1
|
Slika H, Shahani A, Wahi R, Miller J, Groves M, Tyler B. Overcoming Treatment Resistance in Medulloblastoma: Underlying Mechanisms and Potential Strategies. Cancers (Basel) 2024; 16:2249. [PMID: 38927954 PMCID: PMC11202166 DOI: 10.3390/cancers16122249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Medulloblastoma is the most frequently encountered malignant brain tumor in the pediatric population. The standard of care currently consists of surgical resection, craniospinal irradiation, and multi-agent chemotherapy. However, despite this combination of multiple aggressive modalities, recurrence of the disease remains a substantial concern, and treatment resistance is a rising issue. The development of this resistance results from the interplay of a myriad of anatomical properties, cellular processes, molecular pathways, and genetic and epigenetic alterations. In fact, several efforts have been directed towards this domain and characterizing the major contributors to this resistance. Herein, this review highlights the different mechanisms that drive relapse and are implicated in the occurrence of treatment resistance and discusses them in the context of the latest molecular-based classification of medulloblastoma. These mechanisms include the impermeability of the blood-brain barrier to drugs, the overactivation of specific molecular pathways, the resistant and multipotent nature of cancer stem cells, intratumoral and intertumoral heterogeneity, and metabolic plasticity. Subsequently, we build on that to explore potential strategies and targeted agents that can abrogate these mechanisms, undermine the development of treatment resistance, and augment medulloblastoma's response to therapeutic modalities.
Collapse
Affiliation(s)
- Hasan Slika
- Hunterian Neurosurgical Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; (H.S.); (A.S.); (R.W.); (J.M.)
| | - Aanya Shahani
- Hunterian Neurosurgical Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; (H.S.); (A.S.); (R.W.); (J.M.)
| | - Riddhpreet Wahi
- Hunterian Neurosurgical Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; (H.S.); (A.S.); (R.W.); (J.M.)
- Grant Government Medical College and Sir J.J Group of Hospitals, Mumbai 400008, India
| | - Jackson Miller
- Hunterian Neurosurgical Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; (H.S.); (A.S.); (R.W.); (J.M.)
- Department of English, Rhetoric, and Humanistic Studies, Virginia Military Institute, Lexington, VA 24450, USA
| | - Mari Groves
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA;
- Department of Neurosurgery, University of Maryland Medical Center, Baltimore, MD 21201, USA
| | - Betty Tyler
- Hunterian Neurosurgical Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; (H.S.); (A.S.); (R.W.); (J.M.)
| |
Collapse
|
2
|
Szepanowski LP, Wruck W, Kapr J, Rossi A, Fritsche E, Krutmann J, Adjaye J. Cockayne Syndrome Patient iPSC-Derived Brain Organoids and Neurospheres Show Early Transcriptional Dysregulation of Biological Processes Associated with Brain Development and Metabolism. Cells 2024; 13:591. [PMID: 38607030 PMCID: PMC11011893 DOI: 10.3390/cells13070591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/24/2024] [Accepted: 03/26/2024] [Indexed: 04/13/2024] Open
Abstract
Cockayne syndrome (CS) is a rare hereditary autosomal recessive disorder primarily caused by mutations in Cockayne syndrome protein A (CSA) or B (CSB). While many of the functions of CSB have been at least partially elucidated, little is known about the actual developmental dysregulation in this devasting disorder. Of particular interest is the regulation of cerebral development as the most debilitating symptoms are of neurological nature. We generated neurospheres and cerebral organoids utilizing Cockayne syndrome B protein (CSB)-deficient induced pluripotent stem cells derived from two patients with distinct severity levels of CS and healthy controls. The transcriptome of both developmental timepoints was explored using RNA-Seq and bioinformatic analysis to identify dysregulated biological processes common to both patients with CS in comparison to the control. CSB-deficient neurospheres displayed upregulation of the VEGFA-VEGFR2 signalling pathway, vesicle-mediated transport and head development. CSB-deficient cerebral organoids exhibited downregulation of brain development, neuron projection development and synaptic signalling. We further identified the upregulation of steroid biosynthesis as common to both timepoints, in particular the upregulation of the cholesterol biosynthesis branch. Our results provide insights into the neurodevelopmental dysregulation in patients with CS and strengthen the theory that CS is not only a neurodegenerative but also a neurodevelopmental disorder.
