1
|
Aden NL, Bleeke M, Kordes UR, Brunne B, Holstermann B, Biemann R, Ceglarek U, Soave A, Salzbrunn A, Schneider SW, von Kopylow K. Germ Cell Maintenance and Sustained Testosterone and Precursor Hormone Production in Human Prepubertal Testis Organ Culture with Tissues from Boys 7 Years+ under Conditions from Adult Testicular Tissue. Cells 2023; 12:cells12030415. [PMID: 36766757 PMCID: PMC9913959 DOI: 10.3390/cells12030415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023] Open
Abstract
Human prepubertal testicular tissues are rare, but organ culture conditions to develop a system for human in vitro-spermatogenesis are an essential option for fertility preservation in prepubertal boys subjected to gonadotoxic therapy. To avoid animal testing in line with the 3Rs principle, organ culture conditions initially tested on human adult testis tissue were applied to prepubertal samples (n = 3; patient ages 7, 9, and 12 years). Tissues were investigated by immunostaining and transmission electron microscopy (TEM), and the collected culture medium was profiled for steroid hormones by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Culture conditions proved suitable for prepubertal organ culture since SSCs and germ cell proliferation could be maintained until the end of the 3-week-culture. Leydig cells (LCs) were shown to be competent for steroid hormone production. Three additional testis tissues from boys of the same age were examined for the number of germ cells and undifferentiated spermatogonia (SPG). Using TEM micrographs, eight tissues from patients aged 1.5 to 13 years were examined, with respect to the sizes of mitochondria (MT) in undifferentiated SPG and compared with those from two adult testicular tissues. Mitochondrial sizes were shown to be comparable between adults and prepubertal boys from approximately 7 years of age, which suggests the transition of SSCs from normoxic to hypoxic metabolism at about or before this time period.
Collapse
Affiliation(s)
- Neels Lennart Aden
- Clinic and Polyclinic for Dermatology and Venerology, Andrological Section, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Matthias Bleeke
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Uwe R. Kordes
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Bianka Brunne
- Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Barbara Holstermann
- Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Ronald Biemann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig, 04103 Leipzig, Germany
| | - Uta Ceglarek
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig, 04103 Leipzig, Germany
| | - Armin Soave
- Department of Urology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Andrea Salzbrunn
- Clinic and Polyclinic for Dermatology and Venerology, Andrological Section, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Stefan W. Schneider
- Clinic and Polyclinic for Dermatology and Venerology, Andrological Section, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Kathrein von Kopylow
- Clinic and Polyclinic for Dermatology and Venerology, Andrological Section, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Correspondence:
| |
Collapse
|
2
|
Yin Y, Wu S, Niu L, Huang S. A ZFP42/MARK2 regulatory network reduces the damage of retinal ganglion cells in glaucoma: a study based on GEO dataset and in vitro experiments. Apoptosis 2022; 27:1049-1059. [PMID: 36131186 DOI: 10.1007/s10495-022-01746-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2022] [Indexed: 11/02/2022]
Abstract
Glaucoma is a common disorder in which the death of retinal ganglion cells (RGCs) results in a progressive loss of sight, even blindness. This study was performed to reveal the key molecular mechanism of RGC damage in glaucoma based on the Gene Expression Omnibus database. Glaucoma-related microarray datasets were identified, followed by collection of differentially expressed genes (DEGs) with the key genes discovered by weighted gene co-expression network analysis. Through LASSO regression analysis, candidate genes involved in the pathogenesis of glaucoma were identified with their accuracy evaluated by receiver operating characteristic curve analysis. The glaucoma-specific transcriptional regulatory network was constructed to determine the key transcription factor regulatory axis. Then, in vitro cell models were established using H2O2 for further verifying the regulatory role of identified ZFP42/MARK2 axis in RGC damage in glaucoma. Differential analysis of GSE27276, GSE45570, and GSE101727 microarray datasets yielded 165 DEGs, and 22 key genes were identified following. Then, 9 candidate genes involved in the pathogenesis of glaucoma was collected and the key ZFP42/MARK2 regulatory axis was found. In vitro cell experiments further confirmed that ZFP42 and MARK2 were down-regulated in RGCs treated with H2O2. In addition, overexpression of ZFP42 increased the expression of MARK2 to increase RGC cell viability, and reduce cell apoptosis and ROS levels, while silencing MARK2 could reverse the protective effect of ZFP42. We confirmed that ZFP42 reduced the damage of RGCs in glaucoma by up-regulating the expression of MARK2.
Collapse
Affiliation(s)
- Yuan Yin
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, 130042, Jilin, People's Republic of China
| | - Shuai Wu
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, 130042, Jilin, People's Republic of China
| | - Lingzhi Niu
- Department of Ophthalmology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250014, People's Republic of China
| | - Shiwei Huang
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, 130042, Jilin, People's Republic of China.
| |
Collapse
|
3
|
Shakeel M, Jung H, Yoon D, Yoon M. Seasonal changes in the expression of molecular markers of stallion germ cells. J Equine Vet Sci 2022; 118:104109. [PMID: 36029943 DOI: 10.1016/j.jevs.2022.104109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/09/2022] [Accepted: 08/17/2022] [Indexed: 10/15/2022]
Abstract
The economic impacts of infertility and subfertility of stallions greatly influence the horse breeding industry. Self-renewal and differentiation of spermatogonial stem cells are the initial processes to maintain an adequate sperm population. Thus, understanding these processes may provide useful information to reveal the causes and remedies of subfertile and infertile stallions. Stallions are seasonal breeders. About 50% of the sperm population is reduced during the non-breeding season (NBS) in stallions. The seasonal regulation of spermatogenesis renders stallions as ideal models to understand the process of sperm production. Furthermore, comparing internal and external factors related to spermatogenesis during the breeding season (BS) and NBS may provide a solution for subfertile/infertile stallions. It is especially pertinent to study the expression pattern of different protein markers during undifferentiated, differentiating, and differentiated spermatogonia. Deleted in azoospermia-like (DAZL), undifferentiated cell transcription factor 1 (UTF-1), and protein gene product 9.5 (PGP9.5) are the molecular markers expressed at different stages of spermatogenesis. However, whether the expression pattern of these molecular markers is similar throughout the year in stallion remains undetermined. The objectives of this study were to (1) investigate the expression pattern and localization of DAZL, UTF-1, and PGP9.5 within seminiferous tubules and (2) evaluate the relative mRNA levels of these three germ cell markers in stallion testes during BS and NBS. Immunohistochemistry was performed to check and compare the expression pattern and localization of DAZL, UTF-1, and PGP9.5 antibodies. Reverse transcription-quantitative PCR analysis was performed to calculate the relative mRNA expression levels in the testes. Testicular tissues from thoroughbred stallions were collected during routine castration that was carried out in field conditions. Immunostaining of germ cells with DAZL and UTF-1 in BS and NBS were not significantly different. However, the relative mRNA expression levels of DAZL and UTF-1 were significantly different in both groups. Interestingly, the immunolabeling and the relative mRNA expression of PGP9.5 were significantly different between BS and NBS. From these results, it is hypothesized that the expression level of these putative molecular markers might be gonadotropin-dependent in stallion testes.
Collapse
Affiliation(s)
- Muhammad Shakeel
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju 37224, Republic of Korea; Department of Clinical Studies, Faculty of Veterinary and Animal Sciences, Pir Mehr Ali Shah, Arid Agriculture University, Rawalpindi 44000, Pakistan
| | - Heejun Jung
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju 37224, Republic of Korea
| | - Duhak Yoon
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju 37224, Republic of Korea; Reseach Center for Horse Industry, Kyungpook National University, Sangju 37224, Republic of Korea
| | - Minjung Yoon
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju 37224, Republic of Korea; Department of Horse, Companion and Wild Animal Science, Kyungpook National University, Sangju 37224, Republic of Korea; Reseach Center for Horse Industry, Kyungpook National University, Sangju 37224, Republic of Korea.
| |
Collapse
|
4
|
Conley AJ, Berger T, Del Razo RA, Cotterman RF, Sahagún E, Goetze LR, Jacob S, Weinstein TAR, Dufek ME, Mendoza SP, Bales KL. The onset of puberty in colony-housed male and female titi monkeys (Plecturocebus cupreus): Possible effects of oxytocin treatment during peri-adolescent development. Horm Behav 2022; 142:105157. [PMID: 35338890 PMCID: PMC9250660 DOI: 10.1016/j.yhbeh.2022.105157] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/24/2022] [Accepted: 03/11/2022] [Indexed: 12/29/2022]
Abstract
Oxytocin has been used to treat neurodevelopmental conditions in adolescent patients but possible effects on reproductive development have not been well investigated. The effects of daily intra-nasal oxytocin treatment (12-18 months of age) on puberty and fertility were studied in colony-housed, male and female titi monkeys (Plecturocebus cupreus). Body weight, urinary conjugated pregnanes and estrogens (defining cyclicity) in females, and androgens and sperm in urine of in males, were measured from 1 to 3 years of age to detect puberty. Serum testosterone was also measured in males at 13, 23 and 33 months of age and hemi-castration at 3 years of age enabled assessment of testicular morphometry and oxytocin receptor expression. An oxytocin treatment*time interaction suggested a minor, transient suppression in weight gain after treatment ended. Note that females weighed 10% less across all ages. Oxytocin-treated females exhibited early, spurious ovulations but neither regular cyclicity (≈30 months) nor pregnancies were affected by treatment. Oxytocin did not affect the pubertal increase in urinary androgen or the first appearance of sperm, which occurred as early as 15 months of age. Treatment did delay the puberty-associated rise in serum testosterone in males. All males were pubertal by 22 months and all females by 32 months of age. Although no major male or female fertility outcome was observed, oxytocin demonstrated some physiological effects through a delay of testosterone secretion in males, induction of precocious ovulation in females, and a suppression of general weight gain for the months following treatment.
Collapse
Affiliation(s)
- A J Conley
- Department of Population Health & Reproduction, School of Veterinary Medicine, University of California, Davis, CA 95616, United States of America.
| | - T Berger
- Department of Animal Science, University of California, Davis, CA 95616, United States of America
| | - R Arias Del Razo
- Department of Psychology, University of California, Davis, CA 95616, United States of America; California National Primate Research Center, University of California, Davis, CA 95616, United States of America
| | - R F Cotterman
- Department of Population Health & Reproduction, School of Veterinary Medicine, University of California, Davis, CA 95616, United States of America
| | - E Sahagún
- Department of Psychology, University of California, Davis, CA 95616, United States of America
| | - L R Goetze
- California National Primate Research Center, University of California, Davis, CA 95616, United States of America
| | - S Jacob
- Department of Psychology, University of California, Davis, CA 95616, United States of America
| | - T A R Weinstein
- Department of Psychology, University of California, Davis, CA 95616, United States of America
| | - M E Dufek
- California National Primate Research Center, University of California, Davis, CA 95616, United States of America
| | - S P Mendoza
- Department of Psychology, University of California, Davis, CA 95616, United States of America; California National Primate Research Center, University of California, Davis, CA 95616, United States of America
| | - K L Bales
- Department of Psychology, University of California, Davis, CA 95616, United States of America; California National Primate Research Center, University of California, Davis, CA 95616, United States of America; Department of Neurobiology, Physiology, and Behavior, University of California, Davis, CA 95616, United States of America.
| |
Collapse
|
5
|
Raina K, Dey C, Thool M, Sudhagar S, Thummer RP. An Insight into the Role of UTF1 in Development, Stem Cells, and Cancer. Stem Cell Rev Rep 2021; 17:1280-1293. [PMID: 33517544 DOI: 10.1007/s12015-021-10127-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2021] [Indexed: 10/22/2022]
Abstract
The curiosity to understand the mechanisms regulating transcription in pluripotent cells resulted in identifying a unique transcription factor named Undifferentiated embryonic cell transcription factor 1 (UTF1). This proline-rich, nuclear protein is highly conserved among placental mammals with prominent expression observed in pluripotent, germ, and cancer cells. In pluripotent and germ cells, its role has been implicated primarily in proper cell differentiation, whereas in cancer, it shows tissue-specific function, either as an oncogene or a tumor suppressor gene. Furthermore, UTF1 is crucial for germ cell development, spermatogenesis, and maintaining male fertility in mice. In addition, recent studies have demonstrated the importance of UTF1 in the generation of high quality induced Pluripotent Stem Cells (iPSCs) and as an excellent biomarker to identify bona fide iPSCs. Functionally, UTF1 aids in establishing a favorable chromatin state in embryonic stem cells, reducing "transcriptional noise" and possibly functions similarly in re-establishing this state in differentiated cells upon their reprogramming to generate mature iPSCs. This review highlights the multifaceted roles of UTF1 and its implication in development, spermatogenesis, stem, and cancer cells.
