1
|
Willson S, Mounts E, Werner M. Fair expectations for patients undergoing preimplantation genetic testing for monogenic disorders: aneuploidy no less of an obstacle. Fertil Steril 2024; 122:1008-1009. [PMID: 39307266 DOI: 10.1016/j.fertnstert.2024.09.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 09/17/2024] [Indexed: 10/15/2024]
|
2
|
Figliuzzi M, Bori L, Ottolini CS, Picchetta L, Caroselli S, Reverenna M, Poli M, Campbell A, Smith R, Coticchio G, Cimadomo D, Rienzi LF, Meseguer M, Capalbo A. Human embryos with segmental aneuploidies display delayed early development: a multicenter morphokinetic analysis. Fertil Steril 2024:S0015-0282(24)02344-6. [PMID: 39510239 DOI: 10.1016/j.fertnstert.2024.10.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 10/21/2024] [Accepted: 10/28/2024] [Indexed: 11/15/2024]
Abstract
OBJECTIVE To assess whether segmental aneuploid embryos display unique morphokinetic patterns. DESIGN Retrospective multicenter study including a total of 7,027 embryos cultured between 2016 and 2021 in three European in vitro fertilization centers. Analysis was performed on aggregated multicenter data and separately for data from each center. Embryos with no more than four chromosomal alterations were considered in the analysis, resulting in 3,040 euploids and 2,818 whole-chromosome and 697 segmental aneuploids. Overall, the data set contained 3,742 distinct euploid-segmental sibling pairs. SETTING In vitro fertilization clinics. PATIENT(S) Standard morphokinetic features were annotated using various time-lapse systems. Blastocysts were subjected to comprehensive chromosomal screening via preimplantation genetic testing for aneuploidy. INTERVENTION(S) Morphokinetic patterns were compared among euploid, whole-chromosome aneuploid, and segmental aneuploid embryos. MAIN OUTCOME MEASURE(S) Morphokinetic timings across groups were compared using statistical analysis, and associations with cleavage features were assessed. Multicenter and center-specific multivariate logistic regression models were calibrated, and their predictive performance was evaluated on independent test set data using area under the receiver operating characteristic curve (AUROC) metrics. RESULT(S) Segmental aneuploid embryos cleaved significantly slower than their euploid siblings across the first three cell cycles, with a delay reaching the blastocyst-stage of development. Specifically during these early cell cycles, segmental aneuploid embryos were also shown to be significantly slower than their aneuploid siblings. A logistic model on the basis of morphokinetic data from the multicenter data set and regressed against type of aneuploidy displayed modest predictive performance on an independent test set (train-AUROC = 0.58; test-AUROC = 0.57). Predictive performance improved on the basis of data from a single center displaying adequate predictive performance on an independent test set from the same center (train-AUROC = 0.74; test-AUROC = 0.64). However, the predictive value diminished when tested on data from other centers (AUROC = 0.52-0.55). Finally, the presence of multinucleation and blastomere exclusion at the cleavage stage were associated with segmental aneuploidies. The combination of morphokinetic features and these discrete embryo morphological features into the logistic regression model (train-AUROC = 0.71) provided an improved prediction of segmental aneuploidy, supporting future investigations using more comprehensive annotation systems. CONCLUSION(S) The developed predictive framework may help improve decision-making in preimplantation genetic testing for aneuploidy cycles, helping in the evaluation of embryos showing segmental aneuploidy and distinguishing which embryos are more likely to not have lethal uniform aneuploidies for transfer.
Collapse
Affiliation(s)
| | - Lorena Bori
- IVIRMA Global Research Alliance, IVI, Valencia, Spain
| | - Christian Simon Ottolini
- Juno Genetics Italy, Reproductive Genetics, Rome, Italy; Department of Maternal and Fetal Medicine, UCL, London, United Kingdom
| | | | | | - Marco Reverenna
- Università di Pavia, Master Genomic Data Science, Pavia, Italy
| | - Maurizio Poli
- Juno Genetics Italy, Reproductive Genetics, Rome, Italy
| | | | | | | | - Danilo Cimadomo
- IVIRMA Global Research Alliance, Genera, Clinica Valle Giulia, Rome, Italy
| | - Laura Francesca Rienzi
- IVIRMA Global Research Alliance, Genera, Clinica Valle Giulia, Rome, Italy; Department of Biomolecular Sciences, University of Urbino "Carlo Bo," Urbino, Italy
| | | | - Antonio Capalbo
- Juno Genetics Italy, Reproductive Genetics, Rome, Italy; Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy; Department of Psychological Health and Territorial Sciences, School of Medicine and Health Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.