Collapse
Affiliation(s)
- Leon-Phillip Szepanowski
- Institute for Stem Cell Research and Regenerative Medicine, University Hospital Düsseldorf, Moorenstrasse 5, D-40225 Duesseldorf, Germany; (L.-P.S.)
- IUF—Leibniz Research Institute for Environmental Medicine, Auf’m Hennekamp 50, D-40225 Duesseldorf, Germany
| | - Wasco Wruck
- Institute for Stem Cell Research and Regenerative Medicine, University Hospital Düsseldorf, Moorenstrasse 5, D-40225 Duesseldorf, Germany; (L.-P.S.)
| | - Julia Kapr
- IUF—Leibniz Research Institute for Environmental Medicine, Auf’m Hennekamp 50, D-40225 Duesseldorf, Germany
| | - Andrea Rossi
- IUF—Leibniz Research Institute for Environmental Medicine, Auf’m Hennekamp 50, D-40225 Duesseldorf, Germany
| | - Ellen Fritsche
- IUF—Leibniz Research Institute for Environmental Medicine, Auf’m Hennekamp 50, D-40225 Duesseldorf, Germany
| | - Jean Krutmann
- IUF—Leibniz Research Institute for Environmental Medicine, Auf’m Hennekamp 50, D-40225 Duesseldorf, Germany
| | - James Adjaye
- Institute for Stem Cell Research and Regenerative Medicine, University Hospital Düsseldorf, Moorenstrasse 5, D-40225 Duesseldorf, Germany; (L.-P.S.)
- Zayed Centre for Research into Rare Diseases in Children (ZCR), University College London (UCL)—EGA Institute for Women’s Health, 20 Guilford Street, London WC1N 1DZ, UK
| |
Collapse
|
3
|
Verma S, Swain D, Kushwaha PP, Brahmbhatt S, Gupta K, Sundi D, Gupta S. Melanoma Antigen Family A (MAGE A) as Promising Biomarkers and Therapeutic Targets in Bladder Cancer. Cancers (Basel) 2024; 16:246. [PMID: 38254738 PMCID: PMC10813664 DOI: 10.3390/cancers16020246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/19/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
The Melanoma Antigen Gene (MAGE) is a large family of highly conserved proteins that share a common MAGE homology domain. Interestingly, many MAGE family members exhibit restricted expression in reproductive tissues but are abnormally expressed in various human malignancies, including bladder cancer, which is a common urinary malignancy associated with high morbidity and mortality rates. The recent literature suggests a more prominent role for MAGEA family members in driving bladder tumorigenesis. This review highlights the role of MAGEA proteins, the potential for them to serve as diagnostic or prognostic biomarker(s), and as therapeutic targets for bladder cancer.
Collapse
Affiliation(s)
- Shiv Verma
- Department of Urology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (S.V.); (P.P.K.); (K.G.)
- The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Diya Swain
- College of Arts and Sciences, Case Western Reserve University, Cleveland, OH 44106, USA; (D.S.); (S.B.)
| | - Prem Prakash Kushwaha
- Department of Urology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (S.V.); (P.P.K.); (K.G.)
- The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Smit Brahmbhatt
- College of Arts and Sciences, Case Western Reserve University, Cleveland, OH 44106, USA; (D.S.); (S.B.)
| | - Karishma Gupta
- Department of Urology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (S.V.); (P.P.K.); (K.G.)