Collapse
Affiliation(s)
- Khyati Raina
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Chandrima Dey
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Madhuri Thool
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.,Department of Biotechnology, National Institute of Pharmaceutical Education and Research Guwahati, Changsari, Guwahati, Assam, 781101, India
| | - S Sudhagar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research Guwahati, Changsari, Guwahati, Assam, 781101, India
| | - Rajkumar P Thummer
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
| |
Collapse
|
6
|
Cai Y, Wang J, Zou K. The Progresses of Spermatogonial Stem Cells Sorting Using Fluorescence-Activated Cell Sorting. Stem Cell Rev Rep 2020; 16:94-102. [PMID: 31792769 DOI: 10.1007/s12015-019-09929-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In recent years, the research on stem cells has been more and more in-depth, and many achievements have been made in application. However, due to the small number of spermatogonial stem cells (SSCs) and deficiency of efficient markers, it is difficult to obtain very pure SSCs, which results in the research on them being hindered. In fact, many methods have been developed to isolate and purify SSCs, but these methods have their shortcomings. Fluorescence-activated cell sorting (FACS), as a method to enrich SSCs with the help of specific surface markers, has the characteristics of high efficiency and accuracy in enrichment of SSCs, thus it is widely accepted as an effective method for purification of SSCs. This review summarizes the recent studies on the application of FACS in SSCs, and introduces some commonly used markers of effective SSCs sorting, aiming to further optimize the FACS sorting method for SSCs, so as to promote the research of germline stem cells and provide new ideas for the research of reproductive biology.
Collapse
Affiliation(s)
- Yihui Cai
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jingjing Wang
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kang Zou
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
7
|
Portela JMD, Heckmann L, Wistuba J, Sansone A, van Pelt AMM, Kliesch S, Schlatt S, Neuhaus N. Development and Disease-Dependent Dynamics of Spermatogonial Subpopulations in Human Testicular Tissues. J Clin Med 2020; 9:jcm9010224. [PMID: 31947706 PMCID: PMC7019285 DOI: 10.3390/jcm9010224] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 01/03/2020] [Accepted: 01/10/2020] [Indexed: 12/22/2022] Open
Abstract
Cancer therapy and conditioning treatments of non-malignant diseases affect spermatogonial function and may lead to male infertility. Data on the molecular properties of spermatogonia and the influence of disease and/or treatment on spermatogonial subpopulations remain limited. Here, we assessed if the density and percentage of spermatogonial subpopulation changes during development (n = 13) and due to disease and/or treatment (n = 18) in tissues stored in fertility preservation programs, using markers for spermatogonia (MAGEA4), undifferentiated spermatogonia (UTF1), proliferation (PCNA), and global DNA methylation (5mC). Throughout normal prepubertal testicular development, only the density of 5mC-positive spermatogonia significantly increased with age. In comparison, patients affected by disease and/or treatment showed a reduced density of UTF1-, PCNA- and 5mC-positive spermatogonia, whereas the percentage of spermatogonial subpopulations remained unchanged. As an exception, sickle cell disease patients treated with hydroxyurea displayed a reduction in both density and percentage of 5mC- positive spermatogonia. Our results demonstrate that, in general, a reduction in spermatogonial density does not alter the percentages of undifferentiated and proliferating spermatogonia, nor the establishment of global methylation. However, in sickle cell disease patients’, establishment of spermatogonial DNA methylation is impaired, which may be of importance for the potential use of this tissues in fertility preservation programs.
Collapse
Affiliation(s)
- Joana M. D. Portela
- Center of Reproductive Medicine and Andrology, Institute of Reproductive and Regenerative Biology, Albert-Schweitzer-Campus 1, Building D11, 48149 Münster, Germany; (J.M.D.P.); (L.H.); (J.W.); (A.S.); (S.S.)
- Center for Reproductive Medicine, Amsterdam Research Institute Reproduction and Development, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands;
| | - Laura Heckmann
- Center of Reproductive Medicine and Andrology, Institute of Reproductive and Regenerative Biology, Albert-Schweitzer-Campus 1, Building D11, 48149 Münster, Germany; (J.M.D.P.); (L.H.); (J.W.); (A.S.); (S.S.)
| | - Joachim Wistuba
- Center of Reproductive Medicine and Andrology, Institute of Reproductive and Regenerative Biology, Albert-Schweitzer-Campus 1, Building D11, 48149 Münster, Germany; (J.M.D.P.); (L.H.); (J.W.); (A.S.); (S.S.)
| | - Andrea Sansone
- Center of Reproductive Medicine and Andrology, Institute of Reproductive and Regenerative Biology, Albert-Schweitzer-Campus 1, Building D11, 48149 Münster, Germany; (J.M.D.P.); (L.H.); (J.W.); (A.S.); (S.S.)
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Ans M. M. van Pelt
- Center for Reproductive Medicine, Amsterdam Research Institute Reproduction and Development, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands;
| | - Sabine Kliesch
- Center of Reproductive Medicine and Andrology, Department of Clinical and Surgical Andrology, Albert-Schweitzer-Campus 1, Building D11, 48149 Münster, Germany;
| | - Stefan Schlatt
- Center of Reproductive Medicine and Andrology, Institute of Reproductive and Regenerative Biology, Albert-Schweitzer-Campus 1, Building D11, 48149 Münster, Germany; (J.M.D.P.); (L.H.); (J.W.); (A.S.); (S.S.)
| | - Nina Neuhaus
- Center of Reproductive Medicine and Andrology, Institute of Reproductive and Regenerative Biology, Albert-Schweitzer-Campus 1, Building D11, 48149 Münster, Germany; (J.M.D.P.); (L.H.); (J.W.); (A.S.); (S.S.)
- Correspondence:
| |
Collapse
|
8
|
Murdock MH, David S, Swinehart IT, Reing JE, Tran K, Gassei K, Orwig KE, Badylak SF. Human Testis Extracellular Matrix Enhances Human Spermatogonial Stem Cell Survival In Vitro. Tissue Eng Part A 2019; 25:663-676. [PMID: 30311859 DOI: 10.1089/ten.tea.2018.0147] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
IMPACT STATEMENT This study developed and characterized human testis extracellular matrix (htECM) and porcine testis ECM (ptECM) for testing in human spermatogonial stem cell (hSSC) culture. Results confirmed the hypothesis that ECM from the homologous species (human) and homologous tissue (testis) is optimal for maintaining hSSCs. We describe a simplified feeder-free, serum-free condition for future iterative testing to achieve the long-term goal of stable hSSC cultures. To facilitate analysis and understand the fate of hSSCs in culture, we describe a multiparameter, high-throughput, quantitative flow cytometry approach to rapidly count undifferentiated spermatogonia, differentiated spermatogonia, apoptotic spermatogonia, and proliferative spermatogonia in hSSC cultures.
Collapse
Affiliation(s)
- Mark H Murdock
- 1 McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Sherin David
- 2 Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Women's Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Ilea T Swinehart
- 1 McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Janet E Reing
- 1 McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Kien Tran
- 2 Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Women's Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Kathrin Gassei
- 2 Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Women's Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Kyle E Orwig
- 2 Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Women's Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Stephen F Badylak
- 1 McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- 3 Department of Surgery, and University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- 4 Bioengineering, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
9
|
Ronchi A, Cozzolino I, Montella M, Panarese I, Zito Marino F, Rossetti S, Chieffi P, Accardo M, Facchini G, Franco R. Extragonadal germ cell tumors: Not just a matter of location. A review about clinical, molecular and pathological features. Cancer Med 2019; 8:6832-6840. [PMID: 31568647 PMCID: PMC6853824 DOI: 10.1002/cam4.2195] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 03/25/2019] [Accepted: 04/10/2019] [Indexed: 12/25/2022] Open
Abstract
Extragonadal germ cell tumors (EGGCTs) are uncommon neoplasms, which arise in anatomical locations other than gonads. The pathogenesis of these neoplasms is still poorly understood and it is a matter of debate if they really represent extragondal primary neoplasms or rather extragondal metastasis from occult gonadal neoplasms. The actual observations suggest that EGGCTs represent a unique entity, so their biology and behavior are substantially different from gonadal counterparts. The diagnosis of EGGCTs is often challenging, and differential diagnosis is particularly wide. Nevertheless, a correct diagnosis is essential for the correct management of the patient. We summarize the state of art about EGGCTs, with particular emphasis on diagnosis and prognosis.
Collapse
Affiliation(s)
- Andrea Ronchi
- Pathology Unit, Department of Mental and Physical Health and Preventive Medicine, University of Campania "L. Vanvitelli", Naples, Italy
| | - Immacolata Cozzolino
- Pathology Unit, Department of Mental and Physical Health and Preventive Medicine, University of Campania "L. Vanvitelli", Naples, Italy
| | - Marco Montella
- Pathology Unit, Department of Mental and Physical Health and Preventive Medicine, University of Campania "L. Vanvitelli", Naples, Italy
| | - Iacopo Panarese
- Pathology Unit, Department of Mental and Physical Health and Preventive Medicine, University of Campania "L. Vanvitelli", Naples, Italy
| | - Federica Zito Marino
- Pathology Unit, Department of Mental and Physical Health and Preventive Medicine, University of Campania "L. Vanvitelli", Naples, Italy
| | - Sabrina Rossetti
- Uro-Andrologic Oncology Unit, Department of Uro-Gynaecological Oncology, Istituto Nazionale Tumori "Fondazione G. Pascale"-IRCCS, Naples, Italy
| | - Paolo Chieffi
- Department of Psychology, University of Campania "L. Vanvitelli", Caserta, Italy
| | - Marina Accardo
- Pathology Unit, Department of Mental and Physical Health and Preventive Medicine, University of Campania "L. Vanvitelli", Naples, Italy
| | - Gaetano Facchini
- Uro-Andrologic Oncology Unit, Department of Uro-Gynaecological Oncology, Istituto Nazionale Tumori "Fondazione G. Pascale"-IRCCS, Naples, Italy
| | - Renato Franco
- Pathology Unit, Department of Mental and Physical Health and Preventive Medicine, University of Campania "L. Vanvitelli", Naples, Italy
| |
Collapse
|
10
|
Song S, Cui H, Chen S, Liu Q, Jiang R. EpiFIT: functional interpretation of transcription factors based on combination of sequence and epigenetic information. QUANTITATIVE BIOLOGY 2019. [DOI: 10.1007/s40484-019-0175-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Embryonic lethality and defective male germ cell development in mice lacking UTF1. Sci Rep 2017; 7:17259. [PMID: 29222434 PMCID: PMC5722945 DOI: 10.1038/s41598-017-17482-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 11/28/2017] [Indexed: 11/10/2022] Open
Abstract
The germ cell lineage is specified early in embryogenesis and undergoes complex developmental programs to generate gametes. Here, we conducted genetic studies to investigate the role of Utf1 (Undifferentiated embryonic cell transcription factor 1) in mouse germ cell development. Utf1 is expressed in pluripotent embryonic stem (ES) cells and regulates ES cell differentiation. In a proteomics screen, we identified UTF1 among 38 proteins including DNMT3L and DND1 that associate with chromatin in embryonic testes. We find that UTF1 is expressed in embryonic and newborn gonocytes and in a subset of early spermatogonia. Ubiquitous inactivation of Utf1 causes embryonic lethality in mice with a hybrid genetic background. Male mice with a germline-specific deletion of Utf1 resulting from Prdm1-Cre mediated recombination are born with significantly fewer gonocytes and exhibit defective spermatogenesis and reduced sperm count as young adults. These defects are ameliorated in older animals. These results demonstrate that UTF1 is required for embryonic development and regulates male germ cell development.
