1
|
Zhou Y, Yu S, Zhang W. The Molecular Basis of Multiple Morphological Abnormalities of Sperm Flagella and Its Impact on Clinical Practice. Genes (Basel) 2024; 15:1315. [PMID: 39457439 PMCID: PMC11506864 DOI: 10.3390/genes15101315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/06/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Multiple morphological abnormalities of the sperm flagella (MMAF) is a specific form of severe flagellar or ciliary deficiency syndrome. MMAF is characterized by primary infertility with abnormal morphology in the flagella of spermatozoa, presenting with short, absent, bent, coiled, and irregular flagella. As a rare disease first named in 2014, studies in recent years have shed light on the molecular defects of MMAF that comprise the structure and biological function of the sperm flagella. Understanding the molecular genetics of MMAF may provide opportunities for the development of diagnostic and therapeutic strategies for this rare disease. This review aims to summarize current studies regarding the molecular pathogenesis of MMAF and describe strategies of genetic counseling, clinical diagnosis, and therapy for MMAF.
Collapse
Affiliation(s)
- Yujie Zhou
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (Y.Z.); (S.Y.)
| | - Songyan Yu
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (Y.Z.); (S.Y.)
| | - Wenyong Zhang
- Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
2
|
Dinh TH, Phuong Anh N, Thao DH, Duy LD, Bac ND, Quyet PV, Son TT, Lan Anh LT, Canh NX, Hai NV, Duong NT. Single nucleotide polymorphisms of CFAP43 and TEX14 associated with idiopathic male infertility in a Vietnamese population. Medicine (Baltimore) 2024; 103:e39839. [PMID: 39331878 PMCID: PMC11441965 DOI: 10.1097/md.0000000000039839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 09/03/2024] [Indexed: 09/29/2024] Open
Abstract
Male infertility is a multifactorial disease due to spermatogenesis impairment, with etiology remaining unknown for roughly one-third of infertile cases. Several studies have demonstrated that genetic variants are male infertility risk factors. CFAP43 and TEX14 are involved in the spermatogenesis process. The present study aimed to assess the association between single-nucleotide polymorphisms (SNPs) in CFAP43 (rs17116635 and rs10883979) and TEX14 (rs79813370 and rs34818467) and idiopathic male infertility in a Vietnamese population. A cohort of 206 infertile men and 195 controls were recruited for the study. CFAP43 and TEX14 SNPs were genotyped using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Genotypes of randomly selected samples, accounting for 10% of the total, were confirmed using Sanger sequencing. The obtained data were analyzed using statistical methods. The results showed that 4 SNPs (rs17116635, rs10883979, rs79813370, and rs34818467) were in accordance with Hardy-Weinberg Equilibrium (HWE; P > .05). CFAP43 rs10883979 and TEX14 rs79813370 were associated with male infertility. For CFAP43 rs10883979, in the recessive model, the combination AA + AG was associated with male infertility when compared to the GG genotype (OR = 0.26; 95% CI: 0.06-0.85; P = .02). For TEX14 rs79813370, a protective effect against infertility risk was identified in the presence of the T allele of rs79813370 when compared to the G allele (OR = 0.48; 95% CI: 0.32-0.72; P < .001). Our results suggest that CFAP43 rs10883979 and TEX14 rs79813370 are likely associated with male infertility in the Vietnamese population, in which the G allele of rs79813370 may be a risk factor for male infertility.
Collapse
Affiliation(s)
- Tran Huu Dinh
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Nguyen Phuong Anh
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Dinh Huong Thao
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - La Duc Duy
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Nguyen Duy Bac
- Department of Human Anatomy, Vietnam Military Medical University, Hanoi, Vietnam
| | - Pham Van Quyet
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
- Military Institute of Clinical Embryology and Histology, Vietnam Military Medical University, Hanoi, Vietnam
| | - Trinh The Son
- Military Institute of Clinical Embryology and Histology, Vietnam Military Medical University, Hanoi, Vietnam
| | - Luong Thi Lan Anh
- Department of Medical Biology and Genetics, Hanoi Medical University, Ministry of Health, Hanoi, Vietnam
| | - Nguyen Xuan Canh
- Department of Microbial Biotechnology, Faculty of Biotechnology, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Nong Van Hai
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Nguyen Thuy Duong
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| |
Collapse
|
3
|
Stallmeyer B, Dicke AK, Tüttelmann F. How exome sequencing improves the diagnostics and management of men with non-syndromic infertility. Andrology 2024. [PMID: 39120565 DOI: 10.1111/andr.13728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 07/07/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024]
Abstract
Male infertility affects approximately 17% of all men and represents a complex disorder in which not only semen parameters such as sperm motility, morphology, and number of sperm are highly variable, but also testicular phenotypes range from normal spermatogenesis to complete absence of germ cells. Genetic factors significantly contribute to the disease but chromosomal aberrations, mostly Klinefelter syndrome, and microdeletions of the Y-chromosome have remained the only diagnostically and clinically considered genetic causes. Monogenic causes remain understudied and, thus, often unidentified, leaving the majority of the male factor couple infertility pathomechanistically unexplained. This has been changing mostly because of the introduction of exome sequencing that allows the analysis of multiple genes in large patient cohorts. As a result, pathogenic variants in single genes have been associated with non-syndromic forms of all aetiologic sub-categories in the last decade. This review highlights the contribution of exome sequencing to the identification of novel disease genes for isolated (non-syndromic) male infertility by presenting the results of a comprehensive literature search. Both, reduced sperm count in azoospermic and oligozoospermic patients, and impaired sperm motility and/or morphology, in asthenozoospermic and/or teratozoospermic patients are highly heterogeneous diseases with well over 100 different candidate genes described for each entity. Applying the standardized evaluation criteria of the ClinGen gene curation working group, 70 genes with at least moderate evidence to contribute to the disease are highlighted. The implementation of these valid disease genes in clinical exome sequencing is important to increase the diagnostic yield in male infertility and, thus, improve clinical decision-making and appropriate genetic counseling. Future advances in androgenetics will continue to depend on large-scale exome and genome sequencing studies of comprehensive international patient cohorts, which are the most promising approaches to identify additional disease genes and provide reliable data on the gene-disease relationship.