- The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Debasish Sundi
- Department of Urology, Division of Urologic Oncology, The Ohio State University Comprehensive Cancer Center, James Cancer Hospital & Wexner Medical Center, Columbus, OH 43210, USA;
| | - Sanjay Gupta
- Department of Urology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (S.V.); (P.P.K.); (K.G.)
- The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Nutrition, Case Western Reserve University, Cleveland, OH 44106, USA
- Division of General Medical Sciences, Case Comprehensive Cancer Center, Cleveland, OH 44106, USA
| |
Collapse
|
4
|
Samel A, Väärtnõu F, Verk L, Kurg K, Mutso M, Kurg R. How the Intrinsically Disordered N-Terminus of Cancer/Testis Antigen MAGEA10 Is Responsible for Its Expression, Nuclear Localisation and Aberrant Migration. Biomolecules 2023; 13:1704. [PMID: 38136576 PMCID: PMC10741916 DOI: 10.3390/biom13121704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
Melanoma-associated antigen A (MAGEA) subfamily proteins are normally expressed in testis and/or placenta. However, aberrant expression is detected in the tumour cells of multiple types of human cancer. MAGEA expression is mainly observed in cancers that have acquired malignant phenotypes, invasiveness and metastasis, and the expression of MAGEA family proteins has been linked to poor prognosis in cancer patients. All MAGE proteins share the common MAGE homology domain (MHD) which encompasses up to 70% of the protein; however, the areas flanking the MHD region vary between family members and are poorly conserved. To investigate the molecular basis of MAGEA10 expression and anomalous mobility in gel, deletion and point-mutation, analyses of the MAGEA10 protein were performed. Our data show that the intrinsically disordered N-terminal domain and, specifically, the first seven amino acids containing a unique linear motif, PRAPKR, are responsible for its expression, aberrant migration in SDS-PAGE and nuclear localisation. The aberrant migration in gel and nuclear localisation are not related to each other. Hiding the N-terminus with an epitope tag strongly affected its mobility in gel and expression in cells. Our results suggest that the intrinsically disordered domains flanking the MHD determine the unique properties of individual MAGEA proteins.
Collapse
Affiliation(s)
| | | | | | | | | | - Reet Kurg
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia; (A.S.); (F.V.); (L.V.); (K.K.); (M.M.)
| |
Collapse
|
5
|
Nin DS, Deng LW. Biology of Cancer-Testis Antigens and Their Therapeutic Implications in Cancer. Cells 2023; 12:cells12060926. [PMID: 36980267 PMCID: PMC10047177 DOI: 10.3390/cells12060926] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Tumour-specific antigens have been an area of interest in cancer therapy since their discovery in the middle of the 20th century. In the era of immune-based cancer therapeutics, redirecting our immune cells to target these tumour-specific antigens has become even more relevant. Cancer-testis antigens (CTAs) are a class of antigens with an expression specific to the testis and cancer cells. CTAs have also been demonstrated to be expressed in a wide variety of cancers. Due to their frequency and specificity of expression in a multitude of cancers, CTAs have been particularly attractive as cancer-specific therapeutic targets. There is now a rapid expansion of CTAs being identified and many studies have been conducted to correlate CTA expression with cancer and therapy-resistant phenotypes. Furthermore, there is an increasing number of clinical trials involving using some of these CTAs as molecular targets in pharmacological and immune-targeted therapeutics for various cancers. This review will summarise the current knowledge of the biology of known CTAs in tumorigenesis and the regulation of CTA genes. CTAs as molecular targets and the therapeutic implications of these CTA-targeted anticancer strategies will also be discussed.