Collapse
|
12
|
von Kopylow K, Spiess AN. Human spermatogonial markers. Stem Cell Res 2017; 25:300-309. [PMID: 29239848 DOI: 10.1016/j.scr.2017.11.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 11/06/2017] [Accepted: 11/13/2017] [Indexed: 12/22/2022] Open
Abstract
In this review, we provide an up-to-date compilation of published human spermatogonial markers, with focus on the three nuclear subtypes Adark, Apale and B. In addition, we have extended our recently published list of putative spermatogonial markers with protein expression and RNA-sequencing data from the Human Protein Atlas and supported these by literature evidence. Most importantly, we have put substantial effort in acquiring a comprehensive list of new and potentially interesting markers by refiltering the raw data of 15 published germ cell expression datasets (four human, eleven rodent) and subsequent building of intersections to acquire a robust, cross-species set of spermatogonia-enriched or -specific transcripts.
Collapse
Affiliation(s)
- Kathrein von Kopylow
- Department of Andrology, University Hospital Hamburg-Eppendorf, Hamburg, Germany.
| | | |
Collapse
|
13
|
Utf1 contributes to intergenerational epigenetic inheritance of pluripotency. Sci Rep 2017; 7:14612. [PMID: 29097685 PMCID: PMC5668265 DOI: 10.1038/s41598-017-14426-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 10/10/2017] [Indexed: 12/27/2022] Open
Abstract
Undifferentiated embryonic cell transcription factor 1 (Utf1) is expressed in pluripotent embryonic stem cells (ESCs) and primordial germ cells (PGCs). Utf1 expression is directly controlled by pluripotency factors Oct4 and Sox2, which form a ternary complex with the Utf1 enhancer. The Utf1 protein plays a role in chromatin organization and epigenetic control of bivalent gene expression in ESCs in vitro, where it promotes effective cell differentiation during exit from pluripotency. The function of Utf1 in PGCs in vivo, however, is not known. Here, we report that proper development of Utf1 null embryos almost entirely depends on the presence of functional Utf1 alleles in the parental germline. This indicates that Utf1’s proposed epigenetic role in ESC pluripotency in vitro may be linked to intergenerational epigenetic inheritance in vivo. One component - or at least facilitator - of the relevant epigenetic mark appears to be Utf1 itself, since Utf1-driven tomato reporter and Utf1 are detected in mature germ cells. We also provide initial evidence for a reduced adult testis size in Utf1 null mice. Our findings thus point at unexpected functional links between the core ESC pluripotency factor network and epigenetic inheritance of pluripotency.
Collapse
|
14
|
Hoshi S, Sato Y, Hata J, Akaihata H, Ogawa S, Haga N, Kojima Y. Infrarenal high intra-abdominal testis: fusion of T2-weighted and diffusion-weighted magnetic resonance images and pathological findings. BMC Urol 2017; 17:66. [PMID: 28836968 PMCID: PMC5571510 DOI: 10.1186/s12894-017-0254-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 08/11/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Several recent reports have demonstrated that the preoperative sensitivity and accuracy of identifying and locating non-palpable testes increases with the use of conventional MRI, in addition to diffusion-weighted imaging (DWI). Therefore, pre-operative prediction of the presence and location of testes using imaging techniques may guide management of intra-abdominal testis. Fowler-Stephens orchiopexy is effective for treating patients with intra-abdominal testis; however, long-term testicular function after this procedure has not been clarified. We present a case of a high intra-abdominal testis located below the kidney, and discuss the usefulness of fusion view with T2-weighted and DWI images to make a diagnosis of high intra-abdominal testis and the pathological findings to predict future fertility potential. CASE PRESENTATION A 10-month-old boy was referred to the urology department for the management of non-palpable testis. We employed not only conventional MRI, but also DWI, to improve the diagnostic accuracy of non-palpable testes by MRI examination. The high-intensity mass-like structure below the kidney on the T2-weighted image and the markedly high signal intensity mass on the DWI image completely matched, which suggested that the mass below the kidney was the right testis. The patient underwent diagnostic and therapeutic laparoscopy. A testis was found under the ascending colon, 1 cm below the right kidney. We performed 2-stage Fowler-Stephens orchiopexy. The testis could be delivered to the scrotum without any tension. We examined expression patterns of the stem cell marker, undifferentiated embryonic cell transcription factor 1 (UTF1) in the testicular biopsy sample, and demonstrated that the UTF1-positive Ad spermatogonia / negative Ad spermatogonia ratio was lower in this patient than in boys his age with descended and inguinal undescended testes, indicating that spermatogonial stem cell activity may decrease remarkably in this boy. CONCLUSIONS Fusion view with T2-weighted and DWI images may be a useful diagnostic modality for high intra-abdominal testes. Fowler-Stephens orchiopexy may provide blood supply to the testis but that might not be enough to achieve spermatogenesis.
Collapse
Affiliation(s)
- Seiji Hoshi
- Department of Urology, Fukushima Medical University School of Medicine, 1, Hikarigaoka, Fukushima, 960-1295, Japan
| | - Yuichi Sato
- Department of Urology, Fukushima Medical University School of Medicine, 1, Hikarigaoka, Fukushima, 960-1295, Japan
| | - Junya Hata
- Department of Urology, Fukushima Medical University School of Medicine, 1, Hikarigaoka, Fukushima, 960-1295, Japan
| | - Hidenori Akaihata
- Department of Urology, Fukushima Medical University School of Medicine, 1, Hikarigaoka, Fukushima, 960-1295, Japan
| | - Soichiro Ogawa
- Department of Urology, Fukushima Medical University School of Medicine, 1, Hikarigaoka, Fukushima, 960-1295, Japan
| | - Nobuhiro Haga
- Department of Urology, Fukushima Medical University School of Medicine, 1, Hikarigaoka, Fukushima, 960-1295, Japan
| | - Yoshiyuki Kojima
- Department of Urology, Fukushima Medical University School of Medicine, 1, Hikarigaoka, Fukushima, 960-1295, Japan.
| |
Collapse
|
15
|
Wang Z, McGlynn KA, Rajpert-De Meyts E, Bishop DT, Chung C, Dalgaard MD, Greene MH, Gupta R, Grotmol T, Haugen TB, Karlsson R, Litchfield K, Mitra N, Nielsen K, Pyle LC, Schwartz SM, Thorsson V, Vardhanabhuti S, Wiklund F, Turnbull C, Chanock SJ, Kanetsky PA, Nathanson KL. Meta-analysis of five genome-wide association studies identifies multiple new loci associated with testicular germ cell tumor. Nat Genet 2017; 49:1141-1147. [PMID: 28604732 PMCID: PMC5490654 DOI: 10.1038/ng.3879] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 04/27/2017] [Indexed: 12/24/2022]
Abstract
The international Testicular Cancer Consortium (TECAC) combined five published genome-wide association studies of testicular germ cell tumor (TGCT; 3,558 cases and 13,970 controls) to identify new susceptibility loci. We conducted a fixed-effects meta-analysis, including, to our knowledge, the first analysis of the X chromosome. Eight new loci mapping to 2q14.2, 3q26.2, 4q35.2, 7q36.3, 10q26.13, 15q21.3, 15q22.31, and Xq28 achieved genome-wide significance (P < 5 × 10-8). Most loci harbor biologically plausible candidate genes. We refined previously reported associations at 9p24.3 and 19p12 by identifying one and three additional independent SNPs, respectively. In aggregate, the 39 independent markers identified to date explain 37% of father-to-son familial risk, 8% of which can be attributed to the 12 new signals reported here. Our findings substantially increase the number of known TGCT susceptibility alleles, move the field closer to a comprehensive understanding of the underlying genetic architecture of TGCT, and provide further clues to the etiology of TGCT.
Collapse
Affiliation(s)
- Zhaoming Wang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, USA
| | - Katherine A. McGlynn
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, USA
| | - Ewa Rajpert-De Meyts
- Department of Growth and Reproduction, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - D. Timothy Bishop
- Section of Epidemiology and Biostatistics, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - Charles Chung
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, USA
| | - Marlene D. Dalgaard
- Department of Growth and Reproduction, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
- Center of Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Mark H. Greene
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, USA
| | - Ramneek Gupta
- Center of Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Trine B. Haugen
- Faculty of Health Sciences, Oslo and Akershus University College of Applied Sciences, Oslo, Norway
| | - Robert Karlsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Kevin Litchfield
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK
| | - Nandita Mitra
- Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kasper Nielsen
- Center of Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Louise C. Pyle
- Department of Medicine, Division of Translational Medicine and Human Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Division of Human Genetics and Metabolism, The Children's Hospital of Philadelphia, Philadelphia 19104, PA, USA
| | | | | | - Saran Vardhanabhuti
- Department of Biostatistics, Harvard School of Public Health, Cambridge, Massachusetts, USA
| | - Fredrik Wiklund
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Clare Turnbull
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK
- Genomics England, London, UK
| | - Stephen J. Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, USA
| | - Peter A. Kanetsky
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Katherine L. Nathanson
- Department of Medicine, Division of Translational Medicine and Human Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
16
|
Lee YS, Jung HJ, Yoon MJ. Undifferentiated embryonic cell transcription factor 1 (UTF1) and deleted in azoospermia-like (DAZL) expression in the testes of donkeys. Reprod Domest Anim 2017; 52:264-269. [PMID: 28109031 DOI: 10.1111/rda.12889] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 10/10/2016] [Indexed: 01/14/2023]
Abstract
Putative markers for each specific germ cell stage can be a useful tool to study the fate and functions of these cells. Undifferentiated embryonic cell transcription factor 1 (UTF1) is a putative marker for undifferentiated spermatogonia in humans, rats and horses. The deleted in azoospermia-like (DAZL) protein is also expressed by differentiated spermatogonia and primary spermatocytes in several species. However, whether the expression patterns of these molecular markers are identical and applicable to donkeys remains to be elucidated. The objective of this study was to investigate the expression patterns of UTF1 and DAZL in donkey testicular tissue, using immunohistochemistry (IHC). Testicular samples were collected from routine field castration of donkeys in Korea. The reproductive stages (pre- or post-puberty) of the testes were determined from the morphological characteristics of cross-sections of the seminiferous tubules. For IHC, the UTF1 and DAZL primary antibodies were diluted at 1:100 and 1:200, respectively. The immunolabelling revealed that UTF1 was expressed in approximately 50% of spermatogonia in the pre-pubertal stage, whereas its expression was limited to an early subset of spermatogonia in the post-pubertal stage. DAZL was expressed in some, but not all, spermatogonia in the pre-pubertal spermatogonia, and interestingly, its expression was also observed in spermatogonia and primary spermatocytes in the post-pubertal stage. Co-immunolabelling of the germ cells with both UTF1 and DAZL revealed three types of protein expression patterns at both reproductive stages, namely UTF1 only, DAZL only and both UTF1 and DAZL. These protein molecules were not expressed in Sertoli and Leydig cells. In conclusion, a co-immunolabelling system with UTF1 and DAZL antibodies may be used to identify undifferentiated (UTF1 only), differentiating (UTF1 and DAZL), and differentiated spermatogonia (DAZL only) in donkey testes.