| |
Collapse
|
3
|
de Albornoz EC, Arroyo JAD, Iriarte YF, Vendrell X, Vidal VM, Roig MC. Non Invasive Preimplantation Testing for Aneuploidies in Assisted Reproduction: A SWOT Analysis. Reprod Sci 2024:10.1007/s43032-024-01698-2. [PMID: 39433699 DOI: 10.1007/s43032-024-01698-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 09/16/2024] [Indexed: 10/23/2024]
Abstract
The implementation of non-invasive PGT-A offers a new strategy to genetically assess the preimplantation embryo and to enhance IVF results. The extraction of DNA from the embryo culture medium has been sufficiently demonstrated, and the ability to obtain chromosomal information as a result is particularly interesting. As morphological criteria have proven to have a weak correlation with embryo ploidy status, this technique emerges as a promising alternative for embryo selection. It also appears reasonable that avoiding biopsy may enhance further embryo development. However, there are growing concerns regarding several aspects of this technique, such as the origin of this cell free DNA, the degree of representativeness of the whole embryo, the need for extended culture or the absence of standardized protocols. Despite the published data on good prognosis couples are promising, niPGT-A is yet to be considered a substitute for trophectoderm biopsy. The current SWOT analysis aims to summarize both resolved and unresolved issues, as well as limiting aspects of niPGT-A.
Collapse
Affiliation(s)
- Elena Carrillo de Albornoz
- Hospital Ruber Internacional, Madrid, Spain
- Doctoral Program in Medicine and Surgery, Universidad Autonoma of Madrid, C. Arzobispo Morcillo, Madrid, 28029, Spain
| | | | | | | | | | - María Carrera Roig
- Universidad Europea, Madrid, España.
- Universidad Complutense, Madrid, España.
| |
Collapse
|
4
|
Zhang Q, Liang X, Chen Z. A review of artificial intelligence applications in in vitro fertilization. J Assist Reprod Genet 2024:10.1007/s10815-024-03284-6. [PMID: 39400647 DOI: 10.1007/s10815-024-03284-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/01/2024] [Indexed: 10/15/2024] Open
Abstract
The field of reproductive medicine has witnessed rapid advancements in artificial intelligence (AI) methods, which have significantly enhanced the efficiency of diagnosing and treating reproductive disorders. The integration of AI algorithms into the in vitro fertilization (IVF) has the potential to represent the next frontier in advancing personalized reproductive medicine and enhancing fertility outcomes for patients. The potential of AI lies in its ability to bring about a new era characterized by standardization, automation, and an improved success rate in IVF. At present, the utilization of AI in clinical practice is still in its early stages and faces numerous ethical, regulatory, and technical challenges that require attention. In this review, we present an overview of the latest advancements in various applications of AI in IVF, including follicular monitoring, oocyte assessment, embryo selection, and pregnancy outcome prediction. The aim is to reveal the current state of AI applications in the field of IVF, their limitations, and prospects for future development. Further studies, which involve the development of comprehensive models encompassing multiple functions and the conduct of large-scale randomized controlled trials, could potentially indicate the future direction of AI advancements in the field of IVF.
Collapse
Affiliation(s)
- Qing Zhang
- Key Laboratory of Medical Imaging Precision Theranostics and Radiation Protection, College of Hunan Province, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, China
| | - Xiaowen Liang
- Key Laboratory of Medical Imaging Precision Theranostics and Radiation Protection, College of Hunan Province, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, China
| | - Zhiyi Chen
- Key Laboratory of Medical Imaging Precision Theranostics and Radiation Protection, College of Hunan Province, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China.
- Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, China.