Collapse
Affiliation(s)
- Dawn Sijin Nin
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, MD 7, 8 Medical Drive, Singapore 117596, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore
| | - Lih-Wen Deng
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, MD 7, 8 Medical Drive, Singapore 117596, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore
- National University Cancer Institute, National University Health System, 5 Lower Kent Ridge Road, Singapore 119074, Singapore
| |
Collapse
|
6
|
Wang D, Hildorf S, Ntemou E, Dong L, Pors SE, Mamsen LS, Fedder J, Hoffmann ER, Clasen-Linde E, Cortes D, Thorup J, Andersen CY. Characterization and Survival of Human Infant Testicular Cells After Direct Xenotransplantation. Front Endocrinol (Lausanne) 2022; 13:853482. [PMID: 35360067 PMCID: PMC8960121 DOI: 10.3389/fendo.2022.853482] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/11/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Cryopreservation of prepubertal testicular tissue preserves spermatogonial stem cells (SSCs) that may be used to restore fertility in men at risk of infertility due to gonadotoxic treatments for either a malignant or non-malignant disease. Spermatogonial stem cell-based transplantation is a promising fertility restoration technique. Previously, we performed xenotransplantation of propagated SSCs from prepubertal testis and found human SSCs colonies within the recipient testes six weeks post-transplantation. In order to avoid the propagation step of SSCs in vitro that may cause genetic and epigenetic changes, we performed direct injection of single cell suspension in this study, which potentially may be safer and easier to be applied in future clinical applications. METHODS Testis biopsies were obtained from 11 infant boys (median age 1.3 years, range 0.5-3.5) with cryptorchidism. Following enzymatic digestion, dissociated single-cell suspensions were prelabeled with green fluorescent dye and directly transplanted into seminiferous tubules of busulfan-treated mice. Six to nine weeks post-transplantation, the presence of gonocytes and SSCs was determined by whole-mount immunofluorescence for a number of germ cell markers (MAGEA, GAGE, UCHL1, SALL4, UTF1, and LIN28), somatic cell markers (SOX9, CYP17A1). RESULTS Following xenotransplantation human infant germ cells, consisting of gonocytes and SSCs, were shown to settle on the basal membrane of the recipient seminiferous tubules and form SSC colonies with expression of MAGEA, GAGE, UCHL1, SALL4, UTF1, and LIN28. The colonization efficiency was approximately 6%. No human Sertoli cells were detected in the recipient mouse testes. CONCLUSION Xenotransplantation, without in vitro propagation, of testicular cell suspensions from infant boys with cryptorchidism resulted in colonization of mouse seminiferous tubules six to nine weeks post-transplantation. Spermatogonial stem cell-based transplantation could be a therapeutic treatment for infertility of prepubertal boys with cryptorchidism and boys diagnosed with cancer. However, more studies are required to investigate whether the low number of the transplanted SSC is sufficient to secure the presence of sperm in the ejaculate of those patients over time.
Collapse
Affiliation(s)
- Danyang Wang
- Laboratory of Reproductive Biology, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- *Correspondence: Danyang Wang,
| | - Simone Hildorf
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Pediatric Surgery, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Elissavet Ntemou
- Laboratory of Reproductive Biology, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Lihua Dong
- Laboratory of Reproductive Biology, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Susanne Elisabeth Pors
- Laboratory of Reproductive Biology, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Linn Salto Mamsen
- Laboratory of Reproductive Biology, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Jens Fedder
- Centre of Andrology & Fertility Clinic, Department D, Odense University Hospital, Odense C, Denmark
- Research Unit of Human Reproduction, Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Eva R. Hoffmann
- Danish National Research Foundation (DNRF) Center for Chromosome Stability, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Erik Clasen-Linde
- Department of Pathology, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Dina Cortes
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Pediatrics and Adolescent Medicine, Copenhagen University Hospital Hvidovre, Copenhagen, Denmark
| | - Jørgen Thorup
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Pediatric Surgery, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Claus Yding Andersen
- Laboratory of Reproductive Biology, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
7
|
Li S, Shi X, Li J, Zhou X. Pathogenicity of the MAGE family. Oncol Lett 2021; 22:844. [PMID: 34733362 PMCID: PMC8561213 DOI: 10.3892/ol.2021.13105] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/07/2021] [Indexed: 12/12/2022] Open
Abstract
The melanoma antigen gene (MAGE) protein family is a group of highly conserved proteins that share a common homology domain. Under normal circumstances, numerous MAGE proteins are only expressed in reproduction-related tissues; however, abnormal expression levels are observed in a variety of tumor tissues. The MAGE family consists of type I and II proteins, several of which are cancer-testis antigens that are highly expressed in cancer and serve a critical role in tumorigenesis. Therefore, this review will use the relationship between MAGEs and tumors as a starting point, focusing on the latest developments regarding the function of MAGEs as oncogenes, and preliminarily reveal their possible mechanisms.