Collapse
Affiliation(s)
- Y S Lee
- Department of Horse, Companion, and Wild Animal Science, Kyungpook National University, Sangju, Korea
| | - H J Jung
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Korea
| | - M J Yoon
- Department of Horse, Companion, and Wild Animal Science, Kyungpook National University, Sangju, Korea.,Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Korea
| |
Collapse
|
17
|
Conrad S, Azizi H, Skutella T. Single-Cell Expression Profiling and Proteomics of Primordial Germ Cells, Spermatogonial Stem Cells, Adult Germ Stem Cells, and Oocytes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1083:77-87. [DOI: 10.1007/5584_2017_117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
18
|
Spermatogonial cells: mouse, monkey and man comparison. Semin Cell Dev Biol 2016; 59:79-88. [PMID: 26957475 DOI: 10.1016/j.semcdb.2016.03.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 02/29/2016] [Accepted: 03/01/2016] [Indexed: 12/15/2022]
Abstract
In all mammals, spermatogonia are defined as constituting the mitotic compartment of spermatogenesis including stem, undifferentiated and differentiating cell types, possessing distinct morphological and molecular characteristics. Even though the real nature of the spermatogonial stem cell and its regulation is still debated the general consensus holds that in steady-state spermatogenesis the stem cell compartment needs to balance differentiation versus self-renewal. This review highlights current understanding of spermatogonial biology, the kinetics of amplification and the signals directing spermatogonial differentiation in mammals. The focus will be on relevant similarities and differences between rodents and non human and human primates.
Collapse
|
19
|
von Kopylow K, Schulze W, Salzbrunn A, Spiess AN. Isolation and gene expression analysis of single potential human spermatogonial stem cells. Mol Hum Reprod 2016; 22:229-39. [PMID: 26792870 DOI: 10.1093/molehr/gaw006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 01/15/2016] [Indexed: 12/18/2022] Open
Abstract
STUDY HYPOTHESIS It is possible to isolate pure populations of single potential human spermatogonial stem cells without somatic contamination for down-stream applications, for example cell culture and gene expression analysis. STUDY FINDING We isolated pure populations of single potential human spermatogonial stem cells (hSSC) without contaminating somatic cells and analyzed gene expression of these cells via single-cell real-time RT-PCR. WHAT IS KNOWN ALREADY The isolation of a pure hSSC fraction could enable clinical applications such as fertility preservation for prepubertal boys and in vitro-spermatogenesis. By utilizing largely nonspecific markers for the isolation of spermatogonia (SPG) and hSSC, previously published cell selection methods are not able to deliver pure target cell populations without contamination by testicular somatic cells. However, uniform cell populations free of somatic cells are necessary to guarantee defined growth conditions in cell culture experiments and to prevent unintended stem cell differentiation. Fibroblast growth factor receptor 3 (FGFR3) is a cell surface protein of human undifferentiated A-type SPG and a promising candidate marker for hSSC. It is exclusively expressed in small, non-proliferating subgroups of this spermatogonial cell type together with the pluripotency-associated protein and spermatogonial nuclear marker undifferentiated embryonic cell transcription factor 1 (UTF1). STUDY DESIGN, SAMPLES/MATERIALS, METHODS We specifically selected the FGFR3-positive spermatogonial subpopulation from two 30 mg biopsies per patient from a total of 37 patients with full spermatogenesis and three patients with meiotic arrest. We then employed cell selection with magnetic beads in combination with a fluorescence-activated cell sorter antibody directed against human FGFR3 to tag and visually identify human FGFR3-positive spermatogonia. Positively selected and bead-labeled cells were subsequently picked with a micromanipulator. Analysis of the isolated cells was carried out by single-cell real-time RT-PCR, real-time RT-PCR, immunocytochemistry and live/dead staining. MAIN RESULTS AND THE ROLE OF CHANCE Single-cell real-time RT-PCR and real-time RT-PCR of pooled cells indicate that bead-labeled single cells express FGFR3 with high heterogeneity at the mRNA level, while bead-unlabeled cells lack FGFR3 mRNA. Furthermore, isolated cells exhibit strong immunocytochemical staining for the stem cell factor UTF1 and are viable. LIMITATIONS, REASONS FOR CAUTION The cell population isolated in this study has to be tested for their potential stem cell characteristics via xenotransplantation. Due to the small amount of the isolated cells, propagation by cell culture will be essential. Other potential hSSC without FGFR3 surface expression will not be captured with the provided experimental design. WIDER IMPLICATIONS OF THE FINDINGS The technical approach as developed in this work could encourage the scientific community to test other established or novel hSSC markers on single SPG that present with potential stem cell-like features. STUDY FUNDING AND COMPETING INTERESTS The project was funded by the DFG Research Unit FOR1041 Germ cell potential (SCH 587/3-2) and DFG grants to K.v.K. (KO 4769/2-1) and A.-N.S. (SP 721/4-1). The authors declare no competing interests.
Collapse
Affiliation(s)
- K von Kopylow
- Department of Andrology, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - W Schulze
- Department of Andrology, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany MVZ Fertility Center Hamburg GmbH, amedes-group, 20095 Hamburg, Germany
| | - A Salzbrunn
- Department of Andrology, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - A-N Spiess
- Department of Andrology, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany
| |
Collapse
|
20
|
PTEN signaling is required for the maintenance of spermatogonial stem cells in mouse, by regulating the expressions of PLZF and UTF1. Cell Biosci 2015. [PMID: 26221533 PMCID: PMC4517568 DOI: 10.1186/s13578-015-0034-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Background Pten plays a crucial role in the stem cell maintenance in a few organs. Pten defect also causes the premature oocytes and ovary aging. We and other groups have found that the phosphatidylinositol-3-OH kinase (PI3K)-Akt signaling regulates the proliferation and differentiation of spermatogonial stem cells (SSCs). PTEN functions as a negative regulator of the PI3K pathway. Thus, we thought that the fate of SSCs might be controlled by Pten. Results We report that promyelocytic leukaemia zinc finger (PLZF) and undifferentiated embryonic cell transcription factor 1 (UTF1), both of which are germ cell-specific transcriptional factors, are regulated by Pten. Conditional deletion of Pten leads to reduction in PLZF expression but induction of UTF1, which is associated with SSCs depletion and infertility in males with age. Conclusion Our data demonstrate that Pten is required for the long-term maintenance of SSCs and precise regulation of spermatogenesis in mouse. The finding of a Pten-regulated GFRα1+/PLZF−/UTF1+ progenitor population provides a new insight into the precise mechanisms controlling SSC fate. Electronic supplementary material The online version of this article (doi:10.1186/s13578-015-0034-x) contains supplementary material, which is available to authorized users.
Collapse
|
21
|
Kim YJ, Lee G. Cellular stage specific functional analysis of REX1: In human embryonic stem cells. Proteomics 2015; 15:2147-9. [PMID: 26058466 DOI: 10.1002/pmic.201500208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 06/04/2015] [Indexed: 11/08/2022]
Abstract
As transcription and translation are dynamic and can vary among the cell types and conditions, proteomics may reveal the tissue-specific functions of a protein, more relevant to its genuine functions on cellular mechanisms. The new proteome analysis by Son et al. [Proteomics 2015, 15, 2220-2229] identified the functions of the pluripotency marker protein, REX1 in hESCs, and unraveling its regulatory network orchestrating pluripotency. Compared to the previous transcriptome analysis that showed mechanisms irrelevant to pluripotency, Son et al. employed a proteome analysis determined convincing and meaningful mechanisms of REX. In addition to demonstrating the biological importance of REX1, this research by Son et al. is also a compelling example of the conceptual significance of connecting proteomics with stem cell biology.
Collapse
Affiliation(s)
- Yong Jun Kim
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Gabsang Lee
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
22
|
Abstract
The transcription factor OCT4 is an established diagnostic marker for central nervous system (CNS) germinoma. However, no data are available to date concerning the expression of its downstream target undifferentiated embryonic cell transcription factor 1 (UTF1) in CNS germ cell tumours. We examined 21 CNS germinomas and two mixed CNS germ cell tumours for UTF1 and the post-transcriptional regulator LIN28 immunohistochemical expression. We compared the profile to established diagnostic germinoma markers and to the expression in six testicular and four metastatic germ cell tumours as well as 150 CNS tumours of various backgrounds. We found UTF1 expression in 23 of 23 and LIN28 in 20 of 23 CNS germ cell tumours. The established germinoma markers cKIT (23/23), OCT4 (21/23) and placental alkaline phosphatase (PLAP) (19/21) were also frequently expressed in our cohort. In terms of signal intensity and frequency, UTF1 showed similar results as cKIT but staining was superior to OCT4, PLAP and LIN28. OCT4 was absent in all CNS metastases and haemangioblastomas, while UTF1 was weakly observed in two metastases.With a sensitivity of 100% and a specificity of 97% in the detection of CNS germinomas, UTF1 serves as a new reliable alternative in the diagnostic setting of CNS germ cell tumours.
Collapse
|
23
|
Barr J, Gordon D, Schedl P, Deshpande G. Xenotransplantation exposes the etiology of azoospermia factor (AZF) induced male sterility. Bioessays 2014; 37:278-83. [PMID: 25524208 DOI: 10.1002/bies.201400134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Ramathal et al. have employed an elegant xenotransplantation technique to study the fate of human induced pluripotent stem cells (hiPSCs) from fertile males and from males carrying Y chromosome deletions of the azoospermia factor (AZF) region. When placed in a mouse testis niche, hiPSCs from fertile males differentiate into germ cell-like cells (GCLCs). Highlighting the crucial role of cell autonomous factors in male sterility, hiPSCs derived from azoospermic males prove to be less successful under similar circumstances. Their studies argue that the agametic "Sertoli cell only" phenotype of two of the AZF deletions likely arises from a defect in the maintenance of germline stem cells (GSCs) rather than from a defect in their specification. These observations underscore the importance of the dialogue between the somatic niche and its inhabitant stem cells, and open up interesting questions concerning the functioning of the somatic niche and how it communicates to the GSCs.
Collapse
Affiliation(s)
- Justinn Barr
- Department of Molecular Biology, Princeton University, Princeton, NJ
| | | | | | | |
Collapse
|
24
|
Xu C, Zhou Y, Chen W. Expression of undifferentiated embryonic cell transcription factor-1 (UTF1) in breast cancers and their matched normal tissues. Cancer Cell Int 2014; 14:116. [PMID: 25435811 PMCID: PMC4247222 DOI: 10.1186/s12935-014-0116-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Accepted: 10/24/2014] [Indexed: 01/08/2023] Open
Abstract
Objectives Undifferentiated embryonic cell transcription factor-1 (UTF1) plays a critical role in the developmental timing during embryonic development. However, there is little paper dealing with UTF1 expressed in adult tissues. In the present study, we evaluate the expression of UTF1 in breast cancer and its correlation with clinicopathological parameters. Methods Real-time polymerase chain reaction (real-time PCR) was applied to detect the expression of UTF1 mRNA in the 55 pairs of samples of breast cancer tissues and match normal tissues. △△CT method was used to evaluate the relative quantity of target mRNA expression. Results Among the 55 pairs of samples of breast cancer tissues and match normal tissues adjacent to the tumor, the UTF1 mRNA levels in normal tissues were significantly higher than those observed in breast cancer tissues (p < 0.001). UTF1 mRNA levels expression correlated with lymph node metastasis (p = 0.002) and tumor size (p < 0.001). Conclusions Expression of UTF1 in breast cancer tissues were confirmed in this study. Decreased expression of UTF1 mRNA in breast cancer tissues was maybe one of the factors impact on tumorigenes in breast cancer patients.
