1
|
Mogielnicka-Brzozowska M, Cichowska AW. Molecular Biomarkers of Canine Reproductive Functions. Curr Issues Mol Biol 2024; 46:6139-6168. [PMID: 38921038 PMCID: PMC11202846 DOI: 10.3390/cimb46060367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/05/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024] Open
Abstract
The aim of the current study is to review potential molecular biomarker substances selected so far as useful for assessing the quality of dog semen. Proteins, lipids, carbohydrates, and ions can serve as molecular biomarkers of reproductive functions (BRFs) for evaluating male reproductive health and identifying potential risk factors for infertility or reproductive disorders. Evaluation of BRF levels in semen samples or reproductive tissues may provide insights into the underlying causes of infertility, such as impaired sperm function, abnormal sperm-egg interaction, or dysfunction of the male reproductive tract. Molecular biomarker proteins may be divided into two groups: proteins that are well-studied, such as A-kinase anchoring proteins (AKAPs), albumins (ALBs), alkaline phosphatase (ALPL), clusterin (CLU), canine prostate-specific esterase (CPSE), cysteine-rich secretory protein 2 (CRISP2), lactotransferrin (LTF), metalloproteinases (MMPs), and osteopontin (OPN) and proteins that are not well-studied. Non-protein markers include lipid-based substances (fatty acids, phosphatidylcholine), carbohydrates (glycosaminoglycans), and ions (zinc, calcium). Assessing the levels of BRFs in semen samples may provide valuable information for breeding management and reproductive assessments in dogs. This review systematizes current knowledge that could serve as a starting point for developing practical tests with the use of biomarkers of canine reproductive functions and their predictive value for assisted reproductive technique outcomes and semen preservation.
Collapse
Affiliation(s)
- Marzena Mogielnicka-Brzozowska
- Department of Animal Biochemistry and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-719 Olsztyn, Poland
| | | |
Collapse
|
2
|
Cichowska AW, Wisniewski J, Bromke MA, Olejnik B, Mogielnicka-Brzozowska M. Proteome Profiling of Canine Epididymal Fluid: In Search of Protein Markers of Epididymal Sperm Motility. Int J Mol Sci 2023; 24:14790. [PMID: 37834239 PMCID: PMC10573609 DOI: 10.3390/ijms241914790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/21/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Sperm maturation in the epididymis is based on interactions with proteins from epididymal fluid (EF). The aim of the study was to profile canine EF proteome and investigate correlations between EF protein content and epididymal spermatozoa (ES) motion parameters. Twenty-three male dogs were divided into two groups: good sperm motility (GSM) and poor sperm motility (PSM). The total motility and progressive motility differed significantly (p = 0.031; p < 0.001, respectively) between the GSM group and the PSM group. The semen samples were centrifuged to separate the EF apart from the ES. The canine EF proteins were analyzed using nano-liquid chromatography, which was coupled with quadrupole time-of-flight mass spectrometry (NanoUPLC-Q-TOF/MS) and bioinformatic tools for the first time. A total of 915 proteins were identified (GSM-506; PSM-409, respectively). UniProt identification resulted in six unique proteins (UPs) in the GSM group of dogs and four UPs in the PSM group. A semi-quantitative analysis showed a higher abundance (p < 0.05) of four differentially expressed proteins in the GSM group (ALB, CRISP2, LCNL1, PTGDS). Motility-dependent variations were detected in the EF proteome and were related to important metabolic pathways, which might suggest that several proteins could be potential ES motility biomarkers.
Collapse
Affiliation(s)
- Aleksandra W. Cichowska
- Department of Animal Biochemistry and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-719 Olsztyn, Poland
| | - Jerzy Wisniewski
- Department of Biochemistry, Molecular Biology and Biotechnology, Wroclaw University of Science and Technology, Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Mariusz A. Bromke
- Department of Biochemistry and Immunochemistry, Wroclaw Medical University, Chalubinskiego 10, 50-368 Wroclaw, Poland
| | - Beata Olejnik
- Department of Biochemistry and Immunochemistry, Wroclaw Medical University, Chalubinskiego 10, 50-368 Wroclaw, Poland
| | - Marzena Mogielnicka-Brzozowska
- Department of Animal Biochemistry and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-719 Olsztyn, Poland
| |
Collapse
|
3
|
Zmudzinska A, Wisniewski J, Mlynarz P, Olejnik B, Mogielnicka-Brzozowska M. Age-Dependent Variations in Functional Quality and Proteomic Characteristics of Canine (Canis lupus familiaris) Epididymal Spermatozoa. Int J Mol Sci 2022; 23:ijms23169143. [PMID: 36012418 PMCID: PMC9409041 DOI: 10.3390/ijms23169143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/11/2022] [Accepted: 08/14/2022] [Indexed: 12/01/2022] Open
Abstract
Increased male age is associated with a significant reduction in semen quality. Little is known about the sperm proteome changes resulting from the aging process. This study aimed to investigate the relationship between the functional quality and proteome of epididymal spermatozoa of dogs that were differing in age. The study was conducted on 30 male dogs that were divided into three age groups. G1—12 to 41 months old, G2—42 to 77 months old, and G3—78 to 132 months old. The sperm samples were assessed using a computer-assisted semen analysis (CASA). The epididymal sperm proteins were analyzed using gel electrophoresis (SDS-PAGE), nano-liquid chromatography coupled to quadrupole time of flight mass spectrometry (NanoUPLC-Q-TOF/MS) and bioinformatic tools. The sperm quality parameters were significantly lower in older dogs. NanoUPLC-Q-TOF/MS identification resulted in 865 proteins that were found in the G1, 472 in G2, and 435 in G3. There were seven proteins that were present in all three age groups, and four of them (ACTB, CE10, NPC2, CRISP2) showed significant changes among the studied groups. Age-dependent variations were detected in the sperm proteome composition and were related to important metabolite pathways, which might suggest that several proteins are implicated in sperm maturation and could be potential aging biomarkers.