Collapse
Affiliation(s)
- Sanyan Li
- Department of Pathology, Qianjiang Central Hospital, Qianjiang, Hubei 433100, P.R. China
| | - Xiang Shi
- Department of Pathology, Qianjiang Central Hospital, Qianjiang, Hubei 433100, P.R. China
| | - Jingping Li
- Department of Respiratory Medicine, Qianjiang Central Hospital, Qianjiang, Hubei 433100, P.R. China
| | - Xianrong Zhou
- Department of Pathology, Qianjiang Central Hospital, Qianjiang, Hubei 433100, P.R. China
| |
Collapse
|
8
|
Poojary M, Jishnu PV, Kabekkodu SP. Prognostic Value of Melanoma-Associated Antigen-A (MAGE-A) Gene Expression in Various Human Cancers: A Systematic Review and Meta-analysis of 7428 Patients and 44 Studies. Mol Diagn Ther 2021; 24:537-555. [PMID: 32548799 PMCID: PMC7497308 DOI: 10.1007/s40291-020-00476-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background Members of the melanoma-associated antigen-A (MAGE-A) subfamily are overexpressed in many cancers and can drive cancer progression, metastasis, and therapeutic recurrence. Objective This study is the first comprehensive meta-analysis evaluating the prognostic utility of MAGE-A members in different cancers. Methods A systematic literature search was conducted in PubMed, Google Scholar, Science Direct, and Web of Science. The pooled hazard ratios with 95% confidence intervals were estimated to evaluate the prognostic significance of MAGE-A expression in various cancers. Results In total, 44 eligible studies consisting of 7428 patients from 11 countries were analysed. Univariate and multivariate analysis for overall survival, progression-free survival, and disease-free survival showed a significant association between high MAGE-A expression and various cancers (P < 0.00001). Additionally, subgroup analysis demonstrated that high MAGE-A expression was significantly associated with poor prognosis for lung, gastrointestinal, breast, and ovarian cancer in both univariate and multivariate analysis for overall survival. Conclusion Overexpression of MAGE-A subfamily members is linked to poor prognosis in multiple cancers. Therefore, it could serve as a potential prognostic marker of poor prognosis in cancers. Electronic supplementary material The online version of this article (10.1007/s40291-020-00476-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Manish Poojary
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Padacherri Vethil Jishnu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India.
| |
Collapse
|
9
|
Florke Gee RR, Chen H, Lee AK, Daly CA, Wilander BA, Fon Tacer K, Potts PR. Emerging roles of the MAGE protein family in stress response pathways. J Biol Chem 2020; 295:16121-16155. [PMID: 32921631 PMCID: PMC7681028 DOI: 10.1074/jbc.rev120.008029] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 09/08/2020] [Indexed: 12/21/2022] Open
Abstract
The melanoma antigen (MAGE) proteins all contain a MAGE homology domain. MAGE genes are conserved in all eukaryotes and have expanded from a single gene in lower eukaryotes to ∼40 genes in humans and mice. Whereas some MAGEs are ubiquitously expressed in tissues, others are expressed in only germ cells with aberrant reactivation in multiple cancers. Much of the initial research on MAGEs focused on exploiting their antigenicity and restricted expression pattern to target them with cancer immunotherapy. Beyond their potential clinical application and role in tumorigenesis, recent studies have shown that MAGE proteins regulate diverse cellular and developmental pathways, implicating them in many diseases besides cancer, including lung, renal, and neurodevelopmental disorders. At the molecular level, many MAGEs bind to E3 RING ubiquitin ligases and, thus, regulate their substrate specificity, ligase activity, and subcellular localization. On a broader scale, the MAGE genes likely expanded in eutherian mammals to protect the germline from environmental stress and aid in stress adaptation, and this stress tolerance may explain why many cancers aberrantly express MAGEs Here, we present an updated, comprehensive review on the MAGE family that highlights general characteristics, emphasizes recent comparative studies in mice, and describes the diverse functions exerted by individual MAGEs.