Collapse
Affiliation(s)
- Birgit Stallmeyer
- Centre of Medical Genetics, Institute of Reproductive Genetics, University of Münster, Munster, Germany
| | - Ann-Kristin Dicke
- Centre of Medical Genetics, Institute of Reproductive Genetics, University of Münster, Munster, Germany
| | - Frank Tüttelmann
- Centre of Medical Genetics, Institute of Reproductive Genetics, University of Münster, Munster, Germany
| |
Collapse
|
4
|
Geng H, Wang K, Liang D, Ni X, Yu H, Tang D, Lv M, Wu H, Li K, Shen Q, Gao Y, Xu C, Zhou P, Wei Z, Cao Y, Sha Y, Yang X, He X. Further evidence from DNAH12 supports favorable fertility outcomes of infertile males with dynein axonemal heavy chain gene family variants. iScience 2024; 27:110366. [PMID: 39071892 PMCID: PMC11278020 DOI: 10.1016/j.isci.2024.110366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/03/2024] [Accepted: 06/21/2024] [Indexed: 07/30/2024] Open
Abstract
Male infertility is a major concern affecting reproductive health. Biallelic deleterious variants of most DNAH gene family members have been linked to male infertility, with intracytoplasmic sperm injection (ICSI) being an efficacious way to achieve offspring. However, the association between DNAH12 and male infertility is still limited. Here, we identified one homozygous variant and two compound heterozygous variants in DNAH12 from three infertile Chinese men. Semen analysis revealed severe asthenozoospermia, abnormal morphology, and structure of sperm flagella. Furthermore, the Dnah12 knock-out mouse revealed severe spermatogenesis failure and validated the same male infertility phenotype. Favorable fertility outcomes were achieved through ICSI in three human individuals and Dnah12 knock-out mice. Collectively, our study indicated that biallelic variants of DNAH12 can induce male infertility in both human beings and mice. Notably, evidence from DNAH12 enhanced that ICSI was an optimal intervention to achieve favorable fertility outcomes for infertile males with DNAH gene family variants.
Collapse
Affiliation(s)
- Hao Geng
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China
| | - Kai Wang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui, China
| | - Dan Liang
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China
| | - Xiaoqing Ni
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui, China
| | - Hui Yu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui, China
| | - Dongdong Tang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China
| | - Mingrong Lv
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China
| | - Huan Wu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China
| | - Kuokuo Li
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China
| | - Qunshan Shen
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China
| | - Yang Gao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui, China
| | - Chuan Xu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui, China
| | - Ping Zhou
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China
| | - Zhaolian Wei
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China
| | - Yunxia Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China
| | - Yanwei Sha
- School of Public Health & Women and Children's Hospital, Xiamen University, Xiamen, Fujian, China
| | - Xiaoyu Yang
- State Key Laboratory of Reproductive Medicine and Offspring Health, The Center for Clinical Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaojin He
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui, China
| |
Collapse
|
5
|
Gill K, Machałowski T, Harasny P, Grabowska M, Duchnik E, Piasecka M. Low human sperm motility coexists with sperm nuclear DNA damage and oxidative stress in semen. Andrology 2024; 12:1154-1169. [PMID: 38018344 DOI: 10.1111/andr.13556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/03/2023] [Accepted: 11/06/2023] [Indexed: 11/30/2023]
Abstract
BACKGROUND Low sperm motility, one of the common causes of male infertility, is associated with abnormal sperm quality. Currently, important sperm/semen biomarkers are sperm chromatin status and oxidation‒reduction potential (ORP) in semen. Because the association between sperm motility and these biomarkers is still not fully clarified, our study was designed to verify the distribution and risk of sperm DNA fragmentation (SDF) and oxidative stress in semen in asthenozoospermic men. MATERIALS AND METHODS This study was carried out on discharged sperm cells of asthenozoospermic men (isolated asthenozoospermia or coexisted with reduced sperm number and/or morphology), nonasthenozoospermic men (reduced total sperm count and/or sperm morphology) (experimental groups) and normozoospermic men (proven and presumed fertility) (control group). Basic semen analysis was evaluated according to the 6th edition of the World Health Organization manual guidelines. SDF was assessed using the sperm chromatin dispersion test, while static(s) ORP in semen was measured by means of a MiOXSYS analyser. RESULTS The men from the asthenozoospermic group had lower basic semen parameters than those from the control and nonasthenozoospermic groups. In men with poor sperm motility SDF and sORP, prevalence and risk for > 20% SDF (high level of DNA damage) and for > 1.37 sORP (oxidative stress) were significantly higher than those of control and nonasthenozoospermic subjects. The risk for sperm DNA damage and oxidative stress in asthenozoospermic men was over 10-fold higher and almost 6-fold higher than those in control subjects and almost or over 3-fold higher than those in nonasthenozoospermic men. CONCLUSIONS AND DISCUSSION Poor human sperm motility coexisted with low basic sperm quality. Sperm DNA damage and oxidative stress in semen were much more frequent in asthenozoospermia. These abnormalities can decrease the sperm fertilizing capability under both natural and medically assisted reproduction conditions. Thus, in asthenozoospermia, the evaluation of sperm chromatin status and oxidation-reduction potential in semen is justified and inevitable, and the appropriate antioxidant therapy can be suggested.