Collapse
Affiliation(s)
- Anna Zmudzinska
- Department of Animal Biochemistry and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-719 Olsztyn, Poland
| | - Jerzy Wisniewski
- Department of Biochemistry, Molecular Biology and Biotechnology, Wroclaw University of Science and Technology, Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Piotr Mlynarz
- Department of Biochemistry, Molecular Biology and Biotechnology, Wroclaw University of Science and Technology, Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Beata Olejnik
- Department of Biochemistry and Immunochemistry, Wroclaw Medical University, Chalubinskiego 10, 50-368 Wroclaw, Poland
| | - Marzena Mogielnicka-Brzozowska
- Department of Animal Biochemistry and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-719 Olsztyn, Poland
- Correspondence: ; Tel.: +48-89-524-5259
| |
Collapse
|
4
|
Gupta N, Sarkar S, Mehta P, Sankhwar SN, Rajender S. Polymorphisms in the HSF2, LRRC6, MEIG1 and PTIP genes correlate with sperm motility in idiopathic infertility. Andrologia 2022; 54:e14517. [PMID: 35768906 DOI: 10.1111/and.14517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/05/2022] [Accepted: 06/12/2022] [Indexed: 11/28/2022] Open
Abstract
The aim of this study was to investigate the association of 24 functionally important single nucleotide polymorphisms (SNPs) with male infertility. In this cross-sectional study, we genotyped 24 functionally important single nucleotide polymorphisms in 24 infertility candidate genes in 500 oligo-/astheno-/oligoastheno-/normo-zoospermic infertile men with idiopathic infertility. Sequenom iPlex gold assay was used for genotyping. Sperm count and motility were compared between prevalent genotypes at each test locus. We did not observe any significant difference in the average sperm count between the alternate genotypes for the loci in the KLK3, LRRC6, MEIG1, HSF2, ESR2 and PTIP genes. However, we observed a significant difference in sperm motility between the alternate genotypes for the loci in the LRRC6, MEIG1, HSF2 and PTIP genes. Polymorphisms in the LRRC6 (rs200321595), MEIG1 (rs150031795), HSF2 (rs143986686) and PTIP (rs61752013) genes show association with sperm motility.
Collapse
Affiliation(s)
- Nishi Gupta
- Division of Endocrinology, Central Drug Research Institute, Lucknow, India
| | - Saumya Sarkar
- Division of Endocrinology, Central Drug Research Institute, Lucknow, India
| | - Poonam Mehta
- Division of Endocrinology, Central Drug Research Institute, Lucknow, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | | | - Singh Rajender
- Division of Endocrinology, Central Drug Research Institute, Lucknow, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
5
|
Proteomic Analysis of Intracellular and Membrane-Associated Fractions of Canine (Canis lupus familiaris) Epididymal Spermatozoa and Sperm Structure Separation. Animals (Basel) 2022; 12:ani12060772. [PMID: 35327169 PMCID: PMC8944539 DOI: 10.3390/ani12060772] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 03/03/2022] [Accepted: 03/16/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Epididymal spermatozoa have great potential in current dog reproductive technologies. In the case of azoospermia or when the male dies, the recovery of epididymal spermatozoa opens new possibilities for reproduction. It is of great importance to analyze the quality of the sperm in such cases. Proteomic studies contribute to explaining the role of proteins at various stages of epididymal sperm maturation and offer potential opportunities to use them as markers of sperm quality. The present study showed, for the first time, mass spectrometry and bioinformatic analysis of intracellular and membrane-associated proteins of canine epididymal spermatozoa. Additionally, sonication was used for the separation of dog epididymal sperm morphological elements (heads, tails and acrosomes). The results revealed the presence of differentially abundant proteins in both sperm protein fractions significant for sperm function and fertilizing ability. It was also shown that these proteins participate in important sperm metabolic pathways, which may suggest their potential as sperm quality biomarkers. Abstract This study was provided for proteomic analysis of intracellular and membrane-associated fractions of canine (Canis lupus familiaris) epididymal spermatozoa and additionally to find optimal sonication parameters for the epididymal sperm morphological structure separation and sperm protein isolation. Sperm samples were collected from 15 dogs. Sperm protein fractions: intracellular (SIPs) and membrane-associated (SMAPs) were isolated. After sonication, sperm morphology was evaluated using Spermac Stain™. The sperm protein fractions were analyzed using gel electrophoresis (SDS-PAGE) and nanoliquid chromatography coupled to quadrupole time-of-flight mass spectrometry (NanoLC-Q-TOF/MS). UniProt database-supported identification resulted in 42 proteins identified in the SIPs and 153 proteins in the SMAPs. Differentially abundant proteins (DAPs) were found in SIPs and SMAPs. Based on a gene ontology analysis, the dominant molecular functions of SIPs were catalytic activity (50%) and binding (28%). Hydrolase activity (33%) and transferase activity (21%) functions were dominant for SMAPs. Bioinformatic analysis of SIPs and SMAPs showed their participation in important metabolic pathways in epididymal sperm, which may suggest their potential as sperm quality biomarkers. The use of sonication 150 W, 10 min, may be recommended for the separation of dog epididymal sperm heads, tails, acrosomes and the protein isolation.
Collapse
|
6
|
CRISP protein expression in semen of the endangered Malayan tapir (Tapirus indicus). Theriogenology 2021; 172:106-115. [PMID: 34153566 DOI: 10.1016/j.theriogenology.2021.06.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 05/08/2021] [Accepted: 06/06/2021] [Indexed: 11/20/2022]
Abstract
The Malayan tapir is a large endangered herbivore native to South-east Asia with fewer than 2500 animals remaining in the wild. Although a small number of animals (183 animals held by 60 institutions) are managed in zoos and breeding centres, there is limited information on the fundamental reproductive biology of this species. The purpose of this present study was to evaluate the associations of reproductive protein biomarkers (CRISP2 and CRISP3) in the seminal plasma and spermatozoa with reproductive characteristics in male Malayan tapirs. Ejaculates were collected from zoo-housed animals by electroejaculation and assessed for sperm motility and quality traits. Seminal plasma and sperm pellets were analysed for CRISP protein expression by immunoblotting. The reproductive tract of a single animal was also analysed for CRISP2 and CRISP3 protein expression and localization by immunohistochemistry. Our results showed that both CRISP2 and CRISP3 are expressed in the seminal plasma and spermatozoa derived from Malayan tapirs. CRISP expression was positively correlated with semen quality, especially ejaculate volume, number of motile sperm, and acrosomal integrity. In addition, CRISP2 and CRISP3 protein expression were slightly high in males that had recently sired an offspring. The results suggest that CRISP proteins may serve as biomarkers for ejaculate quality and fertility in male Malayan tapirs. These findings may have significant implications for planning future breeding and re-introduction efforts for this species.