Collapse
Affiliation(s)
- Chaoyang Xu
- Department of Breast and Thyroid Surgery, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, Zhejiang 312000 China ; Department of Medical Research Center, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, Zhejiang China
| | - Ying Zhou
- Department of Breast and Thyroid Surgery, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, Zhejiang 312000 China
| | - Wei Chen
- Department of Breast and Thyroid Surgery, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, Zhejiang 312000 China
| |
Collapse
|
25
|
UTF1, a putative marker for spermatogonial stem cells in stallions. PLoS One 2014; 9:e108825. [PMID: 25272017 PMCID: PMC4182753 DOI: 10.1371/journal.pone.0108825] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 08/27/2014] [Indexed: 01/09/2023] Open
Abstract
Spermatogonial stem cells (SSCs) continuously undergo self-renewal and differentiation to sustain spermatogenesis throughout adulthood in males. In stallions, SSCs may be used for the production of progeny from geldings after cryopreservation and therapy for infertile and subfertile stallions. Undifferentiated cell transcription factor 1 (UTF1) is a putative marker for undifferentiated spermatogonia in humans and rats. The main purposes of this study are to determine the following: 1) changes in the expression pattern of UTF1 at various reproductive stages of stallions, 2) subpopulations of spermatogonia that express UTF1. Testicular samples were collected and categorized based on the age of the horses as follows: pre-pubertal (<1 yr), pubertal (1-1.5 yr), post-pubertal (2-3 yr), and adult (4-8 yr). Western blot analysis was utilized to determine the cross-activity of the UTF1 antibody to horse testes tissues. Immunohistochemistry was conducted to investigate the UTF1 expression pattern in germ cells at different reproductive stages. Whole mount staining was applied to determine the subpopulation of UTF1-positive spermatogonia. Immunohistological analysis showed that most germ cells in the pre-pubertal and pubertal stages were immunolabeled with UTF1, whereas only a few germ cells in the basal compartment of the seminiferous tubule cross-sections of post-pubertal and adult tissues were UTF1-positive. No staining was observed in the Sertoli or Leydig cells at any reproductive stages. Whole mount staining showed that A(s), A(pr), and chains of 4, 8, 16 A(al) spermatogonia were immunolabeled with UTF1 in the post-pubertal stallion tubule. Isolated single germ cells were also immunolabeled with UTF1. In conclusion, UTF1 is expressed in undifferentiated spermatogonia, and its antibody can be used as a putative marker for SSCs in stallions.
Collapse
|
26
|
Sachs C, Robinson BD, Andres Martin L, Webster T, Gilbert M, Lo HY, Rafii S, Ng CK, Seandel M. Evaluation of candidate spermatogonial markers ID4 and GPR125 in testes of adult human cadaveric organ donors. Andrology 2014; 2:607-14. [PMID: 24902969 DOI: 10.1111/j.2047-2927.2014.00226.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 03/13/2014] [Accepted: 04/09/2014] [Indexed: 11/29/2022]
Abstract
The optimal markers for human spermatogonial stem cells (SSCs) are not known. Among the genes recently linked to SSCs in mice and other animals are the basic helix-loop-helix transcription factor ID4 and the orphan G-protein-coupled receptor GPR125. While ID4 and GPR125 are considered putative markers for SSCs, they have not been evaluated for coexpression in human tissue. Furthermore, neither the size nor the character of the human spermatogonial populations that express ID4 and GPR125, respectively, are known. A major barrier to addressing these questions is the availability of healthy adult testis tissue from donors with no known reproductive health problems. To overcome this obstacle, we have employed healthy testicular tissue from a novel set of organ donors (n = 16; aged 17-68 years) who were undergoing post-mortem clinical organ procurement. Using immunolabelling, we found that ID4 and GPR125 are expressed on partially overlapping spermatogonial populations and are more broadly expressed in the normal adult human testis. In addition, we found that expression of ID4 remained stable during ageing. These findings suggest that ID4 and GPR125 could be efficacious for identifying previously unrecognized human spermatogonial subpopulations in conjunction with other putative human stem cell markers, both in younger and older donors.
Collapse
Affiliation(s)
- C Sachs
- Department of Surgery, Weill Cornell Medical College, New York, NY, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Valli H, Sukhwani M, Dovey SL, Peters KA, Donohue J, Castro CA, Chu T, Marshall GR, Orwig KE. Fluorescence- and magnetic-activated cell sorting strategies to isolate and enrich human spermatogonial stem cells. Fertil Steril 2014; 102:566-580.e7. [PMID: 24890267 DOI: 10.1016/j.fertnstert.2014.04.036] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 04/23/2014] [Accepted: 04/23/2014] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To determine the molecular characteristics of human spermatogonia and optimize methods to enrich spermatogonial stem cells (SSCs). DESIGN Laboratory study using human tissues. SETTING Research institute. PATIENT(S) Healthy adult human testicular tissue. INTERVENTION(S) Human testicular tissue was fixed or digested with enzymes to produce a cell suspension. Human testis cells were fractionated by fluorescence-activated cell sorting (FACS) and magnetic-activated cell sorting (MACS). MAIN OUTCOME MEASURE(S) Immunostaining for selected markers, human-to-nude mouse xenotransplantation assay. RESULT(S) Immunohistochemistry costaining revealed the relative expression patterns of SALL4, UTF1, ZBTB16, UCHL1, and ENO2 in human undifferentiated spermatogonia as well as the extent of overlap with the differentiation marker KIT. Whole mount analyses revealed that human undifferentiated spermatogonia (UCHL1+) were typically arranged in clones of one to four cells whereas differentiated spermatogonia (KIT+) were typically arranged in clones of eight or more cells. The ratio of undifferentiated-to-differentiated spermatogonia is greater in humans than in rodents. The SSC colonizing activity was enriched in the THY1dim and ITGA6+ fractions of human testes sorted by FACS. ITGA6 was effective for sorting human SSCs by MACS; THY1 and EPCAM were not. CONCLUSION(S) Human spermatogonial differentiation correlates with increased clone size and onset of KIT expression, similar to rodents. The undifferentiated-to-differentiated developmental dynamics in human spermatogonia is different than rodents. THY1, ITGA6, and EPCAM can be used to enrich human SSC colonizing activity by FACS, but only ITGA6 is amenable to high throughput sorting by MACS.
Collapse
Affiliation(s)
- Hanna Valli
- Department of Molecular Genetics and Developmental Biology Graduate Program, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Magee-Womens Research Institute, Pittsburgh, Pennsylvania
| | - Meena Sukhwani
- Magee-Womens Research Institute, Pittsburgh, Pennsylvania
| | - Serena L Dovey
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Magee-Womens Research Institute, Pittsburgh, Pennsylvania
| | - Karen A Peters
- Magee-Womens Research Institute, Pittsburgh, Pennsylvania
| | - Julia Donohue
- Magee-Womens Research Institute, Pittsburgh, Pennsylvania
| | - Carlos A Castro
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Magee-Womens Research Institute, Pittsburgh, Pennsylvania
| | - Tianjiao Chu
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Magee-Womens Research Institute, Pittsburgh, Pennsylvania
| | - Gary R Marshall
- Department of Natural Sciences, Chatham University, Pittsburgh, Pennsylvania
| | - Kyle E Orwig
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Department of Molecular Genetics and Developmental Biology Graduate Program, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Magee-Womens Research Institute, Pittsburgh, Pennsylvania.
| |
Collapse
|
28
|
Ramathal C, Durruthy-Durruthy J, Sukhwani M, Arakaki JE, Turek PJ, Orwig KE, Reijo Pera RA. Fate of iPSCs derived from azoospermic and fertile men following xenotransplantation to murine seminiferous tubules. Cell Rep 2014; 7:1284-97. [PMID: 24794432 DOI: 10.1016/j.celrep.2014.03.067] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 02/27/2014] [Accepted: 03/27/2014] [Indexed: 01/10/2023] Open
Abstract
Historically, spontaneous deletions and insertions have provided means to probe germline developmental genetics in Drosophila, mouse and other species. Here, induced pluripotent stem cell (iPSC) lines were derived from infertile men with deletions that encompass three Y chromosome azoospermia factor (AZF) regions and are associated with production of few or no sperm but normal somatic development. AZF-deleted iPSC lines were compromised in germ cell development in vitro. Undifferentiated iPSCs transplanted directly into murine seminiferous tubules differentiated extensively to germ-cell-like cells (GCLCs) that localized near the basement membrane, demonstrated morphology indistinguishable from fetal germ cells, and expressed germ-cell-specific proteins diagnostic of primordial germ cells. Alternatively, all iPSCs that exited tubules formed primitive tumors. iPSCs with AZF deletions produced significantly fewer GCLCs in vivo with distinct defects in gene expression. Findings indicate that xenotransplantation of human iPSCs directs germ cell differentiation in a manner dependent on donor genetic status.
Collapse
Affiliation(s)
- Cyril Ramathal
- Institute for Stem Cell Biology & Regenerative Medicine, Departments of Genetics and Obstetrics and Gynecology, Stanford University, Stanford, CA 94305, USA
| | - Jens Durruthy-Durruthy
- Institute for Stem Cell Biology & Regenerative Medicine, Departments of Genetics and Obstetrics and Gynecology, Stanford University, Stanford, CA 94305, USA
| | - Meena Sukhwani
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Magee-Womens Research Institute, Pittsburgh PA 15213
| | - Joy E Arakaki
- Institute for Stem Cell Biology & Regenerative Medicine, Departments of Genetics and Obstetrics and Gynecology, Stanford University, Stanford, CA 94305, USA
| | | | - Kyle E Orwig
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Magee-Womens Research Institute, Pittsburgh PA 15213
| | - Renee A Reijo Pera
- Institute for Stem Cell Biology & Regenerative Medicine, Departments of Genetics and Obstetrics and Gynecology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
29
|
Mouallif M, Albert A, Zeddou M, Ennaji MM, Delvenne P, Guenin S. Expression profile of undifferentiated cell transcription factor 1 in normal and cancerous human epithelia. Int J Exp Pathol 2014; 95:251-9. [PMID: 24738751 DOI: 10.1111/iep.12077] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 02/15/2014] [Indexed: 02/02/2023] Open
Abstract
Undifferentiated cell Transcription Factor 1 (UTF1) is a chromatin-bound protein involved in stem cell differentiation. It was initially reported to be restricted to stem cells or germinal tissues. However, recent work suggests that UTF1 is also expressed in somatic cells and that its expression may increase during carcinogenesis. To further clarify the expression profile of UTF1, we evaluated UTF1 expression levels immunohistochemically in eight normal human epithelia (from breast, prostate, endometrium, bladder, colon, oesophagus, lung and kidney) and their corresponding tumours as well as in several epithelial cell lines. We showed UTF1 staining in normal and tumour epithelial tissues, but with varying intensities according to the tissue location. In vitro analyses also revealed that UTF1 is expressed in somatic epithelial cell lines even in the absence of Oct4A and Sox2, its two main known regulators. The comparison of UTF1 levels in normal and tumoral tissues revealed significant overexpression in endometrial and prostatic adenocarcinomas, whereas lower intensity of the staining was observed in renal and colic tumours, suggesting a potential tissue-specific function of UTF1. Altogether, these results highlight a potential dual role for UTF1, acting either as an oncogene or as a tumour suppressor depending on the tissue. These findings also question its role as a specific marker for stem cells.