Collapse
Affiliation(s)
- Kamil Gill
- Department of Histology and Developmental Biology, Faculty of Health Sciences, Pomeranian Medical University, Szczecin, Poland
| | - Tomasz Machałowski
- Department of Histology and Developmental Biology, Faculty of Health Sciences, Pomeranian Medical University, Szczecin, Poland
- Department of Perinatology, Obstetrics and Gynecology, Faculty of Medicine and Dentistry, Pomeranian Medical University, Police, Poland
| | - Patryk Harasny
- Department of Histology and Developmental Biology, Faculty of Health Sciences, Pomeranian Medical University, Szczecin, Poland
- Department of Urology and Urological Oncology, Faculty of Medicine and Dentistry, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Marta Grabowska
- Department of Histology and Developmental Biology, Faculty of Health Sciences, Pomeranian Medical University, Szczecin, Poland
| | - Ewa Duchnik
- Department of Aesthetic Dermatology, Faculty of Health Sciences, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Małgorzata Piasecka
- Department of Histology and Developmental Biology, Faculty of Health Sciences, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
6
|
Barbotin AL, Boursier A, Jourdain AS, Moerman A, Rabat B, Chehimi M, Thuillier C, Ghoumid J, Smol T. Identification of a novel CFAP61 homozygous splicing variant associated with multiple morphological abnormalities of the flagella. J Assist Reprod Genet 2024; 41:1499-1505. [PMID: 38775994 PMCID: PMC11224159 DOI: 10.1007/s10815-024-03139-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/07/2024] [Indexed: 07/05/2024] Open
Abstract
In this study, we investigated the role of a newly identified homozygous variant (c.1245 + 6T > C) in the CFAP61 gene in the development of multiple morphologically abnormal flagella (MMAF) in an infertile patient. Using exome sequencing, we identified this variant, which led to exon 12 skipping and the production of a truncated CFAP61 protein. Transmission electron microscopy analysis of the patient's spermatozoa revealed various flagellar abnormalities, including defective nuclear chromatin condensation, axoneme disorganization, and mitochondria embedded in residual cytoplasmic droplets. Despite a fertilization rate of 83.3% through ICSI, there was no successful pregnancy due to poor embryo quality.Our findings suggest a link between the identified CFAP61 variant and MMAF, indicating potential disruption in radial spokes' assembly or function crucial for normal ciliary motility. Furthermore, nearly half of the observed sperm heads displayed chromatin condensation defects, possibly contributing to the low blastulation rate. This case underscores the significance of genetic counseling and testing, particularly for couples dealing with infertility and MMAF. Early identification of such genetic variants can guide appropriate interventions and improve reproductive outcomes.
Collapse
Affiliation(s)
- Anne-Laure Barbotin
- UMRS1172 Development and Plasticity of the Neuroendocrine Brain, University of Lille, Lille, France
- Institut de Biologie de la Reproduction-Spermiologie-CECOS, CHU Lille, Lille, France
| | - Angèle Boursier
- UMRS1172 Development and Plasticity of the Neuroendocrine Brain, University of Lille, Lille, France
- Institut de Biologie de la Reproduction-Spermiologie-CECOS, CHU Lille, Lille, France
| | - Anne-Sophie Jourdain
- ULR7364 -RADEME - Maladies Rares du Développement Embryonnaire, University of Lille, Lille, France
- Institut de Génétique Médicale, CHU Lille, Avenue Oscar Lambret, F-59000, Lille, France
| | | | - Baptiste Rabat
- ULR7364 -RADEME - Maladies Rares du Développement Embryonnaire, University of Lille, Lille, France
| | - Mariam Chehimi
- Institut de Biologie de la Reproduction-Spermiologie-CECOS, CHU Lille, Lille, France
| | - Caroline Thuillier
- Institut de Génétique Médicale, CHU Lille, Avenue Oscar Lambret, F-59000, Lille, France
| | - Jamal Ghoumid
- ULR7364 -RADEME - Maladies Rares du Développement Embryonnaire, University of Lille, Lille, France
- Clinique de Génétique Guy Fontaine, CHU Lille, Lille, France
| | - Thomas Smol
- ULR7364 -RADEME - Maladies Rares du Développement Embryonnaire, University of Lille, Lille, France.