Collapse
|
7
|
Gaikwad AS, Hu J, Chapple DG, O'Bryan MK. The functions of CAP superfamily proteins in mammalian fertility and disease. Hum Reprod Update 2020; 26:689-723. [PMID: 32378701 DOI: 10.1093/humupd/dmaa016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/11/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Members of the cysteine-rich secretory proteins (CRISPS), antigen 5 (Ag5) and pathogenesis-related 1 (Pr-1) (CAP) superfamily of proteins are found across the bacterial, fungal, plant and animal kingdoms. Although many CAP superfamily proteins remain poorly characterized, over the past decade evidence has accumulated, which provides insights into the functional roles of these proteins in various processes, including fertilization, immune defence and subversion, pathogen virulence, venom toxicology and cancer biology. OBJECTIVE AND RATIONALE The aim of this article is to summarize the current state of knowledge on CAP superfamily proteins in mammalian fertility, organismal homeostasis and disease pathogenesis. SEARCH METHODS The scientific literature search was undertaken via PubMed database on all articles published prior to November 2019. Search terms were based on following keywords: 'CAP superfamily', 'CRISP', 'Cysteine-rich secretory proteins', 'Antigen 5', 'Pathogenesis-related 1', 'male fertility', 'CAP and CTL domain containing', 'CRISPLD1', 'CRISPLD2', 'bacterial SCP', 'ion channel regulator', 'CatSper', 'PI15', 'PI16', 'CLEC', 'PRY proteins', 'ASP proteins', 'spermatogenesis', 'epididymal maturation', 'capacitation' and 'snake CRISP'. In addition to that, reference lists of primary and review article were reviewed for additional relevant publications. OUTCOMES In this review, we discuss the breadth of knowledge on CAP superfamily proteins with regards to their protein structure, biological functions and emerging significance in reproduction, health and disease. We discuss the evolution of CAP superfamily proteins from their otherwise unembellished prokaryotic predecessors into the multi-domain and neofunctionalized members found in eukaryotic organisms today. At least in part because of the rapid evolution of these proteins, many inconsistencies in nomenclature exist within the literature. As such, and in part through the use of a maximum likelihood phylogenetic analysis of the vertebrate CRISP subfamily, we have attempted to clarify this confusion, thus allowing for a comparison of orthologous protein function between species. This framework also allows the prediction of functional relevance between species based on sequence and structural conservation. WIDER IMPLICATIONS This review generates a picture of critical roles for CAP proteins in ion channel regulation, sterol and lipid binding and protease inhibition, and as ligands involved in the induction of multiple cellular processes.
Collapse
Affiliation(s)
- Avinash S Gaikwad
- School of Biological Sciences, Monash University, Clayton, Victoria, 3800, Australia
| | - Jinghua Hu
- School of Biological Sciences, Monash University, Clayton, Victoria, 3800, Australia
| | - David G Chapple
- School of Biological Sciences, Monash University, Clayton, Victoria, 3800, Australia
| | - Moira K O'Bryan
- School of Biological Sciences, Monash University, Clayton, Victoria, 3800, Australia
| |
Collapse
|
8
|
Programmed Cell Death 2-Like ( Pdcd2l) Is Required for Mouse Embryonic Development. G3-GENES GENOMES GENETICS 2020; 10:4449-4457. [PMID: 33055224 PMCID: PMC7718740 DOI: 10.1534/g3.120.401714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Globozoospermia is a rare form of male infertility where men produce round-headed sperm that are incapable of fertilizing an oocyte naturally. In a previous study where we undertook a whole exome screen to define novel genetic causes of globozoospermia, we identified homozygous mutations in the gene PDCD2L. Two brothers carried a p.(Leu225Val) variant predicted to introduce a novel splice donor site, thus presenting PDCD2L as a potential regulator of male fertility. In this study, we generated a Pdcd2l knockout mouse to test its role in male fertility. Contrary to the phenotype predicted from its testis-enriched expression pattern, Pdcd2l null mice died during embryogenesis. Specifically, we identified that Pdcd2l is essential for post-implantation embryonic development. Pdcd2l−/− embryos were resorbed at embryonic days 12.5-17.5 and no knockout pups were born, while adult heterozygous Pdcd2l males had comparable fertility to wildtype males. To specifically investigate the role of PDCD2L in germ cells, we employed Drosophila melanogaster as a model system. Consistent with the mouse data, global knockdown of trus, the fly ortholog of PDCD2L, resulted in lethality in flies at the third instar larval stage. However, germ cell-specific knockdown with two germ cell drivers did not affect male fertility. Collectively, these data suggest that PDCD2L is not essential for male fertility. By contrast, our results demonstrate an evolutionarily conserved role of PDCD2L in development.
Collapse
|
9
|
Abstract
Seminal fluid is often assumed to have just one function in mammalian reproduction, delivering sperm to fertilize oocytes. But seminal fluid also transmits signaling agents that interact with female reproductive tissues to facilitate conception and .pregnancy. Upon seminal fluid contact, female tissues initiate a controlled inflammatory response that affects several aspects of reproductive function to ultimately maximize the chances of a male producing healthy offspring. This effect is best characterized in mice, where the female response involves several steps. Initially, seminal fluid factors cause leukocytes to infiltrate the female reproductive tract, and to selectively target and eliminate excess sperm. Other signals stimulate ovulation, induce an altered transcriptional program in female tract tissues that modulates embryo developmental programming, and initiate immune adaptations to promote receptivity to implantation and placental development. A key result is expansion of the pool of regulatory T cells that assist implantation by suppressing inflammation, mediating tolerance to male transplantation antigens, and promoting uterine vascular adaptation and placental development. Principal signaling agents in seminal fluid include prostaglandins and transforming growth factor-β. The balance of male signals affects the nature of the female response, providing a mechanism of ‟cryptic female choiceˮ that influences female reproductive investment. Male-female seminal fluid signaling is evident in all mammalian species investigated including human, and effects of seminal fluid in invertebrates indicate evolutionarily conserved mechanisms. Understanding the female response to seminal fluid will shed new light on infertility and pregnancy disorders and is critical to defining how events at conception influence offspring health.
Collapse
Affiliation(s)
- John E Schjenken
- Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Sarah A Robertson
- Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, Australia
| |
Collapse
|
10
|
Lim S, Kierzek M, O'Connor AE, Brenker C, Merriner DJ, Okuda H, Volpert M, Gaikwad A, Bianco D, Potter D, Prabhakar R, Strünker T, O'Bryan MK. CRISP2 Is a Regulator of Multiple Aspects of Sperm Function and Male Fertility. Endocrinology 2019; 160:915-924. [PMID: 30759213 DOI: 10.1210/en.2018-01076] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 02/08/2019] [Indexed: 11/19/2022]
Abstract
The cysteine-rich secretory proteins (CRISPs) are a group of proteins that show a pronounced expression biased to the male reproductive tract. Although sperm encounter CRISPs at virtually all phases of sperm development and maturation, CRISP2 is the sole CRISP produced during spermatogenesis, wherein it is incorporated into the developing sperm head and tail. In this study we tested the necessity for CRISP2 in male fertility using Crisp2 loss-of-function mouse models. In doing so, we revealed a role for CRISP2 in establishing the ability of sperm to undergo the acrosome reaction and in establishing a normal flagellum waveform. Crisp2-deficient sperm possess a stiff midpiece and are thus unable to manifest the rapid form of progressive motility seen in wild type sperm. As a consequence, Crisp2-deficient males are subfertile. Furthermore, a yeast two-hybrid screen and immunoprecipitation studies reveal that CRISP2 can bind to the CATSPER1 subunit of the Catsper ion channel, which is necessary for normal sperm motility. Collectively, these data define CRISP2 as a determinant of male fertility and explain previous clinical associations between human CRISP2 expression and fertility.