- Department of Medical Imaging, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China.
| |
Collapse
|
5
|
De Witte L, Baetens M, Tilleman K, Vanden Meerschaut F, Janssens S, Van Tongerloo A, Szymczak V, Stoop D, Dheedene A, Symoens S, Menten B. Aligning genotyping and copy number data in single trophectoderm biopsies for aneuploidy prediction: uncovering incomplete concordance. Hum Reprod Open 2024; 2024:hoae056. [PMID: 39391861 PMCID: PMC11461285 DOI: 10.1093/hropen/hoae056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/13/2024] [Indexed: 10/12/2024] Open
Abstract
STUDY QUESTION To what extent can genotype analysis aid in the classification of (mosaic) aneuploid embryos diagnosed through copy number analysis of a trophectoderm (TE) biopsy? SUMMARY ANSWER In a small portion of embryos, genotype analysis revealed signatures of meiotic or uniform aneuploidy in those diagnosed with intermediate copy number changes, and signatures of presumed mitotic or putative mosaic aneuploidy in those diagnosed with full copy number changes. WHAT IS KNOWN ALREADY Comprehensive chromosome screening (CCS) for preimplantation genetic testing has provided valuable insights into the prevalence of (mosaic) chromosomal aneuploidy at the blastocyst stage. However, diagnosis of (mosaic) aneuploidy often relies solely on (intermediate) copy number analysis of a single TE biopsy. Integrating genotype information allows for independent assessment of the origin and degree of aneuploidy. Yet, studies aligning both datasets to predict (putative mosaic) aneuploidy in embryos remain scarce. STUDY DESIGN SIZE DURATION A single TE biopsy was collected from 1560 embryos derived from 221 couples tested for a monogenic disorder (n = 218) or microdeletion-/microduplication syndrome (n = 3). TE samples were subjected to both copy number and genotyping analysis. PARTICIPANTS/MATERIALS SETTING METHODS Copy number and SNP genotyping analysis were conducted using GENType. Unbalanced chromosomal anomalies ≥10 Mb (or ≥20 Mb for copy number calls <50%) were classified by degree, based on low-range intermediate (LR, 30-50%), high-range intermediate (HR, 50-70%) or full (>70%) copy number changes. These categories were further subjected to genotyping analysis to ascertain the origin (and/or degree) of aneuploidy. For chromosomal gains, the meiotic division of origin (meiotic I/II versus non-meiotic or presumed mitotic) was established by studying the haplotypes. The level of monosomy (uniform versus putative mosaic) in the biopsy could be ascertained from the B-allele frequencies. For segmental aneuploidies, genotyping was restricted to deletions. MAIN RESULTS AND THE ROLE OF CHANCE Of 1479 analysed embryos, 24% (n = 356) exhibited a whole-chromosome aneuploidy, with 19% (n = 280) showing full copy number changes suggestive of uniform aneuploidy. Among 258 embryos further investigated by genotyping, 95% of trisomies with full copy number changes were identified to be of meiotic origin. For monosomies, a complete loss of heterozygosity (LOH) in the biopsy was observed in 97% of cases, yielding a 96% concordance rate at the embryo level (n = 248/258). Interestingly, 4% of embryos (n = 10/258) showed SNP signatures of non-meiotic gain or putative mosaic loss instead. Meanwhile, 5% of embryos (n = 76/1479) solely displayed HR (2.5%; n = 37) or LR (2.6%; n = 39) intermediate copy number changes, with an additional 2% showing both intermediate and full copy number changes. Among embryos with HR intermediate copy number changes where genotyping was feasible (n = 25/37), 92% (n = 23/25) showed SNP signatures consistent with putative mosaic aneuploidy. However, 8% (n = 2/25) exhibited evidence of meiotic trisomy (9%) or complete LOH in the biopsy (7%). In the LR intermediate group, 1 of 33 (3%) genotyped embryos displayed complete LOH. Furthermore, segmental aneuploidy was detected in 7% of embryos (n = 108/1479) (or 9% (n = 139) with added whole-chromosome aneuploidy). These errors were often (52%) characterized by intermediate copy number values, which closely aligned with genotyping data when examined (94-100%). LARGE SCALE DATA N/A. LIMITATIONS REASONS FOR CAUTION The findings were based on single TE biopsies and the true extent of mosaicism was not validated through embryo dissection. Moreover, evidence of absence of a meiotic origin for a trisomy should not be construed as definitive proof of a mitotic error. Additionally, a genotyping diagnosis was not always attainable due to the absence of a recombination event necessary to discern between meiotic II and non-meiotic trisomy, or the unavailability of DNA from both parents. WIDER IMPLICATIONS OF THE FINDINGS Interpreting (intermediate) copy number changes of a single TE biopsy alone as evidence for (mosaic) aneuploidy in the embryo remains suboptimal. Integrating genotype information alongside the copy number status could provide a more comprehensive assessment of the embryo's genetic makeup, within and beyond the single TE biopsy. By identifying meiotic aberrations, especially in presumed mosaic embryos, we underscore the potential value of genotyping analysis as a deselection tool, ultimately striving to reduce adverse clinical outcomes. STUDY FUNDING/COMPETING INTERESTS L.D.W. was supported by the Research Foundation Flanders (FWO; 1S74621N). M.B., K.T., F.V.M., S.J., A.V.T., V.S., D.S., A.D., and S.S. are supported by Ghent University Hospital. B.M. was funded by Ghent University. The authors have no conflicts of interest.