- Institut de Génétique Médicale, CHU Lille, Avenue Oscar Lambret, F-59000, Lille, France.
| |
Collapse
|
7
|
Chang T, Tang H, Zhou X, He J, Liu N, Li Y, Xiang W, Yao Z. A novel homozygous nonsense variant of AK7 is associated with multiple morphological abnormalities of the sperm flagella. Reprod Biomed Online 2024; 48:103765. [PMID: 38492416 DOI: 10.1016/j.rbmo.2023.103765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 03/18/2024]
Abstract
RESEARCH QUESTION Is the novel homozygous nonsense variant of AK7 associated with multiple morphological abnormalities of the sperm flagella (MMAF), a specific type of oligoasthenoteratozoospermia leading to male infertility? DESIGN Whole-exome sequencing and Sanger sequencing were performed to identify potential gene variants. Immunoblotting and immunofluorescence were applied to confirm the relationship between mutated genes and disease phenotypes. The concentration of reactive oxygen species and the rate of apoptosis were measured to evaluate the mitochondrial function of spermatozoa. Transmission electron microscopy and scanning electron microscopy were employed to observe sperm ultrastructure. RESULTS A novel homozygous nonsense variant of AK7, c.1153A>T (p. Lys385*), was identified in two infertile siblings with asthenoteratozoospermia through whole-exome sequencing. Both immunoblotting and immunofluorescence assays showed practically complete absence of AK7 in the patient's spermatozoa. Additionally, the individual with the novel AK7 variant exhibited a phenotype characterized by severe oxidative stress and apoptosis caused by mitochondrial metabolic dysfunction of spermatozoa. Notably, remarkable flagellar defects with multiple axonemes in uniflagellate spermatozoa, accompanied by mitochondrial vacuolization, were observed; this has not been reported previously in patients with other AK7 variants. CONCLUSIONS This study found that a novel identified homozygous nonsense variant of AK7 may be associated with MMAF-related asthenoteratozoospermia. The observed functional associations between mitochondria and sperm flagellar assembly provide evidence for potential mutual regulation between AK7 and flagella-associated proteins during spermatogenesis.
Collapse
Affiliation(s)
- Tianli Chang
- Reproductive Medicine Centre, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hongying Tang
- Reproductive Medicine Centre, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xu Zhou
- Reproductive Medicine Centre, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jingliang He
- Reproductive Medicine Centre, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Nenghui Liu
- Reproductive Medicine Centre, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yanping Li
- Reproductive Medicine Centre, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wenpei Xiang
- Institute of Reproductive Health, Centre of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhongyuan Yao
- Reproductive Medicine Centre, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
8
|
Long R, Wang M, Zhou J, Mao R, Wang C, Gu L, Chen Y, Jin L, Zhu L. Decreased embryo developmental potential and lower cumulative pregnancy rate in men with multiple morphological abnormalities of the sperm flagella. Front Endocrinol (Lausanne) 2024; 15:1377780. [PMID: 38745955 PMCID: PMC11091255 DOI: 10.3389/fendo.2024.1377780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 04/05/2024] [Indexed: 05/16/2024] Open
Abstract
Objective Multiple morphological abnormalities of the sperm flagella (MMAF) is characterized by abnormal flagellar phenotypes, which is a particular kind of asthenoteratozoospermia. Previous studies have reported a comparable intracytoplasmic sperm injection (ICSI) outcome in terms of fertilization rate and clinical pregnancy rate in patients with MMAF compared with those with no MMAF; however, others have conflicting opinions. Assisted reproductive technology (ART) outcomes in individuals with MMAF are still controversial and open to debate. Methods A total of 38 patients with MMAF treated at an academic reproductive center between January 2014 and July 2022 were evaluated in the current retrospective cohort study and followed up until January 2023. Propensity score matching was used to adjust for the baseline clinical characteristics of the patients and to create a comparable control group. The genetic pathogenesis of MMAF was confirmed by whole exome sequencing. The main outcomes were the embryo developmental potential, the cumulative pregnancy rate (CLPR), and the cumulative live birth rate (CLBR). Results Pathogenic variants in known genes of DNAH1, DNAH11, CFAP43, FSIP2, and SPEF2 were identified in patients with MMAF. Laboratory outcomes, including the fertilization rate, 2PN cleavage rate, blastocyst formation rate, and available blastocyst rate, followed a trend of decline in the MMAF group (p < 0.05). Moreover, according to the embryo transfer times and complete cycles, the CLPR in the cohort of MMAF was lower compared with the oligoasthenospermia pool (p = 0.033 and p = 0.020, respectively), while no statistical differences were observed in the neonatal outcomes. Conclusion The current study presented decreased embryo developmental potential and compromised clinical outcomes in the MMAF cohort. These findings may provide clinicians with evidence to support genetic counseling and clinical guidance in specific patients with MMAF.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Lei Jin
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lixia Zhu
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
Liu J, Zhao M, Dong X, Zhang Y, Xue J, Duan J, Sun Z, Zhou X. Melatonin ameliorates PM2.5-induced spermatogenesis disorder by preserving H3K9 methylation and SIRT3. ENVIRONMENTAL TOXICOLOGY 2024; 39:1471-1480. [PMID: 37994397 DOI: 10.1002/tox.24028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 10/10/2023] [Accepted: 10/31/2023] [Indexed: 11/24/2023]
Abstract
There was a link between exposure to PM2.5 and male infertility. Melatonin has beneficial effects on the male reproductive processes. How PM2.5 caused spermatogenesis disturbance and whether melatonin could prevent PM2.5-induced reproductive toxicity have remained unclear. The results showed that PM2.5 could inhibit the Nrf2-mediated antioxidant pathway and distinctly increase the cell apoptosis in testes. Moreover, PM2.5 also perturbed the process of meiosis by modulating meiosis-associated proteins such as γ-H2AX and Stra8. Mechanistically, PM2.5 inhibited G9a-dependent H3K9 methylation and SIRT3-mediated p53 deacetylation, which consistent with decreased sperm count and motility rate in ApoE-/- mice. Further investigation revealed melatonin effectively alleviated PM2.5-induced meiosis inhibition by preserving H3K9 methylation. Melatonin also alleviated PM2.5-induced apoptosis by regulating SIRT3-mediated p53 deacetylation. Overall, our study revealed PM2.5 resulted in spermatogenesis disorder by perturbing meiosis via G9a-dependent H3K9 di-methylation and causing cell apoptosis via SIRT3/p53 deacetylation pathway and provided promising insights into the protective role of melatonin in air pollution associated with male infertility.