Collapse
Affiliation(s)
- Rebecca R Florke Gee
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Helen Chen
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Anna K Lee
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Christina A Daly
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Benjamin A Wilander
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Klementina Fon Tacer
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; School of Veterinary Medicine, Texas Tech University, Amarillo, Texas, USA.
| | - Patrick Ryan Potts
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.
| |
Collapse
|
10
|
Winge-Main AK, Wälchli S, Inderberg EM. T cell receptor therapy against melanoma-Immunotherapy for the future? Scand J Immunol 2020; 92:e12927. [PMID: 32640053 DOI: 10.1111/sji.12927] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/28/2020] [Accepted: 07/02/2020] [Indexed: 12/23/2022]
Abstract
Malignant melanoma has seen monumental changes in treatment options the last decade from the very poor results of dacarbazine treatment to the modern-day use of targeted therapies and immune checkpoint inhibitors. Melanoma has a high mutational burden making it more capable of evoking immune responses than many other tumours. Even when considering double immune checkpoint blockade with anti-CTLA-4 and anti-PD-1, we still have far to go in melanoma treatment as 50% of patients with metastatic disease do not respond to current treatment. Alternative immunotherapy should therefore be considered. Since melanoma has a high mutational burden, it is considered more immunogenic than many other tumours. T cell receptor (TCR) therapy could be a possible way forward, either alone or in combination, to improve the response rates of this deadly disease. Melanoma is one of the cancers where TCR therapy has been frequently applied. However, the number of antigens targeted remains fairly limited, although advanced personalized therapies aim at also targeting private mutations. In this review, we look at possible aspects of targeting TCR therapy towards melanoma and provide an implication of its use in the future.
Collapse
Affiliation(s)
- Anna K Winge-Main
- Department of Cellular Therapy, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
- Department of Oncology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Sébastien Wälchli
- Department of Cellular Therapy, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Else Marit Inderberg
- Department of Cellular Therapy, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
11
|
Park S, Han JE, Kim HG, Kim HY, Kim MG, Park JK, Cho GJ, Huang H, Kim MO, Ryoo ZY, Han SH, Choi SK. Inhibition of MAGEA2 regulates pluripotency, proliferation, apoptosis, and differentiation in mouse embryonic stem cells. J Cell Biochem 2020; 121:4667-4679. [PMID: 32065444 DOI: 10.1002/jcb.29692] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 01/30/2020] [Indexed: 01/27/2023]
Abstract
Mouse embryonic stem cells (mESCs) exhibit self-renewal and pluripotency, can differentiate into all three germ layers, and serve as an essential model in stem cell research and for potential clinical application in regenerative medicine. Melanoma-associated antigen A2 (MAGEA2) is not expressed in normal somatic cells but rather in different types of cancer, especially in undifferentiated cells, such as in the testis, differentiating cells, and ESCs. However, the role of MAGEA2 in mESCs remains to be clarified. Accordingly, in this study, we examined the expression and functions of MAGEA2 in mESCs. MAGEA2 messenger RNA (mRNA) expression was decreased during mESCs differentiation. MAGEA2 function was then evaluated in knockdown mESC. MAGEA2 knockdown resulted in decreased pluripotency marker gene expression in mESCs consequent to increased Erk1/2 phosphorylation. Decreased MAGEA2 expression inhibited mESC proliferation via S phase cell cycle arrest with a subsequent decrease in cell cycle-associated genes Cdk1, Cdk2, Cyclin A1, Cyclin D1, and Cdc25a. Apoptotic mESCs markedly increased along with cleaved forms of caspases 3, 6, and 7 and PARP expression, confirming caspase-dependent apoptosis. MAGEA2 knockdown significantly decreased embryoid body size in vitro when cells were differentiated naturally and teratoma size in vivo, concomitant with decreased ectoderm marker gene expression. These findings suggested that MAGEA2 regulates ESC pluripotency, proliferation, cell cycle, apoptosis, and differentiation. The enhanced understanding of the regulatory mechanisms underlying diverse mESC characteristics will facilitate the clinical application of mESCs.
