able to bind to solubilised as well as intact zona pellucida(ZP) through their N-terminal regions but failed to bind to ZP once the oocytes were fertilised. Solubilised goat ZP separates into three components,one of which, the ZP3-like component, bound to sperm GSTs. High concentrations of anti-GST antibodies or solubilised ZP led to aggregation of sperm GSTs,resulting in the release of acrosin. In contrast, inhibition of sperm GST binding to ZP, by saturation of binding sites for sperm GSTs on the solubilised ZP using peptides designed from the N-terminii of GST Pi or Mu or blocking of binding sites for ZP on sperm GSTs with antibodies raised against the N-terminal GST peptides, inhibited essential prefertilisation changes in sperm.
These data therefore demonstrate the strategic location of catalytically active defensive enzymes on the sperm surface that also act as zona-binding proteins. Therefore, sperm-surface GSTs serve as bifunctional molecules in a transcriptionally inactive cell whose requirement for cellular defense and economy of molecules that it can carry is greater than that of any somatic cell type.
Collapse
Affiliation(s)
- Tummala Hemachand
- National Institute of Immunology, Aruna Asaf Ali Road, New Delhi 110067, India
| | | | | | | | | |
Collapse
|
38
|
Coppin A, Maes E, Strecker G. Species-specificity of amphibia carbohydrate chains: the Bufo viridis case study. Carbohydr Res 2002; 337:121-32. [PMID: 11814443 DOI: 10.1016/s0008-6215(01)00301-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The jelly coat surrounding the eggs of amphibia is composed of oviducal mucins and plays an important role in the fertilization process. From a structural and chemical point of view, these jellies are very different from one species to another. Bufo viridis is the 13th amphibia species studied in term of carbohydrate structural analysis. The oligosaccharides have been released from the oviducal mucins by reductive beta elimination, purified by various chromatography procedures and analyzed by (1)H and (13)C 1D-2D NMR spectroscopy. Among the 15 compounds, ten have novel structures, although they possess some well-known structural patterns as blood group epitopes (Le(x), Le(y)) or other sequences already observed in other amphibia species. These results reinforce our hypothesis about the strict species-specificity of these carbohydrate chains. It must be noted that such species-specificity does not depend on one particular monosaccharide but it is rather due to a set of particular tri- or tetrasaccharide sequences. Hence, B. viridis species could be characterized by the simultaneous presence of a 2,3,6-trisubstituted galactosyl residue, the GlcNAc(beta 1-3)[Fuc(alpha 1-4)]GlcNAc beta sequence and the Le(x), Le(y) or Cad determinants. The anionic charge of the oligosaccharides is carried only by sialic acid alpha-(2-->6)-linked to GalNAc-ol residue as in Bufo bufo or in Bufo arenarum.
Collapse
Affiliation(s)
- Alexandra Coppin
- Laboratoire de Chimie Biologique, Centre National de la Recherche Scientifique, Université des Sciences et Technologies de Lille Flandres-Artois, Unité Mixte de Recherche no. 8576, Villeneuve d'Ascq F-59655, France
| | | | | |
Collapse
|
39
|
Michaut M, De Blas G, Tomes CN, Yunes R, Fukuda M, Mayorga LS. Synaptotagmin VI participates in the acrosome reaction of human spermatozoa. Dev Biol 2001; 235:521-9. [PMID: 11437455 DOI: 10.1006/dbio.2001.0316] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Acrosomal exocytosis is a calcium-dependent secretion event causing the release of the acrosomal contents and the loss of the membranes surrounding the acrosome. The synaptotagmins are a family of calcium-binding proteins that participate in the exocytosis of synaptic vesicles. The ubiquitous synaptotagmin VI isoform was found in human sperm cells by Western blot analysis. Immunocytochemistry at the optical and electron microscopy levels localized the protein to the outer acrosomal membrane. Calcium-triggered acrosomal exocytosis in permeabilized sperm cells was abrogated by a specific anti-synaptotagmin VI antibody, indicating that the protein is required for the process. Moreover, a recombinant fusion protein between glutathione S-transferase and the two calcium and phospholipid binding domains of synaptotagmin VI completely inhibited calcium-triggered exocytosis. Interestingly, phorbol ester-dependent in vitro phosphorylation of this recombinant protein abolished its inhibitory effect. We previously showed that, in permeabilized spermatozoa, addition of active Rab3A triggers acrosomal exocytosis at very low calcium concentration. Rab3A-promoted exocytosis was inhibited by the cytosolic domain of synaptotagmin VI and by the anti-synaptotagmin VI antibody, indicating that synaptotagmin is also necessary for Rab-mediated acrosomal content release. In conclusion, the results strongly indicate that synaptotagmin VI is a key component of the secretory machinery involved in acrosomal exocytosis.