Collapse
Affiliation(s)
- Mustapha Mouallif
- Laboratory of Experimental Pathology, GIGA-Cancer, University of Liège, Liège, Belgium; Laboratory of Virology and Hygiene & Microbiology, University Hassan II-Mohammedia, Mohammedia, Morocco
| | | | | | | | | | | |
Collapse
|
30
|
Spermatocytic seminoma in a 92-year-old man: report of a case in which SALL4, a potential novel marker for testicular germ cell tumors, was useful for the diagnosis. Int Cancer Conf J 2014. [DOI: 10.1007/s13691-013-0119-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
31
|
Durruthy Durruthy J, Ramathal C, Sukhwani M, Fang F, Cui J, Orwig KE, Reijo Pera RA. Fate of induced pluripotent stem cells following transplantation to murine seminiferous tubules. Hum Mol Genet 2014; 23:3071-84. [PMID: 24449759 PMCID: PMC4030765 DOI: 10.1093/hmg/ddu012] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Studies of human germ cell development are limited in large part by inaccessibility of germ cells during development. Moreover, although several studies have reported differentiation of mouse and human germ cells from pluripotent stem cells (PSCs) in vitro, differentiation of human germ cells from PSCs in vivo has not been reported. Here, we tested whether mRNA reprogramming in combination with xeno-transplantation may provide a viable system to probe the genetics of human germ cell development via use of induced pluripotent stem cells (iPSCs). For this purpose, we derived integration-free iPSCs via mRNA-based reprogramming with OCT3/4, SOX2, KLF4 and cMYC alone (OSKM) or in combination with the germ cell-specific mRNA, VASA (OSKMV). All iPSC lines met classic criteria of pluripotency. Moreover, global gene expression profiling did not distinguish large differences between undifferentiated OSKM and OSKMV iPSCs; however, some differences were observed in expression of pluripotency factors and germ cell-specific genes, and in epigenetic profiles and in vitro differentiation studies. In contrast, transplantation of undifferentiated iPSCs directly into the seminiferous tubules of germ cell-depleted immunodeficient mice revealed divergent fates of iPSCs produced with different factors. Transplantation resulted in morphologically and immunohistochemically recognizable germ cells in vivo, particularly in the case of OSKMV cells. Significantly, OSKMV cells also did not form tumors while OSKM cells that remained outside the seminiferous tubule proliferated extensively and formed tumors. Results indicate that mRNA reprogramming in combination with transplantation may contribute to tools for genetic analysis of human germ cell development.
Collapse
Affiliation(s)
- Jens Durruthy Durruthy
- Department of Genetics and Department of Obstetrics and Gynecology, Institute for Stem Cell Biology and Regenerative Medicine, Center for Reproductive and Stem Cell Biology, Stanford University, Stanford, CA 94305, USA and
| | - Cyril Ramathal
- Department of Genetics and Department of Obstetrics and Gynecology, Institute for Stem Cell Biology and Regenerative Medicine, Center for Reproductive and Stem Cell Biology, Stanford University, Stanford, CA 94305, USA and
| | - Meena Sukhwani
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh School of Medicine, Magee-Womens Research Institute, Pittsburgh, PA 15213, USA
| | - Fang Fang
- Department of Genetics and Department of Obstetrics and Gynecology, Institute for Stem Cell Biology and Regenerative Medicine, Center for Reproductive and Stem Cell Biology, Stanford University, Stanford, CA 94305, USA and
| | - Jun Cui
- Department of Genetics and Department of Obstetrics and Gynecology, Institute for Stem Cell Biology and Regenerative Medicine, Center for Reproductive and Stem Cell Biology, Stanford University, Stanford, CA 94305, USA and
| | - Kyle E Orwig
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh School of Medicine, Magee-Womens Research Institute, Pittsburgh, PA 15213, USA
| | - Renee A Reijo Pera
- Department of Genetics and Department of Obstetrics and Gynecology, Institute for Stem Cell Biology and Regenerative Medicine, Center for Reproductive and Stem Cell Biology, Stanford University, Stanford, CA 94305, USA and
| |
Collapse
|
32
|
Guo Y, Hai Y, Gong Y, Li Z, He Z. Characterization, Isolation, and Culture of Mouse and Human Spermatogonial Stem Cells. J Cell Physiol 2013; 229:407-13. [PMID: 24114612 DOI: 10.1002/jcp.24471] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Accepted: 09/11/2013] [Indexed: 12/14/2022]
Affiliation(s)
- Ying Guo
- Renji Hospital; Clinic Stem Cell Research Center; Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Yanan Hai
- Renji Hospital; Clinic Stem Cell Research Center; Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Yuehua Gong
- Renji Hospital; Clinic Stem Cell Research Center; Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Zheng Li
- Department of Urology; Shanghai Human Sperm Bank; Renji Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Zuping He
- Renji Hospital; Clinic Stem Cell Research Center; Shanghai Jiao Tong University School of Medicine; Shanghai China
- Shanghai Key Laboratory of Reproductive Medicine; Shanghai China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics; Shanghai China
| |
Collapse
|
33
|
Lee KC, Wong WK, Feng B. Decoding the Pluripotency Network: The Emergence of New Transcription Factors. Biomedicines 2013; 1:49-78. [PMID: 28548056 PMCID: PMC5423462 DOI: 10.3390/biomedicines1010049] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 12/10/2013] [Accepted: 12/11/2013] [Indexed: 12/25/2022] Open
Abstract
Since the successful isolation of mouse and human embryonic stem cells (ESCs) in the past decades, massive investigations have been conducted to dissect the pluripotency network that governs the ability of these cells to differentiate into all cell types. Beside the core Oct4-Sox2-Nanog circuitry, accumulating regulators, including transcription factors, epigenetic modifiers, microRNA and signaling molecules have also been found to play important roles in preserving pluripotency. Among the various regulations that orchestrate the cellular pluripotency program, transcriptional regulation is situated in the central position and appears to be dominant over other regulatory controls. In this review, we would like to summarize the recent advancements in the accumulating findings of new transcription factors that play a critical role in controlling both pluripotency network and ESC identity.
Collapse
Affiliation(s)
- Kai Chuen Lee
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, the Chinese University of Hong Kong, Room 105A, 1/F, Lo Kwee-Seong Integrated Biomedical Sciences Building, Area 39, Shatin, N.T., Hong Kong, China.
| | - Wing Ki Wong
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, the Chinese University of Hong Kong, Room 105A, 1/F, Lo Kwee-Seong Integrated Biomedical Sciences Building, Area 39, Shatin, N.T., Hong Kong, China.
| | - Bo Feng
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, the Chinese University of Hong Kong, Room 105A, 1/F, Lo Kwee-Seong Integrated Biomedical Sciences Building, Area 39, Shatin, N.T., Hong Kong, China.
- SBS Core Laboratory, Shenzhen Research Institute, the Chinese University of Hong Kong, 4/F CUHK Shenzhen Research Institute Building, No.10, 2nd Yuexing Road, Nanshan District, Shenzhen 518057, China.
| |
Collapse
|
34
|
Ren Y, Wu H, Wang X, Xue N, Liang H, Liu D. Analysis of the stem cell characteristics of adult stem cells from Arbas white Cashmere goat. Biochem Biophys Res Commun 2013; 448:121-8. [PMID: 24333446 DOI: 10.1016/j.bbrc.2013.12.044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 12/06/2013] [Indexed: 10/25/2022]
Abstract
Studies have shown that multipotent adult stem cells possess differentiation characteristics similar to embryonic stem cells and pluripotent stem cells. We aimed to explore these similarities further by examining the expression of the pluripotency and stemness biomarkers, AKP, IL-6, Nanog, Oct-4, Rex-1, Sox-2 and TERT, as well as the triploblastic biomarkers, Sox-1, Myod1 and Gata-6 in adipose-derived stem cells (ADSCs), bone marrow stem cells (BMSCs) and muscle-derived satellite cells (MDSCs). These were isolated from adult Arbas white Cashmere goats and cultured in vitro. Immunocytochemistry, reverse transcription quantitative PCR and Western blotting were used to analyze the protein and mRNA expression of the markers. To investigate the ability of ADSCs, BMSCs and MDSCs to differentiate and cause tumors in vivo they were injected into immunodeficient mice (NOD-SCID). All results were compared to those for mouse embryonic stem cells (mESCs). Immunocytochemistry showed that AKP, IL-6, Nanog, Oct-4, Rex-1 and TERT were expressed in ADSCs, BMSCs and MDSCs, whereas Sox-2 was not. In ADSCs, the expression of IL-6 mRNA was relatively high, followed by Nanog and Oct-4, while Rex-1 and TERT expression were the lowest (P<0.01). In BMSCs, the expression of Rex-1 was relatively high, followed by IL-6, while Oct-4, Nanog and TERT were comparatively low (P<0.01). In MDSCs, the expression of IL-6, Nanog and Oct-4 were relatively high, while TERT was comparatively low (P<0.01). However, no expression of Sox-2 mRNA was detected in any of the three cell lines. The expression of Sox-1, Myod1 and Gata-6 was observed to different degrees in all three cell lines (P<0.01); the expression pattern in MDSCs was different from that in ADSCs and BMSCs. Western blotting indicated that no expression of Sox-2 and Rex-1 protein occurred in ADSCs, BMSCs and MDSCs, while the other five proteins were all expressed to different degrees (P<0.01); the expression pattern was consistent with the mRNA results. In contrast to the mESCs, no teratoma tissue or triploblastic differentiation appendages were formed in the immunodeficient mice after injection of ADSCs, BMSCs and MDSCs. Our results suggest that the three adult goat stem cell types are non-oncogenic and have stemness characteristics similar to embryonic stem cells. Of these, MDSCs were found to exhibit the most ESC-like properties and would make the best candidates for clinical application.
Collapse
Affiliation(s)
- Yu Ren
- Key Laboratory of Mammalian Reproductive Biology and Biotechnology Ministry of Education, Inner Mongolia University, Inner Mongolia, Hohhot 010021, China
| | - Haiqing Wu
- Key Laboratory of Mammalian Reproductive Biology and Biotechnology Ministry of Education, Inner Mongolia University, Inner Mongolia, Hohhot 010021, China
| | - Xiao Wang
- Key Laboratory of Mammalian Reproductive Biology and Biotechnology Ministry of Education, Inner Mongolia University, Inner Mongolia, Hohhot 010021, China
| | - Na Xue
- Key Laboratory of Mammalian Reproductive Biology and Biotechnology Ministry of Education, Inner Mongolia University, Inner Mongolia, Hohhot 010021, China
| | - Hao Liang
- Key Laboratory of Mammalian Reproductive Biology and Biotechnology Ministry of Education, Inner Mongolia University, Inner Mongolia, Hohhot 010021, China
| | - Dongjun Liu
- Key Laboratory of Mammalian Reproductive Biology and Biotechnology Ministry of Education, Inner Mongolia University, Inner Mongolia, Hohhot 010021, China.