Collapse
Affiliation(s)
- Shuly Lim
- The Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - Michelina Kierzek
- Center of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
| | - Anne E O'Connor
- The Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
- The School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Christoph Brenker
- Center of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
| | - D Jo Merriner
- The Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
- The School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Hidenobu Okuda
- The Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
- The School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Marianna Volpert
- The Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - Avinash Gaikwad
- The Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
- The School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Deborah Bianco
- The Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - David Potter
- Monash Micro Imaging, Monash University, Clayton, Victoria, Australia
| | - Ranganathan Prabhakar
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria, Australia
| | - Timo Strünker
- Center of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
| | - Moira K O'Bryan
- The Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
- The School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
11
|
Guo K, He Y, Liu L, Liang Z, Li X, Cai L, Lan ZJ, Zhou J, Wang H, Lei Z. Ablation of Ggnbp2 impairs meiotic DNA double-strand break repair during spermatogenesis in mice. J Cell Mol Med 2018; 22:4863-4874. [PMID: 30055035 PMCID: PMC6156456 DOI: 10.1111/jcmm.13751] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 05/29/2018] [Indexed: 11/28/2022] Open
Abstract
Gametogenetin (GGN) binding protein 2 (GGNBP2) is a zinc finger protein expressed abundantly in spermatocytes and spermatids. We previously discovered that Ggnbp2 resection caused metamorphotic defects during spermatid differentiation and resulted in an absence of mature spermatozoa in mice. However, whether GGNBP2 affects meiotic progression of spermatocytes remains to be established. In this study, flow cytometric analyses showed a decrease in haploid, while an increase in tetraploid spermatogenic cells in both 30‐ and 60‐day‐old Ggnbp2 knockout testes. In spread spermatocyte nuclei, Ggnbp2 loss increased DNA double‐strand breaks (DSB), compromised DSB repair and reduced crossovers. Further investigations demonstrated that GGNBP2 co‐immunoprecipitated with a testis‐enriched protein GGN1. Immunofluorescent staining revealed that both GGNBP2 and GGN1 had the same subcellular localizations in spermatocyte, spermatid and spermatozoa. Ggnbp2 loss suppressed Ggn expression and nuclear accumulation. Furthermore, deletion of either Ggnbp2 or Ggn in GC‐2spd cells inhibited their differentiation into haploid cells in vitro. Overexpression of Ggnbp2 in Ggnbp2 null but not in Ggn null GC‐2spd cells partially rescued the defect coinciding with a restoration of Ggn expression. Together, these data suggest that GGNBP2, likely mediated by its interaction with GGN1, plays a role in DSB repair during meiotic progression of spermatocytes.
Collapse
Affiliation(s)
- Kaimin Guo
- Department of Andrology, The First Hospital of Jilin University, Changchun, China
| | - Yan He
- Department of OB/GYN, University of Louisville School of Medicine, Louisville, KY, USA
| | - Lingyun Liu
- Department of Andrology, The First Hospital of Jilin University, Changchun, China
| | - Zuowen Liang
- Department of Andrology, The First Hospital of Jilin University, Changchun, China
| | - Xian Li
- Department of OB/GYN, University of Louisville School of Medicine, Louisville, KY, USA
| | - Lu Cai
- Pediatrics Departments, University of Louisville School of Medicine, Louisville, KY, USA
| | - Zi-Jian Lan
- Division of Life Sciences and Center for Nutrigenomics & Applied Animal Nutrition, Alltech Inc., Nicholasville, KY, USA
| | - Junmei Zhou
- Central Laboratory, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Hongliang Wang
- Department of Andrology, The First Hospital of Jilin University, Changchun, China
| | - Zhenmin Lei
- Department of OB/GYN, University of Louisville School of Medicine, Louisville, KY, USA
| |
Collapse
|
12
|
Increased expression of GGN promotes tumorigenesis in bladder cancer and is correlated with poor prognosis. Gene 2018; 652:7-15. [PMID: 29412153 DOI: 10.1016/j.gene.2018.02.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 01/21/2018] [Accepted: 02/01/2018] [Indexed: 12/13/2022]
Abstract
Bladder cancer has shown great challenge for people's life. Traditional therapeutics against bladder cancer including surgery could not bring much benefit for patients, particularly for the late stage patients. So it is necessary to keep in mind why and how bladder cancer cells survive in our body. In this study, we explored the function and the molecular mechanism of GGN gene in bladder cancer. GGN was shown to be expressed at a high level in bladder cancer tissues compared to the control and was associated with the unsatisfactory survival rate of patients. GGN was also expressed abundantly in bladder cancer cell lines such as T24, 5637 and BIU87. Then GGN was knocked down in 5637 cells and T24 cells at both RNA and protein level. In accordance, aberrant growth and proliferation were demonstrated in bladder cancer cells. The ability of migration and invasion of bladder cancer cells was also inhibited. The in vivo data further proved that the xenograft tumor growth was dramatically suppressed by GGN knockdown. Then we demonstrated that the level of IκB, bax and truncated caspase3 was upregulated after GGN was knocked down in 5637 cells. In contrast, expression level of NFκB, IKK, c-Myc, cyclin D1 and Bcl-2 was reduced. Further, the phosphorylation level of IκB was also downregulated. These data suggest that NFκB/caspase3-mediated apoptosis signaling was regulated by GGN. Conclusively, GGN played a tumor-promoting role in bladder cancer through regulation of NFκB/caspase3-mediated apoptosis signaling. This study provides a new clue for the treatment of patients with bladder cancer.
Collapse
|
13
|
Springate L, Frasier TR. Gamete compatibility genes in mammals: candidates, applications and a potential path forward. ROYAL SOCIETY OPEN SCIENCE 2017; 4:170577. [PMID: 28878999 PMCID: PMC5579115 DOI: 10.1098/rsos.170577] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 07/31/2017] [Indexed: 06/01/2023]
Abstract
Fertilization represents a critical stage in biology, where successful alleles of a previous generation are shuffled into new arrangements and subjected to the forces of selection in the next generation. Although much research has been conducted on how variation in morphological and behavioural traits lead to variation in fertilization patterns, surprisingly little is known about fertilization at a molecular level, and specifically about how genes expressed on the sperm and egg themselves influence fertilization patterns. In mammals, several genes have been identified whose products are expressed on either the sperm or the egg, and which influence the fertilization process, but the specific mechanisms are not yet known. Additionally, in 2014 an interacting pair of proteins was identified: 'Izumo' on the sperm, and 'Juno' on the egg. With the identification of these genes comes the first opportunity to understand the molecular aspects of fertilization in mammals, and to identify how the genetic characteristics of these genes influence fertilization patterns. Here, we review recent progress in our understanding of fertilization and gamete compatibility in mammals, which should provide a helpful guide to researchers interested in untangling the molecular mechanisms of fertilization and the resulting impacts on population biology and evolutionary processes.