Collapse
Affiliation(s)
- Jianhui Liu
- Department of Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China
| | - Moxuan Zhao
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China
| | - Xiaomin Dong
- Experimental Center for Basic Medical Teaching, Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yue Zhang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China
| | - Jinglong Xue
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China
| | - Xianqing Zhou
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China
| |
Collapse
|
10
|
Jreijiri F, Cavarocchi E, Amiri-Yekta A, Cazin C, Hosseini SH, El Khouri E, Patrat C, Thierry-Mieg N, Ray PF, Dulioust E, Whitfield M, Touré A. CCDC65, encoding a component of the axonemal Nexin-Dynein regulatory complex, is required for sperm flagellum structure in humans. Clin Genet 2024; 105:317-322. [PMID: 37975235 DOI: 10.1111/cge.14459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023]
Abstract
Sperm flagella share an evolutionary conserved microtubule-based structure with motile cilia expressed at the surface of several cell types, such as the airways epithelial cells. As a result, male infertility can be observed as an isolated condition or a syndromic trait, illustrated by Primary Cilia Dyskinesia (PCD). We report two unrelated patients showing multiple morphological abnormalities of the sperm flagella (MMAF) and carrying distinct homozygous truncating variants in the PCD-associated gene CCDC65. We characterized one of the identified variants (c.1208del; p.Asn403Ilefs*9), which induces the near absence of CCDC65 protein in patient sperm. In Chlamydomonas, CCDC65 ortholog (DRC2, FAP250) is a component of the Nexin-Dynein Regulatory complex (N-DRC), which interconnects microtubule doublets and coordinates dynein arms activity. In sperm cells from the patient, we also show the loss of GAS8, another component of the N-DRC, supporting a structural/functional link between the two proteins. Our work indicates that, similarly to ciliary axoneme, CCDC65 is required for sperm flagellum structure. Importantly, our work provides first evidence that mutations in the PCD-associated gene CCDC65 also cause asthenozoospermia.
Collapse
Affiliation(s)
- Fadwa Jreijiri
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, Grenoble, France
| | - Emma Cavarocchi
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, Grenoble, France
| | - Amir Amiri-Yekta
- Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Caroline Cazin
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, Grenoble, France
- CHU Grenoble Alpes, UM GI-DPI, Grenoble, Grenoble, France
| | - Seyedeh-Hanieh Hosseini
- Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Elma El Khouri
- Institut Cochin, INSERM U1016, CNRS UMR8104, Université Paris Cité, Paris, France
| | - Catherine Patrat
- Institut Cochin, INSERM U1016, CNRS UMR8104, Université Paris Cité, Paris, France
- Biologie de la Reproduction - APHP Centre-Université Paris Cité, Cochin, Paris, France
| | | | - Pierre F Ray
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, Grenoble, France
- CHU Grenoble Alpes, UM GI-DPI, Grenoble, Grenoble, France
| | - Emmanuel Dulioust
- Institut Cochin, INSERM U1016, CNRS UMR8104, Université Paris Cité, Paris, France
- Biologie de la Reproduction - APHP Centre-Université Paris Cité, Cochin, Paris, France
| | - Marjorie Whitfield
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, Grenoble, France
| | - Aminata Touré
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, Grenoble, France
| |
Collapse
|
11
|
Verpoest W, Okutman Ö, Van Der Kelen A, Sermon K, Viville S. Genetics of infertility: a paradigm shift for medically assisted reproduction. Hum Reprod 2023; 38:2289-2295. [PMID: 37801292 DOI: 10.1093/humrep/dead199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/12/2023] [Indexed: 10/07/2023] Open
Abstract
The field of reproductive genetics has undergone significant advancements with the completion of the Human Genome Project and the development of high-throughput sequencing techniques. This has led to the identification of numerous genes involved in both male and female infertility, revolutionizing the diagnosis and management of infertility patients. Genetic investigations, including karyotyping, specific genetic tests, and high-throughput sequencing, have become essential in determining the genetic causes of infertility. Moreover, the integration of genetics into reproductive medicine has expanded the scope of care to include not only affected individuals or couples but also their family members. Genetic consultations and counselling play a crucial role in identifying potentially affected relatives and offering tailored therapy and the possibility of fertility preservation. Despite the current limited therapeutic options, an increasing understanding of genotype-phenotype correlations in infertility genes holds promise for improved treatment outcomes. The availability of genetic diagnostic tools has reduced the number of idiopathic infertility cases by providing accurate aetiological diagnoses. The transition from research to clinical practice in reproductive genetics requires the establishment of genetic consultations and data warehousing systems to provide up-to-date information on gene-disease relationships. Overall, the integration of genetics into reproductive medicine has brought about a paradigm shift, emphasizing the familial dimension of infertility and offering new possibilities for personalized care and family planning.