Collapse
Affiliation(s)
- M Michaut
- Laboratorio de Biología Celular y Molecular, Istituto de Histologia y Embriologia (IHEM-CONICET), Universidad Nacional de Cuyo, Casilla de Correo 56, 5500 Mendoza, Argentina
| | | | | | | | | | | |
Collapse
|
40
|
Llanos MN, Ronco AM, Aguirre MC, Meizel S. Hamster sperm glycine receptor: evidence for its presence and involvement in the acrosome reaction. Mol Reprod Dev 2001; 58:205-15. [PMID: 11139233 DOI: 10.1002/1098-2795(200102)58:2<205::aid-mrd10>3.0.co;2-j] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Recent reports have provided evidence for the presence of amino acid neurotransmitter receptor/chloride channels in human and porcine spermatozoa and their involvement in the acrosome reaction (AR). In this work we investigated whether a glycine receptor (GlyR) was present in golden hamster sperm, and whether it had a role in the hamster AR. The neuronal GlyR agonist glycine, stimulated in a dose-dependent manner, the AR of hamster spermatozoa previously capacitated for at least 3 hr. This stimulation was completely inhibited by 50 microM (+)-bicuculline and by concentrations of strychnine as low as 10-50 nM; both agents are antagonists of neuronal GlyR when used at the concentrations reported in this study. beta-Alanine, another agonist of the neuronal GlyR, also stimulated the AR. The AR-stimulatory effect of this compound was completely abolished by 50 nM strychnine. The inhibitory effect of strychnine on the glycine-induced hamster sperm AR was completely overcome by subsequent treatment with the calcium ionophore ionomycin, demonstrating that the strychnine effect was specific for GlyR. Additional binding studies with (3)[H]-strychnine, the typical radioligand used to detect GlyR in several cells, demonstrated for the first time the presence of specific binding sites for strychnine in the hamster spermatozoa. Interestingly, binding increased during in vitro capacitation, particularly in those sperm suspensions showing high percentages of AR. Taken together these results strongly suggest the presence of a GlyR in the hamster spermatozoa, with a role in the AR when activated.
Collapse
Affiliation(s)
- M N Llanos
- Unidad de Biología de la Reproducción, INTA, Universidad de Chile, Santiago, Chile.
| | | | | | | |
Collapse
|
41
|
Flesch FM, Gadella BM. Dynamics of the mammalian sperm plasma membrane in the process of fertilization. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1469:197-235. [PMID: 11063883 DOI: 10.1016/s0304-4157(00)00018-6] [Citation(s) in RCA: 350] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Sexual reproduction requires the fusion of sperm cell and oocyte during fertilization to produce the diploid zygote. In mammals complex changes in the plasma membrane of the sperm cell are involved in this process. Sperm cells have unusual membranes compared to those of somatic cells. After leaving the testes, sperm cells cease plasma membrane lipid and protein synthesis, and vesicle mediated transport. Biophysical studies reveal that lipids and proteins are organized into lateral regions of the sperm head surface. A delicate reorientation and modification of plasma membrane molecules take place in the female tract when sperm cells are activated by so-called capacitation factors. These surface changes enable the sperm cell to bind to the extra cellular matrix of the egg (zona pellucida, ZP). The ZP primes the sperm cell to initiate the acrosome reaction, which is an exocytotic process that makes available the enzymatic machinery required for sperm penetration through the ZP. After complete penetration the sperm cell meets the plasma membrane of the egg cell (oolemma). A specific set of molecules is involved in a disintegrin-integrin type of anchoring of the two gametes which is completed by fusion of the two gamete plasma membranes. The fertilized egg is activated and zygote formation preludes the development of a new living organism. In this review we focus on the involvement of processes that occur at the sperm plasma membrane in the sequence of events that lead to successful fertilization. For this purpose, dynamics in adhesive and fusion properties, molecular composition and architecture of the sperm plasma membrane, as well as membrane derived signalling are reviewed.