Collapse
|
14
|
Agarwal A, Sharma R, Durairajanayagam D, Ayaz A, Cui Z, Willard B, Gopalan B, Sabanegh E. Major protein alterations in spermatozoa from infertile men with unilateral varicocele. Reprod Biol Endocrinol 2015; 13:8. [PMID: 25890347 PMCID: PMC4383193 DOI: 10.1186/s12958-015-0007-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 02/11/2015] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND The etiology of varicocele, a common cause of male factor infertility, remains unclear. Proteomic changes responsible for the underlying pathology of unilateral varicocele have not been evaluated. The objective of this prospective study was to employ proteomic techniques and bioinformatic tools to identify and analyze proteins of interest in infertile men with unilateral varicocele. METHODS Spermatozoa from infertile men with unilateral varicocele (n=5) and from fertile men (control; n=5) were pooled in two groups respectively. Proteins were extracted and separated by 1-D SDS-PAGE. Bands were digested and identified on a LTQ-Orbitrap Elite hybrid mass spectrometer system. Bioinformatic analysis identified the pathways and functions of the differentially expressed proteins (DEP). RESULTS Sperm concentration, motility and morphology were lower, and reactive oxygen species levels were higher in unilateral varicocele patients compared to healthy controls. The total number of proteins identified were 1055, 1010 and 1042 in the fertile group, and 795, 713 and 763 proteins in the unilateral varicocele group. Of the 369 DEP between both groups, 120 proteins were unique to the fertile group and 38 proteins were unique to the unilateral varicocele group. Compared to the control group, 114 proteins were overexpressed while 97 proteins were underexpressed in the unilateral varicocele group. We have identified 29 proteins of interest that are involved in spermatogenesis and other fundamental reproductive events such as sperm maturation, acquisition of sperm motility, hyperactivation, capacitation, acrosome reaction and fertilization. The major functional pathways of the 359 DEP related to the unilateral varicocele group involve metabolism, disease, immune system, gene expression, signal transduction and apoptosis. Functional annotations showed that unilateral varicocele mostly affected small molecule biochemistry and post-translational modification proteins. Proteins expressed uniquely in the unilateral varicocele group were cysteine-rich secretory protein 2 precursor (CRISP2) and arginase-2 (ARG2). CONCLUSIONS The expression of these proteins of interest are altered and possibly functionally compromised in infertile men with unilateral varicocele. If validated, these proteins may lead to potential biomarker(s) and help better understand the mechanism involved in the pathophysiology of unilateral varicocele in infertile men.
Collapse
Affiliation(s)
- Ashok Agarwal
- Center for Reproductive Medicine, Glickman Urological & Kidney Institute, Cleveland Clinic, Mail Code X-11, 10681 Carnegie Avenue, Cleveland, OH, 44195, USA.
| | - Rakesh Sharma
- Center for Reproductive Medicine, Glickman Urological & Kidney Institute, Cleveland Clinic, Mail Code X-11, 10681 Carnegie Avenue, Cleveland, OH, 44195, USA.
| | - Damayanthi Durairajanayagam
- Center for Reproductive Medicine, Glickman Urological & Kidney Institute, Cleveland Clinic, Mail Code X-11, 10681 Carnegie Avenue, Cleveland, OH, 44195, USA.
| | - Ahmet Ayaz
- Center for Reproductive Medicine, Glickman Urological & Kidney Institute, Cleveland Clinic, Mail Code X-11, 10681 Carnegie Avenue, Cleveland, OH, 44195, USA.
| | - Zhihong Cui
- Center for Reproductive Medicine, Glickman Urological & Kidney Institute, Cleveland Clinic, Mail Code X-11, 10681 Carnegie Avenue, Cleveland, OH, 44195, USA.
| | - Belinda Willard
- Proteomics Research Core Services, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.
| | - Banu Gopalan
- Proteomics Research Core Services, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.
| | - Edmund Sabanegh
- Center for Reproductive Medicine, Glickman Urological & Kidney Institute, Cleveland Clinic, Mail Code X-11, 10681 Carnegie Avenue, Cleveland, OH, 44195, USA.
| |
Collapse
|
15
|
O'Donnell L, McLachlan RI, Merriner DJ, O'Bryan MK, Jamsai D. KATNB1 in the human testis and its genetic variants in fertile and oligoasthenoteratozoospermic infertile men. Andrology 2014; 2:884-91. [PMID: 25280067 DOI: 10.1111/andr.276] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 07/27/2014] [Accepted: 08/20/2014] [Indexed: 02/06/2023]
Abstract
Oligoasthenoteratozoospermia (OAT) is a phenotype frequently observed in infertile men, and is defined by low spermatozoa number, abnormal spermatozoa morphology and poor motility. We previously showed that a mutation in the Katnb1 gene in mice causes infertility because of OAT. The KATNB1 gene encodes an accessory subunit of the katanin microtubule-severing enzyme complex; this accessory subunit is thought to modulate microtubule-severing location and activity. We hypothesized that KATNB1 may play a role in human spermatogenesis and that genetic variants in KATNB1 could be associated with OAT in humans. Using immunostaining, we defined the localization of the KATNB1 protein in human testes. KATNB1 was present during spermatid development, and in particular localized to the microtubules of the manchette, a structure required for sperm head shaping. To assess a potential association between genetic variants in the KATNB1 gene and infertile men with OAT, we performed direct sequencing of genomic DNA samples from 100 OAT infertile and 100 proven fertile men. Thirty-seven KATNB1 variants were observed, five of which had not previously been described. Ten variants were present only in OAT men, however, statistical analysis did not reveal a significant association with fertility status. Our results suggest that variants in the KATNB1 gene are not commonly associated with OAT infertility in Australian men.