Collapse
Affiliation(s)
- Willem Verpoest
- Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Clinical Sciences, Research Group Genetics of Reproduction and Development, Brussels IVF Centre for Reproductive Medicine, Brussels, Belgium
| | - Özlem Okutman
- Université libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (H.U.B), Hôpital Erasme, Service de Gynécologie-Obstetrique, Clinique de Fertilité, Route de Lennik, Bruxelles, Belgium
| | - Annelore Van Der Kelen
- Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Clinical Sciences, Research Group Genetics of Reproduction and Development, Centre for Medical Genetics, Brussels, Belgium
| | - Karen Sermon
- Vrije Universiteit Brussel (VUB), Faculty of Medicine and Pharmacy, Research Group Genetics of Reproduction and Development, Brussels, Belgium
| | - Stéphane Viville
- Laboratoire de Génétique Médicale LGM, Institut de Génétique Médicale d'Alsace IGMA, INSERM UMR 1112, Université de Strasbourg, Strasbourg, France
- Laboratoire de Diagnostic Génétique, Unité de Génétique de l'infertilité (UF3472), Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| |
Collapse
|
12
|
Braham A, Ghedir H, Ben Khedher MB, Ajina M, Saad A, Ibala-Romdhane S. Nuclear sperm integrity and ICSI prognosis in Tunisian patients with MMAF syndrome (multiple morphological abnormalities of the sperm flagella). HUM FERTIL 2023; 26:1429-1438. [PMID: 37671855 DOI: 10.1080/14647273.2023.2251679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 06/15/2023] [Indexed: 09/07/2023]
Abstract
Multiple Morphological Abnormalities of the Sperm Flagella (MMAF) is a severe form of teratozoospermia associated with several sperm flagellar abnormalities. The study included 52 patients with MMAF syndrome and a control group of 25 fertile men. The impact of nuclear sperm quality on intracytoplasmic sperm injection (ICSI) results was studied in 20 couples. TUNEL assay was used to assess sperm DNA fragmentation and aniline-blue staining was used to assess chromatin condensation. To investigate chromosomal meiotic segregation, we used fluorescence in situ hybridization (FISH). Semen morphology analysis revealed a mosaic of multiple flagella morphological abnormalities, including 46.73% short flagella, 16.22% bent flagella, 22.07% coiled flagella, and 10.90% absent flagella, all of which were associated with a high percentage of sperm head abnormalities. The mean DNA fragmentation index was substantially higher in patients compared to controls (p = 0.001), whereas the rate of aniline blue-reacted spermatozoa was not significantly different. There was a significant difference in aneuploidy frequencies between the two groups (p < 0.05). Infertile males with MMAF syndrome had lower sperm nuclear quality, which affected ICSI results. As a result, better sperm selection procedures are being employed to increase the success rate of assisted reproductive technologies (ART).