Collapse
Affiliation(s)
- F M Flesch
- Department of Biochemistry and Cell Biology, and Department of Farm Animal Health, Graduate School of Animal Health and Institute for Biomembranes, Utrecht University, Yalelaan 2, 3584 CM, Utrecht, The Netherlands
| | | |
Collapse
|
42
|
Michaut M, Tomes CN, De Blas G, Yunes R, Mayorga LS. Calcium-triggered acrosomal exocytosis in human spermatozoa requires the coordinated activation of Rab3A and N-ethylmaleimide-sensitive factor. Proc Natl Acad Sci U S A 2000; 97:9996-10001. [PMID: 10954749 PMCID: PMC27650 DOI: 10.1073/pnas.180206197] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The acrosome reaction of spermatozoa is a complex, calcium-dependent, regulated exocytosis. Fusion at multiple sites between the outer acrosomal membrane and the cell membrane causes the release of the acrosomal contents and the loss of the membranes surrounding the acrosome. However, very little is known about the molecules that mediate and regulate this unique fusion process. Here, we show that N-ethylmaleimide-sensitive factor (NSF), a protein essential for most fusion events, is present in the acrosome of several mammalian spermatozoa. Moreover, we demonstrate that calcium-dependent exocytosis of permeabilized sperm requires active NSF. Previously, we have shown that the addition of the active (GTP-bound) form of the small GTPase Rab3A triggers exocytosis in permeabilized spermatozoa. In the present report we show that Rab3A is necessary for calcium-dependent exocytosis. The activation of Rab3A protects NSF from N-ethylmaleimide inhibition and precludes the exchange of the endogenous protein with recombinant dominant negative mutants of NSF. Furthermore, Rab3A activation of acrosomal exocytosis requires active NSF. Our results suggest that, upon calcium stimulation, Rab3A switches to its active GTP-bound form, triggering the formation of a protein complex in which NSF is protected. This process is suggested to be an essential part of the molecular mechanism of membrane fusion leading to the release of the acrosomal contents.
Collapse
Affiliation(s)
- M Michaut
- Laboratorio de Biologia Celular y Molecular, Instituto de Histologia y Embriologia (IHEM-CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, 5500 Mendoza, Argentina
| | | | | | | | | |
Collapse
|
43
|
Flesch FM, Colenbrander B, van Golde LM, Gadella BM. Capacitation induces tyrosine phosphorylation of proteins in the boar sperm plasma membrane. Biochem Biophys Res Commun 1999; 262:787-92. [PMID: 10471403 DOI: 10.1006/bbrc.1999.1300] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Capacitation (activation) of mammalian spermatozoa is accompanied by protein phosphorylation, elevation of the intracellular calcium concentration and an increased plasma membrane fluidity. The subcellular localization of tyrosine phosphorylation during capacitation have not yet been elucidated. The aim of this study was to investigate whether boar sperm capacitation induces tyrosine phosphorylation of plasma membrane proteins. Capacitation induced tyrosine phosphorylation of 3 proteins (27, 37, and 40 kDa), which coincided with an increase in the plasma membrane fluidity. The importance of the induced tyrosine phosphorylation in sperm binding to the zona pellucida and the induction of the acrosome reaction is discussed.
Collapse
Affiliation(s)
- F M Flesch
- Graduate School of Animal Health, Utrecht University, Utrecht, 3508 TD, The Netherlands
| | | | | | | |
Collapse
|