Collapse
Affiliation(s)
- L O'Donnell
- The Department of Anatomy and Developmental Biology, Monash University, Victoria, Australia; MIMR-PHI Institute of Medical Research, Clayton, Victoria, Australia
| | | | | | | | | |
Collapse
|
16
|
Jamsai D, Lo JCY, McLachlan RI, O'Bryan MK. Genetic variants in the RABL2A gene in fertile and oligoasthenospermic infertile men. Fertil Steril 2014; 102:223-9. [PMID: 24825419 DOI: 10.1016/j.fertnstert.2014.04.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Revised: 03/19/2014] [Accepted: 04/08/2014] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To define RABL2A localization in human sperm and to assess any potential association between RABL2A variants and male infertility associated with oligoasthenospermia. DESIGN Genetic association study. SETTING Public university. PATIENT(S) Australian men: 110 oligoasthenospermic infertile and 105 proven fertile. INTERVENTION(S) Human semen samples processed by immunostaining with high-throughput-sequencing platform to screen the entire protein-coding and flanking exon/intron regions of the RABL2A gene. MAIN OUTCOME MEASURE(S) Presence of RABL2A in human sperm and frequencies of RABL2A genetic variants in fertile and infertile men. RESULT(S) RABL2A localization in sperm was highly conserved between mouse and human, being localized to the tail. Direct DNA sequencing revealed 23 RABL2A genetic variants, including 16 intronic, 6 untranslated region (UTR), and one exonic missense variants. Of these, eight variants have not been previously reported. Although the majority of these variants showed no significant association with fertility status, allelic frequency of the intronic variant 114391996 delC was significantly increased in oligoasthenospermic men. Bioinformatics analysis suggested that the 114391996 delC allele would alter the splicing of RABL2A pre-mRNA. CONCLUSION(S) Our data suggest the 114391996 delC allele in the RABL2A gene may act as a risk factor for oligoasthenospermic infertility in Australian men.
Collapse
Affiliation(s)
- Duangporn Jamsai
- Department of Anatomy and Developmental Biology, School of Biomedical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia.
| | - Jennifer Chi Yi Lo
- Department of Anatomy and Developmental Biology, School of Biomedical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Robert I McLachlan
- Monash Institute of Medical Research and Prince Henry's Institute of Medical Research, and Department of Obstetrics and Gynecology, Monash Medical Centre, Clayton, Victoria, Australia; Monash IVF, Richmond, Victoria, Australia
| | - Moira K O'Bryan
- Department of Anatomy and Developmental Biology, School of Biomedical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
17
|
Jamsai D, Grealy A, Stahl PJ, Schlegel PN, McLachlan RI, Morand E, O'Bryan MK. Genetic variants in the human glucocorticoid-induced leucine zipper (GILZ) gene in fertile and infertile men. Andrology 2013; 1:451-5. [DOI: 10.1111/j.2047-2927.2013.00076.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 12/20/2012] [Accepted: 01/21/2013] [Indexed: 12/15/2022]
Affiliation(s)
- D. Jamsai
- The Department of Anatomy and Developmental Biology; School of Biomedical Sciences; Faculty of Medicine, Nursing and Health Sciences; Monash University; Melbourne; Vic.; Australia
| | - A. Grealy
- The Department of Anatomy and Developmental Biology; School of Biomedical Sciences; Faculty of Medicine, Nursing and Health Sciences; Monash University; Melbourne; Vic.; Australia
| | - P. J. Stahl
- Department of Urology; Weill Cornell Medical College; New York; NY; USA
| | - P. N. Schlegel
- Department of Urology; Weill Cornell Medical College; New York; NY; USA
| | | | - E. Morand
- Centre for Inflammatory Diseases; Southern Clinical School; Faculty of Medicine, Nursing and Health Sciences; Monash Medical Centre; Melbourne; Vic.; Australia
| | - M. K. O'Bryan
- The Department of Anatomy and Developmental Biology; School of Biomedical Sciences; Faculty of Medicine, Nursing and Health Sciences; Monash University; Melbourne; Vic.; Australia
| |
Collapse
|
18
|
O'Bryan MK, Grealy A, Stahl PJ, Schlegel PN, McLachlan RI, Jamsai D. Genetic variants in the ETV5 gene in fertile and infertile men with nonobstructive azoospermia associated with Sertoli cell-only syndrome. Fertil Steril 2012; 98:827-35.e1-3. [PMID: 22771031 DOI: 10.1016/j.fertnstert.2012.06.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2012] [Revised: 06/12/2012] [Accepted: 06/12/2012] [Indexed: 12/23/2022]
Abstract
OBJECTIVE To assess the association between genetic variants in the ETV5 gene with nonobstructive azoospermia (NOA) associated with Sertoli cell-only (SCO) syndrome. DESIGN Genetic association study. SETTING University. PATIENT(S) Australian men (65 SCO, 53 NOA, and 242 fertile men) and American men (86 SCO and 54 fertile men). INTERVENTION(S) Paraffin-embedded human testicular tissue was sectioned and processed for immunofluorescence. Direct DNA sequencing and polymerase chain reaction-based SNP detection were performed to define genetic variants in the ETV5 gene. MAIN OUTCOME MEASURE(S) The localization of ETV5 in the human testis and the presence of ETV5 genetic variants in fertile and infertile men. RESULT(S) ETV5 is localized to the cytoplasm and nucleus of Sertoli and germ cells in adult human testes. We identified six previously reported and six new genetic variants in the ETV5 gene. Of these, the allele frequency of the homozygous +48845 G>T (TT allele) variant was significantly higher in the SCO and NOA Australian men compared with fertile men. CONCLUSION(S) The homozygous +48845 G>T (TT allele) variant confers a higher risk for male infertility associated with NOA and SCO in Australian men.
Collapse
Affiliation(s)
- Moira K O'Bryan
- Department of Anatomy and Developmental Biology, School of Biomedical Sciences, Faculty of Medicine, Nursing, and Health Sciences, Monash University, Clayton, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
19
|
Zhao D, Wu W, Xu B, Niu X, Cui H, Zhang Y, Wang Z, Wang X. Variants in the SRD5A2 gene are associated with quality of semen. Mol Med Rep 2012; 6:639-44. [PMID: 22735779 DOI: 10.3892/mmr.2012.965] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 06/19/2012] [Indexed: 11/05/2022] Open
Abstract
Spermatogenesis and sperm maturation are androgen-dependent processes. Steroid 5α-reductase (SRD5A) is a key enzyme converting testosterone into the more active metabolite, dihydrotestosterone (DHT). We aimed to investigate the association between the genetic variants of SRD5A2 (rs4952197, rs2268797, rs13395648, rs523349 and rs632148) and semen quality. Variant genotyping and semen analysis was performed in 708 males with definite idiopathic infertility by TaqMan SNP genotyping assays and computer-assisted semen analysis, respectively. It was found that the rs13395648 TC genotype was associated with a significantly lower semen volume compared with the TT genotype (P=0.016). The same trend was found between the combination of the TC and CC genotypes and the TT genotype (P=0.020). With regard to variant rs632148, subjects with the GC genotype had significantly lower sperm motility in comparison to those with the GG genotype (P=0.029). The sperm motility between the combination of the GC and CC genotypes and the GC genotype was also significantly different (P=0.033). These findings indicate that genetic variants in the SRD5A2 gene may be associated with semen quality.