Collapse
Affiliation(s)
- Asma Braham
- Department of Cytogenetic and Reproductive Biology, Farhat Hached University Hospital, Sousse, Tunisia
| | - Houda Ghedir
- Department of Cytogenetic and Reproductive Biology, Farhat Hached University Hospital, Sousse, Tunisia
| | - Myriam Beya Ben Khedher
- Department of Cytogenetic and Reproductive Biology, Farhat Hached University Hospital, Sousse, Tunisia
| | - Mounir Ajina
- Reproductive Medicine Unit, University Hospital Farhat Hached, Sousse, Tunisia
- University of Medicine of Sousse, Farhat Hached Hospital, University of Sousse, Sousse, Tunisia
| | - Ali Saad
- Department of Cytogenetic and Reproductive Biology, Farhat Hached University Hospital, Sousse, Tunisia
- University of Medicine of Sousse, Farhat Hached Hospital, University of Sousse, Sousse, Tunisia
| | - Samira Ibala-Romdhane
- Department of Cytogenetic and Reproductive Biology, Farhat Hached University Hospital, Sousse, Tunisia
- University of Medicine of Sousse, Farhat Hached Hospital, University of Sousse, Sousse, Tunisia
| |
Collapse
|
13
|
Boursier A, Boudry A, Mitchell V, Loyens A, Rives N, Moerman A, Thomas L, Escudier E, Toure A, Whitfield M, Coutton C, Martinez G, Ray PF, Kherraf ZE, Viville S, Legendre M, Smol T, Robin G, Barbotin AL. Results and perinatal outcomes from 189 ICSI cycles of couples with asthenozoospermic men and flagellar defects assessed by transmission electron microscopy. Reprod Biomed Online 2023; 47:103328. [PMID: 37742467 DOI: 10.1016/j.rbmo.2023.103328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/09/2023] [Accepted: 08/01/2023] [Indexed: 09/26/2023]
Abstract
RESEARCH QUESTION Do patients presenting with flagella ultrastructural defects as assessed by electron microscopy, and defined within three phenotypes (dysplasia of the fibrous sheath [DFS], primary flagellar dyskinesia [PFD] and non-specific flagellar abnormalities [NSFA]), have decreased chances of success in intracytoplasmic sperm injection (ICSI) or adverse obstetric and neonatal outcomes? DESIGN Retrospective analysis of 189 ICSI cycles from 80 men with spermatozoa flagellum ultrastructural defects (DFS [n = 16]; PFD [n = 14]; NSFA [n = 50] compared with a control group (n = 97). Cycles were cumulatively analysed. All fresh and frozen embryo transfers resulting from each ICSI attempt were included. The effect of transmission electron microscopy (TEM) phenotype on the main ICSI outcomes was assessed by a multivariate logistic regression combined with a generalized linear mixed model to account for the non-independence of the observations. RESULTS No predictive value of TEM phenotype was found on the main outcomes of ICSI, namely fertilization rates, pregnancy and delivery rates, and cumulative pregnancy and delivery rates. Cumulative pregnancy rates ranged from 29.0-43.3% in the different TEM phenotype subgroups compared with 36.8% in the control group. Cumulative live birth rates ranged from 24.6-36.7% compared with 31.4% in the control group. No increase was found in miscarriages, preterm births, low birth weights or birth abnormalities. CONCLUSIONS Data on the cumulative chances of success in ICSI of patients with ultrastructural flagellar defects, a rare cause of male infertility often associated with an underlying genetic cause, are reassuring, as are obstetrical and neonatal outcomes in this population.
Collapse
Affiliation(s)
- Angèle Boursier
- CHU Lille, Institut de Biologie de la Reproduction-Spermiologie-CECOS, F-59000, Lille, France; Inserm UMR-S 1172, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille, France
| | - Augustin Boudry
- CHU Lille, Centre de Biologie-Pathologie, Laboratoire d'hématologie, F-59000, Lille, France; Univ. Lille, CHU Lille, ULR 2694 - METRICS: Évaluation des technologies de santé et des pratiques médicales, Lille, France
| | - Valérie Mitchell
- CHU Lille, Institut de Biologie de la Reproduction-Spermiologie-CECOS, F-59000, Lille, France
| | - Anne Loyens
- Inserm UMR-S 1172, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille, France
| | - Nathalie Rives
- Normandie Univ, UNIROUEN, Inserm U1239 Team "Adrenal and Gonadal Physiopathology"
| | - Alexandre Moerman
- CHU Lille, Service de Génétique Clinique, Institut de Génétique Médicale, Hôpital Jeanne de Flandre, Lille, France
| | - Lucie Thomas
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Childhood Genetic Disorders, Département de Génétique Médicale, Assistance Publique - Hôpitaux de Paris, Hôpital Trousseau, Paris 75012, France
| | - Estelle Escudier
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Childhood Genetic Disorders, Département de Génétique Médicale, Assistance Publique - Hôpitaux de Paris, Hôpital Trousseau, Paris 75012, France
| | - Aminata Toure
- Genetic Epigenetic and Therapies of Infertility, Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, 38000 Grenoble, France
| | - Marjorie Whitfield
- Genetic Epigenetic and Therapies of Infertility, Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, 38000 Grenoble, France
| | - Charles Coutton
- Genetic Epigenetic and Therapies of Infertility, Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, 38000 Grenoble, France; UM de Génétique Chromosomique, Hôpital Couple-Enfant, Centre Hospitalier Universitaire de Grenoble, 38000 Grenoble, France
| | - Guillaume Martinez
- Genetic Epigenetic and Therapies of Infertility, Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, 38000 Grenoble, France; UM de Génétique Chromosomique, Hôpital Couple-Enfant, Centre Hospitalier Universitaire de Grenoble, 38000 Grenoble, France
| | - Pierre F Ray
- Genetic Epigenetic and Therapies of Infertility, Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, 38000 Grenoble, France; UM GI-DPI, Centre Hospitalier Universitaire de Grenoble, 38000 Grenoble, France
| | - Zine-Eddine Kherraf
- Genetic Epigenetic and Therapies of Infertility, Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, 38000 Grenoble, France; UM GI-DPI, Centre Hospitalier Universitaire de Grenoble, 38000 Grenoble, France
| | - Stéphane Viville
- Laboratoire de Génétique Médicale LGM, Institut de Génétique Médicale d'Alsace IGMA, INSERM UMR 1112, Université de Strasbourg, Strasbourg, France; Laboratoire de Diagnostic Génétique, Unité de Génétique de l'Infertilité (UF3472), Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Marie Legendre
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Childhood Genetic Disorders, Département de Génétique Médicale, Assistance Publique - Hôpitaux de Paris, Hôpital Trousseau, Paris 75012, France
| | - Thomas Smol
- CHU Lille, Service de Génétique Clinique, Institut de Génétique Médicale, Hôpital Jeanne de Flandre, Lille, France; Université de Lille, EA 7364-RADEME, Lille, France
| | - Geoffroy Robin
- Université de Lille, CHU Lille, Service de Gynécologie Médicale Orthogénie et Sexologie, F-59000, Lille, France
| | - Anne-Laure Barbotin
- CHU Lille, Institut de Biologie de la Reproduction-Spermiologie-CECOS, F-59000, Lille, France; Inserm UMR-S 1172, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille, France.