| |
Collapse
|
35
|
Kossack N, Terwort N, Wistuba J, Ehmcke J, Schlatt S, Schöler H, Kliesch S, Gromoll J. A combined approach facilitates the reliable detection of human spermatogonia in vitro. Hum Reprod 2013; 28:3012-25. [PMID: 24001715 DOI: 10.1093/humrep/det336] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
STUDY QUESTION Does a combined approach allow for the unequivocal detection of human germ cells and particularly of spermatogonia in vitro? SUMMARY ANSWER Based on our findings, we conclude that an approach comprising: (i) the detailed characterization of patients and tissue samples prior to the selection of biopsies, (ii) the use of unambiguous markers for the characterization of cultures and (iii) the use of biopsies lacking the germ cell population as a negative control is the prerequisite for the establishment of human germ cell cultures. WHAT IS KNOWN ALREADY The use of non-specific marker genes and the failure to assess the presence of testicular somatic cell types in germ cell cultures may have led to a misinterpretation of results and the erroneous description of germ cells in previous studies. STUDY DESIGN, SIZE, DURATION Testicular biopsies were selected from a pool of 264 consecutively obtained biopsies. Based on the histological diagnosis, biopsies with distinct histological phenotypes were selected (n = 35) to analyze the expression of germ cell and somatic cell markers. For germ cell culture experiments, gonadotrophin levels and clinical data were used as selection criteria resulting in the following two groups: (i) biopsies with qualitatively intact spermatogenesis (n = 4) and (ii) biopsies from Klinefelter syndrome Klinefelter patients lacking the germ cell population (n = 3). PARTICIPANTS/MATERIALS, SETTING, METHODS Quantitative real-time PCR analyses were performed to evaluate the specificity of 18 selected germ cell and 3 somatic marker genes. Cell specificity of individual markers was subsequently validated using immunohistochemistry. Finally, testicular cell cultures were established and were analyzed after 10 days for the expression of germ cell- (UTF1, FGFR3, MAGE A4, DDX4) and somatic cell-specific markers (SMA, VIM, LHCGR) at the RNA and the protein levels. MAIN RESULTS AND THE ROLE OF CHANCE Interestingly, only 9 out of 18 marker genes reflected the presence of germ cells and cell specificity could be validated using immunohistochemistry. Furthermore, VIM, SMA and LHCGR were found to reflect the presence of testicular somatic cells at the RNA and the protein levels. Using this validated marker panel and biopsies lacking the germ cell population (n = 3) as a negative control, we demonstrated that germ cell cultures containing spermatogonia can be established from biopsies with normal spermatogenesis (n = 4) and that these cultures can be maintained for the period of 10 days. However, marker profiling has to be performed at regular time points as the composition of testicular cell types may continuously change under longer term culture conditions. LIMITATIONS, REASONS FOR CAUTION There are significant differences regarding the spermatogonial stem cell (SSC) system and spermatogenesis between rodents and primates. It is therefore possible that marker genes that do not reflect the presence of spermatogonia in the human are specific for spermatogonia in other animal models. WIDER IMPLICATIONS OF THE FINDINGS While some studies have reported that human SSCs can be maintained in vitro and show characteristics of pluripotency, the germ cell origin and the differentiation potential of these cells were subsequently called into question. This study provides critical insights into possible sources for the misinterpretation of results regarding the presence of germ cells in human testicular cell cultures and our findings can therefore help to avoid conflicting reports in the future. STUDY FUNDING/COMPETING INTEREST(S) This project was supported by the Stem Cell Network North Rhine-Westphalia and the Innovative Medical Research of the University of Münster Medical School (Grant KO111014). In addition, it was funded by the DFG-Research Unit FOR 1041 Germ Cell Potential (GR 1547/11-1 and SCHL 394/11-2), the BMBF (01GN0809/10) and the IZKF (CRA 03/09). The authors declare that there is no conflict of interest. TRIAL REGISTRATION NUMBER Not applicable.
Collapse
Affiliation(s)
- N Kossack
- Institute for Reproductive and Regenerative Biology, Centre of Reproductive Medicine and Andrology, University Hospital Münster, Albert-Schweitzer-Campus 1 (D11), Münster 48149, Germany
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Expression analysis of the pluripotency marker UTF-1 for determining the applicability of testis-sparing surgery for prepubertal testis tumors. JOURNAL OF PEDIATRIC SURGERY CASE REPORTS 2013. [DOI: 10.1016/j.epsc.2013.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
37
|
Taniguchi M, Nishihara M, Sasayama T, Takahashi Y, Kohmura E. A rapidly expanding immature teratoma originating from a neurohypophyseal germinoma. Neuropathol Appl Neurobiol 2013; 39:445-8. [DOI: 10.1111/nan.12000] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Accepted: 10/22/2012] [Indexed: 11/30/2022]
Affiliation(s)
- M. Taniguchi
- Department of Neurosurgery; Kobe University Graduate School of Medicine; Chuo-ku; Japan
| | - M. Nishihara
- Department of Neurosurgery; Nishi-Kobe Medical Center; Nishi-ku; Kobe; Hyogo; Japan
| | - T. Sasayama
- Department of Neurosurgery; Kobe University Graduate School of Medicine; Chuo-ku; Japan
| | - Y. Takahashi
- Division of Diabetes, Metabolism and Endocrinology; Department of Internal Medicine; Kobe University Graduate School of Medicine; Chuo-ku; Japan
| | - E. Kohmura
- Department of Neurosurgery; Kobe University Graduate School of Medicine; Chuo-ku; Japan
| |
Collapse
|
38
|
Defining the genomic signature of totipotency and pluripotency during early human development. PLoS One 2013; 8:e62135. [PMID: 23614026 PMCID: PMC3629124 DOI: 10.1371/journal.pone.0062135] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 03/19/2013] [Indexed: 11/25/2022] Open
Abstract
The genetic mechanisms governing human pre-implantation embryo development and the in vitro counterparts, human embryonic stem cells (hESCs), still remain incomplete. Previous global genome studies demonstrated that totipotent blastomeres from day-3 human embryos and pluripotent inner cell masses (ICMs) from blastocysts, display unique and differing transcriptomes. Nevertheless, comparative gene expression analysis has revealed that no significant differences exist between hESCs derived from blastomeres versus those obtained from ICMs, suggesting that pluripotent hESCs involve a new developmental progression. To understand early human stages evolution, we developed an undifferentiation network signature (UNS) and applied it to a differential gene expression profile between single blastomeres from day-3 embryos, ICMs and hESCs. This allowed us to establish a unique signature composed of highly interconnected genes characteristic of totipotency (61 genes), in vivo pluripotency (20 genes), and in vitro pluripotency (107 genes), and which are also proprietary according to functional analysis. This systems biology approach has led to an improved understanding of the molecular and signaling processes governing human pre-implantation embryo development, as well as enabling us to comprehend how hESCs might adapt to in vitro culture conditions.
Collapse
|
39
|
|
40
|
Wu XL, Zheng PS. Undifferentiated embryonic cell transcription factor-1 (UTF1) inhibits the growth of cervical cancer cells by transactivating p27Kip1. Carcinogenesis 2013; 34:1660-8. [PMID: 23536577 DOI: 10.1093/carcin/bgt102] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Undifferentiated embryonic cell transcription factor-1 (UTF1) is an important transcription factor during development, which plays critical roles in cell fate determination. However, its expression and function in somatic tissues remain unclear. Here, we investigated the expression pattern of the UTF1 in the human normal and cancerous lesions of cervix and found that UTF1 was downregulated in cervical carcinogenesis, which was related to the hypermethylation of UTF1 promoter. Exogenous expression of UTF1 resulted in the significant inhibition of cell proliferation in vitro and tumorigenesis in vivo through attenuating cell cycle arrest via increasing the level of p27 (Kip1) . Luciferase reporter assay indicated that the region containing an intact activating transcription factor site between nucleotides -517 and -388 of the p27 (Kip1) promoter was indispensable for its activation by UTF1. Chromatin immunoprecipitation analysis confirmed the physical interaction between UTF1 and the p27 (Kip1) promoter. Taken together, our findings reveal that UTF1 attenuates cell proliferation and is inactivated in cervical carcinogenesis through epigenetic modification, which strongly supports that UTF1 is a potential tumor suppressor.
Collapse
Affiliation(s)
- Xiao-Ling Wu
- Department of Reproductive Medicine, First Affiliated Hospital, Xi'an Jiaotong University of Medical College, Xi'an, Shaanxi 710061, China
| | | |
Collapse
|
41
|
Recovery of fertility in azoospermia rats after injection of adipose-tissue-derived mesenchymal stem cells: the sperm generation. BIOMED RESEARCH INTERNATIONAL 2013; 2013:529589. [PMID: 23509736 PMCID: PMC3590610 DOI: 10.1155/2013/529589] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 12/06/2012] [Accepted: 12/09/2012] [Indexed: 01/01/2023]
Abstract
The recent reports on the treatment of azoospermia patients, in which spermatozoa could not be traced in their testes, are focused more on the potential use of adult stem cells, like mesenchymal stem cells (MSCs). The aim of this study was to demonstrate the potential use of MSCs derived from adipose tissue in the treatment of azoospermia using rat disease models. After busulfan application, the rats (n = 20) were injected with the GFP+ MSCs into left rete testes. After 12 weeks, the testes with cell injection (right testes) were compared to control (left testes) after dimensional and immunohistochemical analyses. Testes treated with MSCs appeared morphologically normal, but they were atrophic in rats without stem cell treatment, in which the seminiferous tubules were empty. Spermatogenesis was detected, not in every but in some tubules of cell-treated testes. GFP+/VASA+ and GFP+/SCP1+ cells in testes indicated the transdifferentiation of MSCs into spermatogenetic cells in the appropriate microenvironment. Rats with cell treatment were mated to show the full recovery of spermatogenesis, and continuous generations were obtained. The expression of GFP was detected in the mesenchymal stem cells derived from adipose tissue and bone marrow and also in the sperms of offspring. In conclusion, MSCs might be studied for the same purpose in humans in future.
Collapse
|
42
|
|
43
|
Climent M, Alonso-Martin S, Pérez-Palacios R, Guallar D, Benito AA, Larraga A, Fernández-Juan M, Sanz M, de Diego A, Seisdedos MT, Muniesa P, Schoorlemmer J. Functional analysis of Rex1 during preimplantation development. Stem Cells Dev 2012; 22:459-72. [PMID: 22897771 DOI: 10.1089/scd.2012.0211] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Rex1/Zfp42 is a nuclear protein that is highly conserved in mammals, and widely used as an embryonic stem (ES) cell marker. Although Rex1 expression is associated with enhanced pluripotency, loss-of-function models recently described do not exhibit major phenotypes, and both preimplantation development and ES cell derivation appear normal in the absence of Rex1. To better understand the functional role of Rex1, we examined the expression and localization of Rex1 during preimplantation development. Our studies indicated that REX1 is expressed at all stages during mouse preimplantation development, with a mixed pattern of nuclear, perinuclear, and cytoplasmic localization. Chromatin association seemed to be altered in 8-cell embryos, and in the blastocyst, we found REX1 localized almost exclusively in the nucleus. A functional role for Rex1 in vivo was assessed by gain- and loss-of-function approaches. Embryos with attenuated levels of Rex1 after injection of zygotes with siRNAs did not exhibit defects in preimplantation development in vitro. In contrast, overexpression of Rex1 interfered with cleavage divisions and with proper blastocyst development, although we failed to detect alterations in the expression of lineage and pluripotency markers. Rex1 gain- and loss-of-function did alter the expression levels of Zscan4, an important regulator of preimplantation development and pluripotency. Our results suggest that Rex1 plays a role during preimplantation development. They are compatible with a role for Rex1 during acquisition of pluripotency in the blastocyst.
Collapse
Affiliation(s)
- María Climent
- Departamento de Anatomía, Embriología y Genética Animal, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Chalmel F, Lardenois A, Evrard B, Mathieu R, Feig C, Demougin P, Gattiker A, Schulze W, Jégou B, Kirchhoff C, Primig M. Global human tissue profiling and protein network analysis reveals distinct levels of transcriptional germline-specificity and identifies target genes for male infertility. Hum Reprod 2012; 27:3233-48. [PMID: 22926843 DOI: 10.1093/humrep/des301] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Mammalian spermatogenesis is a process that involves a complex expression program in both somatic and germ cells present in the male gonad. A number of studies have attempted to define the transcriptome of male meiosis and gametogenesis in rodents and primates. Few human transcripts, however, have been associated with testicular somatic cells and germ cells at different post-natal developmental stages and little is known about their level of germline-specificity compared with non-testicular tissues. METHODS We quantified human transcripts using GeneChips and a total of 47 biopsies from prepubertal children diagnosed with undescended testis, infertile adult patients whose spermatogenesis is arrested at consecutive stages and fertile control individuals. These results were integrated with data from enriched normal germ cells, non-testicular expression data, phenotype information, predicted regulatory DNA-binding motifs and interactome data. RESULTS Among 3580 genes for which we found differential transcript concentrations in somatic and germ cells present in human testis, 933 were undetectable in 45 embryonic and adult non-testicular tissues, including many that were corroborated at protein level by published gene annotation data and histological high-throughput protein immunodetection assays. Using motif enrichment analyses, we identified regulatory promoter elements likely involved in germline development. Finally, we constructed a regulatory disease network for human fertility by integrating expression signals, interactome information, phenotypes and functional annotation data. CONCLUSIONS Our results provide broad insight into the post-natal human testicular transcriptome at the level of cell populations and in a global somatic tissular context. Furthermore, they yield clues for genetic causes of male infertility and will facilitate the identification of novel cancer/testis genes as targets for cancer immunotherapies.