Collapse
Affiliation(s)
- Dan Zhao
- State Key Laboratory of Reproductive Medicine, Department of Urology, First Affiliated Hospital of Nanjing Medical University, and School of Public Health, Nanjing Medical University, Nanjing 210029, PR China
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Batruch I, Lecker I, Kagedan D, Smith CR, Mullen BJ, Grober E, Lo KC, Diamandis EP, Jarvi KA. Proteomic Analysis of Seminal Plasma from Normal Volunteers and Post-Vasectomy Patients Identifies over 2000 Proteins and Candidate Biomarkers of the Urogenital System. J Proteome Res 2011; 10:941-53. [DOI: 10.1021/pr100745u] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ihor Batruch
- Samuel Lunenfeld Research Institute, Department of Pathology and Laboratory Medicine and ‡Department of Surgery (Division of Urology), Mount Sinai Hospital, Toronto, ON, Canada M5T 3L9
- Department of Clinical Biochemistry, University Health Network, ∥Department of Laboratory Medicine and Pathobiology, and ⊥Department of Surgery, University of Toronto, Toronto, ON, Canada M5G 1L5
| | - Irene Lecker
- Samuel Lunenfeld Research Institute, Department of Pathology and Laboratory Medicine and ‡Department of Surgery (Division of Urology), Mount Sinai Hospital, Toronto, ON, Canada M5T 3L9
- Department of Clinical Biochemistry, University Health Network, ∥Department of Laboratory Medicine and Pathobiology, and ⊥Department of Surgery, University of Toronto, Toronto, ON, Canada M5G 1L5
| | - Daniel Kagedan
- Samuel Lunenfeld Research Institute, Department of Pathology and Laboratory Medicine and ‡Department of Surgery (Division of Urology), Mount Sinai Hospital, Toronto, ON, Canada M5T 3L9
- Department of Clinical Biochemistry, University Health Network, ∥Department of Laboratory Medicine and Pathobiology, and ⊥Department of Surgery, University of Toronto, Toronto, ON, Canada M5G 1L5
| | - Christopher R. Smith
- Samuel Lunenfeld Research Institute, Department of Pathology and Laboratory Medicine and ‡Department of Surgery (Division of Urology), Mount Sinai Hospital, Toronto, ON, Canada M5T 3L9
- Department of Clinical Biochemistry, University Health Network, ∥Department of Laboratory Medicine and Pathobiology, and ⊥Department of Surgery, University of Toronto, Toronto, ON, Canada M5G 1L5
| | - Brendan J. Mullen
- Samuel Lunenfeld Research Institute, Department of Pathology and Laboratory Medicine and ‡Department of Surgery (Division of Urology), Mount Sinai Hospital, Toronto, ON, Canada M5T 3L9
- Department of Clinical Biochemistry, University Health Network, ∥Department of Laboratory Medicine and Pathobiology, and ⊥Department of Surgery, University of Toronto, Toronto, ON, Canada M5G 1L5
| | - Ethan Grober
- Samuel Lunenfeld Research Institute, Department of Pathology and Laboratory Medicine and ‡Department of Surgery (Division of Urology), Mount Sinai Hospital, Toronto, ON, Canada M5T 3L9
- Department of Clinical Biochemistry, University Health Network, ∥Department of Laboratory Medicine and Pathobiology, and ⊥Department of Surgery, University of Toronto, Toronto, ON, Canada M5G 1L5
| | - Kirk C. Lo
- Samuel Lunenfeld Research Institute, Department of Pathology and Laboratory Medicine and ‡Department of Surgery (Division of Urology), Mount Sinai Hospital, Toronto, ON, Canada M5T 3L9
- Department of Clinical Biochemistry, University Health Network, ∥Department of Laboratory Medicine and Pathobiology, and ⊥Department of Surgery, University of Toronto, Toronto, ON, Canada M5G 1L5
| | - Eleftherios P. Diamandis
- Samuel Lunenfeld Research Institute, Department of Pathology and Laboratory Medicine and ‡Department of Surgery (Division of Urology), Mount Sinai Hospital, Toronto, ON, Canada M5T 3L9
- Department of Clinical Biochemistry, University Health Network, ∥Department of Laboratory Medicine and Pathobiology, and ⊥Department of Surgery, University of Toronto, Toronto, ON, Canada M5G 1L5
| | - Keith A. Jarvi
- Samuel Lunenfeld Research Institute, Department of Pathology and Laboratory Medicine and ‡Department of Surgery (Division of Urology), Mount Sinai Hospital, Toronto, ON, Canada M5T 3L9
- Department of Clinical Biochemistry, University Health Network, ∥Department of Laboratory Medicine and Pathobiology, and ⊥Department of Surgery, University of Toronto, Toronto, ON, Canada M5G 1L5
| |
Collapse
|
21
|
Carrell DT, Aston KI. The search for SNPs, CNVs, and epigenetic variants associated with the complex disease of male infertility. Syst Biol Reprod Med 2011; 57:17-26. [PMID: 21208142 DOI: 10.3109/19396368.2010.521615] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Understanding the genetic basis of idiopathic male infertility has long been the focus of many researchers. Numerous recent studies have attempted to identify relevant single nucleotide polymorphisms (SNPs) through medical re-sequencing studies in which candidate genes are sequenced in large numbers of cases and controls in the search for risk or causative polymorphisms. Two major characteristics have limited the utility of the re-sequencing studies. First, reported SNPs have only accounted for a small percentage of idiopathic male infertility. Second, SNPs reported to have an association with male infertility based on gene re-sequencing studies often fail validation in follow-up studies. Recent advances in the tools available for genetic studies have enabled interrogation of the entire genome in search of common, and more recently, rare variants. In this review, we discuss the progress of studies on genetic and epigenetic variants of male infertility as well as future directions that we predict will be the most productive in identifying the genetic basis for male factor infertility based on our current state of knowledge in this field as well as lessons learned about the genetic basis for complex diseases from other disease models.
Collapse
Affiliation(s)
- Douglas T Carrell
- Andrology and IVF Laboratories, Department of Surgery, University of Utah School of Medicine, Salt Lake City, Utah 84108, USA.
| | | |
Collapse
|
22
|
Jamsai D, Sarraj MA, Merriner DJ, Drummond AE, Jones KT, McLachlan RI, O’Bryan MK. GGN1 in the testis and ovary and its variance within the Australian fertile and infertile male population. ACTA ACUST UNITED AC 2010; 34:624-32. [DOI: 10.1111/j.1365-2605.2010.01127.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
23
|
Abstract
The cysteine-rich secretory proteins (CRISPs) are a subgroup of the CRISP, antigen 5 and Pr-1 (CAP) protein superfamily, and are found only in vertebrates. They show a strong expression bias to the mammalian male reproductive tract and the venom of poisonous reptiles. Within the male reproductive tract CRISPs have been implicated in many aspects of male germ cell biology spanning haploid germ cell development, epididymal maturation, capacitation, motility and the actual processes of fertilization. At a structural level, CRISPs are composed of two domains, a CAP domain, which has been implicated in cell-cell adhesion, and a CRISP domain, which has been shown to regulate several classes of ion channels across multiple species. Herein, we will review the current literature on the role of CRISPs in male fertility, and by inference to related non-mammalian protein, infer potential biochemical functions.