Collapse
Affiliation(s)
- Lisa De Witte
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Machteld Baetens
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Kelly Tilleman
- Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| | | | - Sandra Janssens
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | | | - Virginie Szymczak
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Dominic Stoop
- Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| | - Annelies Dheedene
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Sofie Symoens
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Björn Menten
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
6
|
Kakourou G, Sofocleous C, Mamas T, Vrettou C, Traeger-Synodinos J. The current clinical applications of preimplantation genetic testing (PGT): acknowledging the limitations of biology and technology. Expert Rev Mol Diagn 2024; 24:767-775. [PMID: 39107971 DOI: 10.1080/14737159.2024.2390187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024]
Abstract
INTRODUCTION Preimplantation Genetic Testing (PGT) is a cutting-edge test used to detect genetic abnormalities in embryos fertilized through Medically Assisted Reproduction (MAR). PGT aims to ensure that embryos selected for transfer are free of specific genetic conditions or chromosome abnormalities, thereby reducing chances for unsuccessful MAR cycles, complicated pregnancies, and genetic diseases in future children. AREAS COVERED In PGT, genetics, embryology, and technology progress and evolve together. Biological and technological limitations are described and addressed to highlight complexity and knowledge constraints and draw attention to concerns regarding safety of procedures, clinical validity, and utility, extent of applications and overall ethical implications for future families and society. EXPERT OPINION Understanding the genetic basis of diseases along with advanced technologies applied in embryology and genetics contribute to faster, cost-effective, and more efficient PGT. Next Generation Sequencing-based techniques, enhanced by improved bioinformatics, are expected to upgrade diagnostic accuracy. Complicating findings such as mosaicism, mt-DNA variants, variants of unknown significance, or variants related to late-onset or polygenic diseases will however need further appraisal. Emphasis on monitoring such emerging data is crucial for evidence-based counseling while standardized protocols and guidelines are essential to ensure clinical value and respect of Ethical, Legal and Societal Issues.
Collapse
Affiliation(s)
- Georgia Kakourou
- Laboratory of Medical Genetics, Medical School, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Christalena Sofocleous
- Laboratory of Medical Genetics, Medical School, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Thalia Mamas
- Laboratory of Medical Genetics, Medical School, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Christina Vrettou
- Laboratory of Medical Genetics, Medical School, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Joanne Traeger-Synodinos
- Laboratory of Medical Genetics, Medical School, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
| |
Collapse
|
7
|
Oberle A, Feichtinger M. Polar body-based PGT-A: not dead yet? A step forward back to the roots of PGT-A. Reprod Biomed Online 2024:104430. [PMID: 39462706 DOI: 10.1016/j.rbmo.2024.104430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/19/2024] [Accepted: 08/19/2024] [Indexed: 10/29/2024]
Abstract
Trophectoderm-based preimplantation genetic testing for aneuploidies (PGT-A) is used worldwide as a means of selecting embryos with high potential for achieving a live birth. However, trophectoderm analysis may be impaired through embryonic mosaicism, leading to genetically healthy embryos being falsely discarded, and thus even reducing cumulative live birth rates. Polar body biopsy, a technique applied since the early days of preimplantation testing, has been abandoned by most IVF centres. In comparison to trophectoderm analysis, however, polar body biopsy might even have certain advantages over trophectoderm PGT-A. This Countercurrent contribution discusses the newest clinical evidence, as well as ethical and cost-efficiency considerations, and argue that polar body analysis should be reconsidered.