| |
Collapse
|
14
|
Song B, Yang T, Shen Q, Liu Y, Wang C, Li G, Gao Y, Cao Y, He X. Novel mutations in DNAH17 cause sperm flagellum defects and their influence on ICSI outcome. J Assist Reprod Genet 2023; 40:2485-2492. [PMID: 37574497 PMCID: PMC10504183 DOI: 10.1007/s10815-023-02897-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/19/2023] [Indexed: 08/15/2023] Open
Abstract
PURPOSE To identify new mutations in DNAH17 that cause male infertility and analyze intracytoplasmic sperm injection (ICSI) outcomes in patients with DNAH17 mutations. METHODS A total of five cases of new DNAH17 mutations exhibiting the multiple morphological abnormalities of the sperm flagella (MMAF) phenotype were identified through semen analysis and genetic testing. They were recruited at our reproductive medicine center from September 2018 to July 2022. Information on DNAH17 genetic mutations and ICSI outcomes was systematically explored following a literature review. RESULTS Three novel compound mutations in DNAH17 were identified in patients with male infertility caused by MMAF. This study and previous publications included 21 patients with DNAH17 mutations. DNAH17 has been associated with asthenozoospermia and male infertility, but different types of DNAH17 variants appear to be involved in different sperm phenotypes. In 11 couples of infertile patients with DNAH17 mutations, there were 17 ICSI cycles and 13 embryo transplantation cycles. Only three men with DNAH17 variants ultimately achieved clinical pregnancy with their partners through ICSI combined with assisted oocyte activation (AOA). CONCLUSIONS Loss-of-function mutations in DNAH17 can lead to severe sperm flagellum defects and male infertility. Patients with MMAF-harboring DNAH17 mutations generally have worse pregnancy outcomes following ICSI. ICSI combined with AOA may improve the outcome of assisted reproductive techniques (ARTs) for men with DNAH17 variants.
Collapse
Affiliation(s)
- Bing Song
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230032 China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, 230032 China
- Ministry of Education Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Hefei, 230032 China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, 230032 China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, 230032 China
| | - Tianjin Yang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230032 China
| | - Qunshan Shen
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230032 China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, 230032 China
- Ministry of Education Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Hefei, 230032 China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, 230032 China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, 230032 China
| | - Yiyuan Liu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230032 China
| | - Chao Wang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230032 China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, 230032 China
- Ministry of Education Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Hefei, 230032 China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, 230032 China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, 230032 China
| | - Guanjian Li
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230032 China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, 230032 China
- Ministry of Education Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Hefei, 230032 China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, 230032 China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, 230032 China
| | - Yang Gao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230032 China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, 230032 China
- Ministry of Education Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Hefei, 230032 China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, 230032 China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, 230032 China
| | - Yunxia Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230032 China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, 230032 China
- Ministry of Education Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Hefei, 230032 China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, 230032 China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, 230032 China
| | - Xiaojin He
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230032 China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, 230032 China
- Ministry of Education Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Hefei, 230032 China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, 230032 China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, 230032 China
| |
Collapse
|
15
|
Abstract
Over the past half-century, the world has witnessed a steep decline in fertility rates in virtually every country on Earth. This universal decline in fertility is being driven by increasing prosperity largely through the mediation of social factors, the most powerful of which are the education of women and an accompanying shift in life’s purpose away from procreation. In addition, it is clear that environmental and lifestyle factors are also having a profound impact on our reproductive competence particularly in the male where increasing prosperity is associated with a significant rise in the incidence of testicular cancer and a secular decline in semen quality and testosterone levels. On a different timescale, we should also recognize that the increased prosperity associated with the demographic transition greatly reduces the selection pressure on high fertility genes by lowering the rates of infant and childhood mortality. The retention of poor fertility genes within the human population is also being exacerbated by the increased uptake of ART. It is arguable that all of these elements are colluding to drive our species into an infertility trap. If we are to avoid the latter, it will be important to recognize the factors contributing to this phenomenon and adopt the social, political, environmental and lifestyle changes needed to bring this situation under control.
Collapse
Affiliation(s)
- R John Aitken
- Priority Research Centre for Reproductive Science, Discipline of Biological Sciences, School of Environmental and Life Sciences, College of Engineering Science and Environment, University of Newcastle, Callaghan, NSW, Australia
- Correspondence address. Discipline of Biological Sciences, School of Environmental and Life Sciences, College of Engineering Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia. Tel: +61-2-4921-6851; E-mail:
| |
Collapse
|