Collapse
Affiliation(s)
- Frédéric Chalmel
- Inserm Unit 1085-IRSET, Université de Rennes 1, EHESP School of Public Health, F-35042 Rennes, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Guenin S, Mouallif M, Deplus R, Lampe X, Krusy N, Calonne E, Delbecque K, Kridelka F, Fuks F, Ennaji MM, Delvenne P. Aberrant promoter methylation and expression of UTF1 during cervical carcinogenesis. PLoS One 2012; 7:e42704. [PMID: 22880087 PMCID: PMC3411846 DOI: 10.1371/journal.pone.0042704] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 07/10/2012] [Indexed: 01/09/2023] Open
Abstract
Promoter methylation profiles are proposed as potential prognosis and/or diagnosis biomarkers in cervical cancer. Up to now, little is known about the promoter methylation profile and expression pattern of stem cell (SC) markers during tumor development. In this study, we were interested to identify SC genes methylation profiles during cervical carcinogenesis. A genome-wide promoter methylation screening revealed a strong hypermethylation of Undifferentiated cell Transcription Factor 1 (UTF1) promoter in cervical cancer in comparison with normal ectocervix. By direct bisulfite pyrosequencing of DNA isolated from liquid-based cytological samples, we showed that UTF1 promoter methylation increases with lesion severity, the highest level of methylation being found in carcinoma. This hypermethylation was associated with increased UTF1 mRNA and protein expression. By using quantitative RT-PCR and Western Blot, we showed that both UTF1 mRNA and protein are present in epithelial cancer cell lines, even in the absence of its two main described regulators Oct4A and Sox2. Moreover, by immunofluorescence, we confirmed the nuclear localisation of UTF1 in cell lines. Surprisingly, direct bisulfite pyrosequencing revealed that the inhibition of DNA methyltransferase by 5-aza-2'-deoxycytidine was associated with decreased UTF1 gene methylation and expression in two cervical cancer cell lines of the four tested. These findings strongly suggest that UTF1 promoter methylation profile might be a useful biomarker for cervical cancer diagnosis and raise the questions of its role during epithelial carcinogenesis and of the mechanisms regulating its expression.
Collapse
MESH Headings
- Azacitidine/pharmacology
- Carcinoma, Ovarian Epithelial
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Cell Survival/drug effects
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/pathology
- Cervix Uteri/drug effects
- Cervix Uteri/metabolism
- Cervix Uteri/pathology
- Cluster Analysis
- Cytological Techniques
- DNA Methylation/drug effects
- DNA Methylation/genetics
- DNA, Neoplasm/isolation & purification
- Female
- Gene Expression Regulation, Neoplastic/drug effects
- Genes, Neoplasm/genetics
- Humans
- Neoplasms, Glandular and Epithelial/genetics
- Neoplasms, Glandular and Epithelial/pathology
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Octamer Transcription Factor-3/genetics
- Octamer Transcription Factor-3/metabolism
- Ovarian Neoplasms/genetics
- Ovarian Neoplasms/pathology
- Promoter Regions, Genetic
- SOXB1 Transcription Factors/genetics
- SOXB1 Transcription Factors/metabolism
- Sequence Analysis, DNA
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Uterine Cervical Neoplasms/genetics
- Uterine Cervical Neoplasms/pathology
Collapse
Affiliation(s)
- Samuel Guenin
- Laboratory of Experimental Pathology, Groupe Interdisciplinaire de Génoprotéomique Appliquée-Cancer, University of Liège, Liège, Belgium.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Guallar D, Pérez-Palacios R, Climent M, Martínez-Abadía I, Larraga A, Fernández-Juan M, Vallejo C, Muniesa P, Schoorlemmer J. Expression of endogenous retroviruses is negatively regulated by the pluripotency marker Rex1/Zfp42. Nucleic Acids Res 2012; 40:8993-9007. [PMID: 22844087 PMCID: PMC3467079 DOI: 10.1093/nar/gks686] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Rex1/Zfp42 is a Yy1-related zinc-finger protein whose expression is frequently used to identify pluripotent stem cells. We show that depletion of Rex1 levels notably affected self-renewal of mouse embryonic stem (ES) cells in clonal assays, in the absence of evident differences in expression of marker genes for pluripotency or differentiation. By contrast, marked differences in expression of several endogenous retroviral elements (ERVs) were evident upon Rex1 depletion. We demonstrate association of REX1 to specific elements in chromatin-immunoprecipitation assays, most strongly to muERV-L and to a lower extent to IAP and musD elements. Rex1 regulates muERV-L expression in vivo, as we show altered levels upon transient gain-and-loss of Rex1 function in pre-implantation embryos. We also find REX1 can associate with the lysine-demethylase LSD1/KDM1A, suggesting they act in concert. Similar to REX1 binding to retrotransposable elements (REs) in ES cells, we also detected binding of the REX1 related proteins YY1 and YY2 to REs, although the binding preferences of the two proteins were slightly different. Altogether, we show that Rex1 regulates ERV expression in mouse ES cells and during pre-implantation development and suggest that Rex1 and its relatives have evolved as regulators of endogenous retroviral transcription.
Collapse
Affiliation(s)
- D Guallar
- Regenerative Medicine Programme, IIS Aragón, Instituto Aragonés de Ciencias de Salud, Zaragoza, Avda. Gómez Laguna, 50009 Zaragoza, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Kopylow K, Staege H, Schulze W, Will H, Kirchhoff C. Fibroblast growth factor receptor 3 is highly expressed in rarely dividing human type A spermatogonia. Histochem Cell Biol 2012; 138:759-72. [DOI: 10.1007/s00418-012-0991-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2012] [Indexed: 01/09/2023]
|
48
|
Zhao W, Ji X, Zhang F, Li L, Ma L. Embryonic stem cell markers. Molecules 2012; 17:6196-236. [PMID: 22634835 PMCID: PMC6268870 DOI: 10.3390/molecules17066196] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 03/31/2012] [Accepted: 05/04/2012] [Indexed: 02/07/2023] Open
Abstract
Embryonic stem cell (ESC) markers are molecules specifically expressed in ES cells. Understanding of the functions of these markers is critical for characterization and elucidation for the mechanism of ESC pluripotent maintenance and self-renewal, therefore helping to accelerate the clinical application of ES cells. Unfortunately, different cell types can share single or sometimes multiple markers; thus the main obstacle in the clinical application of ESC is to purify ES cells from other types of cells, especially tumor cells. Currently, the marker-based flow cytometry (FCM) technique and magnetic cell sorting (MACS) are the most effective cell isolating methods, and a detailed maker list will help to initially identify, as well as isolate ESCs using these methods. In the current review, we discuss a wide range of cell surface and generic molecular markers that are indicative of the undifferentiated ESCs. Other types of molecules, such as lectins and peptides, which bind to ESC via affinity and specificity, are also summarized. In addition, we review several markers that overlap with tumor stem cells (TSCs), which suggest that uncertainty still exists regarding the benefits of using these markers alone or in various combinations when identifying and isolating cells.
Collapse
Affiliation(s)
- Wenxiu Zhao
- Life Science Division, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China; (W.Z.); (X.J.); (F.Z.); (L.L.)
| | - Xiang Ji
- Life Science Division, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China; (W.Z.); (X.J.); (F.Z.); (L.L.)
- Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084, China
| | - Fangfang Zhang
- Life Science Division, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China; (W.Z.); (X.J.); (F.Z.); (L.L.)
- Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084, China
| | - Liang Li
- Life Science Division, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China; (W.Z.); (X.J.); (F.Z.); (L.L.)
- Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084, China
| | - Lan Ma
- Life Science Division, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China; (W.Z.); (X.J.); (F.Z.); (L.L.)
| |
Collapse
|
49
|
Attenuation of spermatogonial stem cell activity in cryptorchid testes. J Urol 2012; 187:1047-52. [PMID: 22266011 DOI: 10.1016/j.juro.2011.10.170] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Indexed: 01/15/2023]
Abstract
PURPOSE To elucidate the mechanism of infertility caused by cryptorchidism we focused on early stage spermatogenesis and spermatogonial stem cell activity in undifferentiated spermatogonia in cryptorchid testes. MATERIALS AND METHODS Histological findings and expression patterns of the stem cell marker undifferentiated embryonic cell transcription factor 1 were examined in a unilateral cryptorchid rat model. We removed unilateral descended testis and contralateral descended testis from cryptorchid and normal rats (control), respectively, 18 days postcoitum to 144 days postpartum. RESULTS In descended testes gonocyte differentiation into early A spermatogonia occurred at 9 days postpartum. However, this transformation was altered in undescended testes. Furthermore, the undifferentiated embryonic cell transcription factor 1 negative early A spermatogonia-to-positive early A spermatogonia ratio was significantly higher in the undescended testis group (mean ± SD 0.69 ± 0.04) than in the control (0.46 ± 0.10, p = 0.037) and descended testis (0.44 ± 0.05, p = 0.022) groups, indicating decreased early A spermatogonia with spermatogonial stem cell activity in cryptorchid testes. CONCLUSIONS In cryptorchid testes the differentiation from gonocytes into early A spermatogonia and the stem cell activity of early A spermatogonia were altered during the early stage of spermatogenesis, suggesting that the loss of spermatogonial stem cell activity in cryptorchid rats resulted in altered spermatogenesis, thus interfering with fertility.
Collapse
|
50
|
Waheeb R, Hofmann MC. Human spermatogonial stem cells: a possible origin for spermatocytic seminoma. ACTA ACUST UNITED AC 2012; 34:e296-305; discussion e305. [PMID: 21790653 DOI: 10.1111/j.1365-2605.2011.01199.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In mammals, spermatogenesis is maintained throughout life by a small subpopulation of type A spermatogonia called spermatogonial stem cells (SSCs). In rodents, SSCs, or Asingle spermatogonia, form the self-renewing population. SSCs can also divide into Apaired (Apr) spermatogonia that are predestined to differentiate. Apaired spermatogonia produce chains of Aaligned (Aal) spermatogonia that divide to form A1 to A4, then type B spermatogonia. Type B spermatogonia will divide into primary spermatocytes that undergo meiosis. In human, there are only two different types of A spermatogonia, the Adark and Apale spermatogonia. The Adark spermatogonia are considered reserve stem cells, whereas the Apale spermatogonia are the self-renewing stem cells. There is only one generation of type B spermatogonia before differentiation into spermatocytes, which makes human spermatogenesis less efficient than in rodents. Although the biology of human SSCs is not well known, a panel of phenotypic markers has recently emerged that is remarkably similar to the list of markers expressed in mice. One such marker, the orphan receptor GPR125, is a plasma membrane protein that can be used to isolate human SSCs. Human SSCs proliferate in culture in response to growth factors such as GDNF, which is essential for SSC self-renewal in mice and triggers the same signalling pathways in both species. Therefore, despite differences in the spermatogonial differentiation scheme, both species use the same genes and proteins to maintain the pool of self-renewing SSCs within their niche. Spermatocytic seminomas are mainly found in the testes of older men, and they rarely metastasize. It is believed that these tumours originate from a post-natal germ cell. Because these lesions can express markers specific for meiotic prophase, they might originate from a primary spermatocyte. However, morphological appearance and overall immunohistochemical profile of these tumours indicate that the cell of origin could also be a spermatogonial stem cell.
Collapse
Affiliation(s)
- R Waheeb
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA
| | | |
Collapse
|