Collapse
Affiliation(s)
- Anna Oberle
- Wunschbaby Institut Feichtinger, Vienna, Austria
| | | |
Collapse
|
8
|
Tikhonov AV, Krapivin MI, Malysheva OV, Komarova EM, Golubeva AV, Efimova OA, Pendina AA. Re-Examination of PGT-A Detected Genetic Pathology in Compartments of Human Blastocysts: A Series of 23 Cases. J Clin Med 2024; 13:3289. [PMID: 38893001 PMCID: PMC11172919 DOI: 10.3390/jcm13113289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/27/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
Background: In recent years, preimplantation genetic testing for aneuploidies (PGT-A) has become widespread in assisted reproduction. However, contrary to expectations, PGT-A does not significantly improve the clinical outcomes of assisted reproductive technologies. One of the underlying reasons is the discordance between the PGT-A results and the true chromosomal constitution of the blastocyst. In this case series, we re-examined the PGT-A results in trophectoderm (TE) re-biopsies and in the two isolated blastocyst compartments-the TE and the inner cell mass (ICM). Methods: This study enrolled 23 human blastocysts from 17 couples who were referred for assisted reproduction. The blastocysts were unsuitable for uterine transfer due to the chromosomal imbalance revealed by PGT-A using array comparative genomic hybridization (aCGH) (n = 11) or next-generation sequencing (NGS) (n = 12). The re-examination of the PGT results involved two steps: (1) a TE re-biopsy with subsequent aCGH and (2) blastocyst separation into the TE and the ICM with a subsequent cell-by-cell analysis of each isolated compartment by fluorescence in situ hybridization (FISH) with the DNA probes to chromosomes 13, 16, 18, 21, and 22 as well as to the PGT-A detected imbalanced chromosomes. Results: In 8 out of 23 cases, the PGT-A results were concordant with both the re-biopsy and the isolated TE and ICM analyses. The latter included the diagnoses of full non-mosaic aneuploidies (five cases of trisomies and two cases of monosomies). In one case, the results of PGT-A, aCGH on the TE re-biopsy, and FISH on the isolated TE showed Xp tetrasomy, which contrasted with the FISH results on the isolated ICM, where this chromosomal pathology was not detected. This case was classified as a confined mosaicism. In 4 out of 23 cases, the results were partially discordant. The latter included one case of trisomy 12, which was detected as non-mosaic by PGT-A and the re-biopsy and as mosaic by FISH on the isolated TE and ICM. This case was classified as a true mosaicism with a false negative PGT-A result. In 11 out of 23 cases, the re-examination results were not concordant with the PGT-A results. In one of these discordant cases, non-mosaic tetraploidy was detected by FISH in the isolated TE and ICM, whereas the PGT-A and the TE re-biopsy failed to detect any abnormality, which advocated for their false negative result. In two cases, the re-examination did not confirm full aneuploidies. In eight cases, full or partial mosaic aneuploidies as well as chaotic mosacism were not confirmed in the isolated TE nor the isolated ICM. Thus, in 47.8% of cases, the PGT-A results did not reflect the true chromosomal constitution of a blastocyst. Conclusions: The PGT results may have different prognostic value in the characterization of the chromosomal constitution of a blastocyst. The detected non-mosaic aneuploidies have the highest prognostic value. In stark contrast, most PGT-identified mosaic aneuploidies fail to characterize the true chromosomal constitution of a blastocyst. Once detected, a differential diagnosis is needed.