Collapse
|
24
|
Ding X, Zhang J, Bian Z, Xia Y, Lu C, Gu A, Li Y, Song L, Wang S, Wang X. Variants in the Eppin gene show association with semen quality in Han-Chinese population. Reprod Biomed Online 2010; 20:125-131. [DOI: 10.1016/j.rbmo.2009.10.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Revised: 04/14/2009] [Accepted: 10/05/2009] [Indexed: 11/18/2022]
|
25
|
A novel protein, sperm head and tail associated protein (SHTAP), interacts with cysteine-rich secretory protein 2 (CRISP2) during spermatogenesis in the mouse. Biol Cell 2009; 102:93-106. [PMID: 19686095 DOI: 10.1042/bc20090099] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND INFORMATION CRISP2 (cysteine-rich secretory protein 2) is a sperm acrosome and tail protein with the ability to regulate Ca2+ flow through ryanodine receptors. Based on these properties, CRISP2 has a potential role in fertilization through the regulation of ion signalling in the acrosome reaction and sperm motility. The purpose of the present study was to determine the expression, subcellular localization and the role in spermatogenesis of a novel CRISP2-binding partner, which we have designated SHTAP (sperm head and tail associated protein). RESULTS Using yeast two-hybrid screens of an adult testis expression library, we identified SHTAP as a novel mouse CRISP2-binding partner. Sequence analysis of all Shtap cDNA clones revealed that the mouse Shtap gene is embedded within a gene encoding the unrelated protein NSUN4 (NOL1/NOP2/Sun domain family member 4). Five orthologues of the Shtap gene have been annotated in public databases. SHTAP and its orthologues showed no significant sequence similarity to any known protein or functional motifs, including NSUN4. Using an SHTAP antiserum, multiple SHTAP isoforms (approximately 20-87 kDa) were detected in the testis, sperm, and various somatic tissues. Interestingly, only the approximately 26 kDa isoform of SHTAP was able to interact with CRISP2. Furthermore, yeast two-hybrid assays showed that both the CAP (CRISP/antigen 5/pathogenesis related-1) and CRISP domains of CRISP2 were required for maximal binding to SHTAP. SHTAP protein was localized to the peri-acrosomal region of round spermatids, and the head and tail of the elongated spermatids and sperm tail where it co-localized with CRISP2. During sperm capacitation, SHTAP and the SHTAP-CRISP2 complex appeared to be redistributed within the head. CONCLUSIONS The present study is the first report of the identification, annotation and expression analysis of the mouse Shtap gene. The redistribution observed during sperm capacitation raises the possibility that SHTAP and the SHTAP-CRISP2 complex play a role in the attainment of sperm functional competence.
Collapse
|
26
|
Reddy T, Gibbs GM, Merriner DJ, Kerr JB, O'Bryan MK. Cysteine-rich secretory proteins are not exclusively expressed in the male reproductive tract. Dev Dyn 2009; 237:3313-23. [PMID: 18924239 DOI: 10.1002/dvdy.21738] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The Cysteine-RIch Secretory Proteins (CRISPs) are abundantly produced in the male reproductive tract of mammals and within the venom of reptiles and have been shown to regulate ion channel activity. CRISPs, along with the Antigen-5 proteins and the Pathogenesis related-1 (Pr-1) proteins, form the CAP superfamily of proteins. Analyses of EST expression databases are increasingly suggesting that mammalian CRISPs are expressed more widely than in the reproductive tract. We, therefore, conducted a reverse transcription PCR expression profile and immunohistochemical analyses of 16 mouse tissues to define the sites of production of each of the four murine CRISPs. These data showed that each of the CRISPs have distinct and sometimes overlapping expression profiles, typically associated with the male and female reproductive tract, the secretory epithelia of exocrine glands, and immune tissues including the spleen and thymus. These investigations raise the potential for a role for CRISPs in general mammalian physiology.
Collapse
Affiliation(s)
- Thulasimala Reddy
- Monash Institute of Medical Research, Monash University, Melbourne, Australia
| | | | | | | | | |
Collapse
|
27
|
Gibbs GM, Roelants K, O'Bryan MK. The CAP superfamily: cysteine-rich secretory proteins, antigen 5, and pathogenesis-related 1 proteins--roles in reproduction, cancer, and immune defense. Endocr Rev 2008; 29:865-97. [PMID: 18824526 DOI: 10.1210/er.2008-0032] [Citation(s) in RCA: 369] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The cysteine-rich secretory proteins, antigen 5, and pathogenesis-related 1 proteins (CAP) superfamily members are found in a remarkable range of organisms spanning each of the animal kingdoms. Within humans and mice, there are 31 and 33 individual family members, respectively, and although many are poorly characterized, the majority show a notable expression bias to the reproductive tract and immune tissues or are deregulated in cancers. CAP superfamily proteins are most often secreted and have an extracellular endocrine or paracrine function and are involved in processes including the regulation of extracellular matrix and branching morphogenesis, potentially as either proteases or protease inhibitors; in ion channel regulation in fertility; as tumor suppressor or prooncogenic genes in tissues including the prostate; and in cell-cell adhesion during fertilization. This review describes mammalian CAP superfamily gene expression profiles, phylogenetic relationships, protein structural properties, and biological functions, and it draws into focus their potential role in health and disease. The nine subfamilies of the mammalian CAP superfamily include: the human glioma pathogenesis-related 1 (GLIPR1), Golgi associated pathogenesis related-1 (GAPR1) proteins, peptidase inhibitor 15 (PI15), peptidase inhibitor 16 (PI16), cysteine-rich secretory proteins (CRISPs), CRISP LCCL domain containing 1 (CRISPLD1), CRISP LCCL domain containing 2 (CRISPLD2), mannose receptor like and the R3H domain containing like proteins. We conclude that overall protein structural conservation within the CAP superfamily results in fundamentally similar functions for the CAP domain in all members, yet the diversity outside of this core region dramatically alters target specificity and, therefore, the biological consequences.
Collapse
Affiliation(s)
- Gerard M Gibbs
- Monash Institute of Medical Research, Monash University, 27-31 Wright Street, Clayton 3168, Australia.
| | | | | |
Collapse
|