Collapse
Affiliation(s)
- Andrei V. Tikhonov
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint Petersburg, Russia
| | | | | | | | | | | | | |
Collapse
|
9
|
Ata B. Progestin-primed ovarian stimulation and aneuploidy, innocent until proven guilty. Hum Reprod 2024; 39:878-879. [PMID: 38498840 DOI: 10.1093/humrep/deae051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/19/2024] [Indexed: 03/20/2024] Open
Affiliation(s)
- Baris Ata
- ART Fertility Clinics, Dubai, United Arab Emirates
- Department of Obstetrics and Gynecology, Koç University School of Medicine, Istanbul, Turkiye
| |
Collapse
|
10
|
Zhang X, Zheng PS. Mechanism of chromosomal mosaicism in preimplantation embryos and its effect on embryo development. J Assist Reprod Genet 2024; 41:1127-1141. [PMID: 38386118 PMCID: PMC11143108 DOI: 10.1007/s10815-024-03048-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/30/2024] [Indexed: 02/23/2024] Open
Abstract
Aneuploidy is one of the main causes of miscarriage and in vitro fertilization failure. Mitotic abnormalities in preimplantation embryos are the main cause of mosaicism, which may be influenced by several endogenous factors such as relaxation of cell cycle control mechanisms, defects in chromosome cohesion, centrosome aberrations and abnormal spindle assembly, and DNA replication stress. In addition, incomplete trisomy rescue is a rare cause of mosaicism. However, there may be a self-correcting mechanism in mosaic embryos, which allows some mosaicisms to potentially develop into normal embryos. At present, it is difficult to accurately diagnose mosaicism using preimplantation genetic testing for aneuploidy. Therefore, in clinical practice, embryos diagnosed as mosaic should be considered comprehensively based on the specific situation of the patient.
Collapse
Affiliation(s)
- Xue Zhang
- Department of Reproductive Medicine, The First Affiliated Hospital, Xi'an Jiaotong University of Medical School, Xi'an, 710061, Shanxi, P.R. China
| | - Peng-Sheng Zheng
- Department of Reproductive Medicine, The First Affiliated Hospital, Xi'an Jiaotong University of Medical School, Xi'an, 710061, Shanxi, P.R. China.
- Section of Cancer Stem Cell Research, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of People's Republic of China, Xi'an, 710061, Shanxi, P.R. China.
| |
Collapse
|
11
|
Latham KE. Preimplantation genetic testing: A remarkable history of pioneering, technical challenges, innovations, and ethical considerations. Mol Reprod Dev 2024; 91:e23727. [PMID: 38282313 DOI: 10.1002/mrd.23727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/15/2023] [Indexed: 01/30/2024]
Abstract
Preimplantation genetic testing (PGT) has emerged as a powerful companion to assisted reproduction technologies. The origins and history of PGT are reviewed here, along with descriptions of advances in molecular assays and sampling methods, their capabilities, and their applications in preventing genetic diseases and enhancing pregnancy outcomes. Additionally, the potential for increasing accuracy and genome coverage is considered, as well as some of the emerging ethical and legislative considerations related to the expanding capabilities of PGT.
Collapse
Affiliation(s)
- Keith E Latham
- Department of Animal Science, Michigan State University, East Lansing, Michigan, USA
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, East Lansing, Michigan, USA
- Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
12
|
Ezoe K, Takahashi T, Miki T, Kato K. Developmental perturbation in human embryos: Clinical and biological significance learned from time-lapse images. Reprod Med Biol 2024; 23:e12593. [PMID: 38983691 PMCID: PMC11232294 DOI: 10.1002/rmb2.12593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/30/2024] [Accepted: 06/07/2024] [Indexed: 07/11/2024] Open
Abstract
Background Time-lapse technology (TLT) has gained widespread adoption worldwide. In addition to facilitating the undisturbed culture of embryos, TLT offers the unique capability of continuously monitoring embryos to detect spatiotemporal changes. Although these observed phenomena play a role in optimal embryo selection/deselection, the clinical advantages of introducing TLT remain unclear. However, manual annotation of embryo perturbation could facilitate a comprehensive assessment of developmental competence. This process requires a thorough understanding of embryo observation and the biological significance associated with developmental dogma and variation. This review elucidates the typical behavior and variation of each phenomenon, exploring their clinical significance and research perspectives. Methods The MEDLINE database was searched using PubMed for peer-reviewed English-language original articles concerning human embryo development. Main findings TLT allows the observation of consecutive changes in embryo morphology, serving as potential biomarkers for embryo assessment. In assisted reproductive technology laboratories, several phenomena have not revealed their mechanism, posing difficulties such as fertilization deficiency and morula arrest. Conclusion A profound understanding of the biological mechanisms and significance of each phenomenon is crucial. Further collaborative efforts between the clinical and molecular fields following translational studies are required to advance embryonic outcomes and assessment.
Collapse
|