Collapse
Affiliation(s)
- Song Park
- Core Protein Resources Center, DGIST, Daegu, South Korea
| | - Jee Eun Han
- College of Veterinary Medicine, Kyungpook National University, Daegu, South Korea
| | - Hyeon-Gyeom Kim
- School of Life Science, BK21 Plus KNU Creative Bioresearch Group, Kyungpook National University, Daegu, South Korea
| | - Hee-Yeon Kim
- Core Protein Resources Center, DGIST, Daegu, South Korea
| | - Min-Gi Kim
- Core Protein Resources Center, DGIST, Daegu, South Korea
| | - Jin-Kyu Park
- College of Veterinary Medicine, Kyungpook National University, Daegu, South Korea
| | - Gil-Jae Cho
- College of Veterinary Medicine, Kyungpook National University, Daegu, South Korea
| | - Hai Huang
- The School of Animal BT Science, Kyungpook National University, Sangju-si, Gyeongsangbuk-do, South Korea
| | - Myoung Ok Kim
- The School of Animal BT Science, Kyungpook National University, Sangju-si, Gyeongsangbuk-do, South Korea
| | - Zae Young Ryoo
- School of Life Science, BK21 Plus KNU Creative Bioresearch Group, Kyungpook National University, Daegu, South Korea
| | - Se-Hyeon Han
- School of Media Communication, Hanyang University, Seongdonggu, Seoul, South Korea
| | - Seong-Kyoon Choi
- Core Protein Resources Center, DGIST, Daegu, South Korea.,Division of Biotechnology, DGIST, Daegu, South Korea
| |
Collapse
|
12
|
Younas K, Quintela M, Thomas S, Garcia-Parra J, Blake L, Whiteland H, Bunkheila A, Francis LW, Margarit L, Gonzalez D, Conlan RS. Delayed endometrial decidualisation in polycystic ovary syndrome; the role of AR-MAGEA11. J Mol Med (Berl) 2019; 97:1315-1327. [PMID: 31256208 PMCID: PMC6713698 DOI: 10.1007/s00109-019-01809-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 05/22/2019] [Accepted: 06/02/2019] [Indexed: 12/15/2022]
Abstract
Abstract Polycystic ovary syndrome (PCOS) is a common gynaecological disorder, with a prevalence of up to 12% of women of reproductive age, and is in part characterised by elevated circulating androgens and aberrant expression of androgen receptor (AR) in the endometrium. A high percentage of PCOS patients suffer from infertility, a condition that appears to be linked to mistimed and incomplete decidualisation critically affecting events surrounding embryo implantation. The aim of this study was to examine the involvement of MAGEA11, and the genome-wide role of AR in PCOS. We determined that elevated androgen levels on PCOS cells had an impact on the delayed and incomplete decidual transformation of endometrial cells. The AR co-regulator MAGEA11, a known enhancer of AR function, was constitutively overexpressed throughout the menstrual cycle of PCOS patients, co-localised in the nucleus of PCOS stromal tissue and cells and formed a molecular complex with AR. Genome-wide AR analysis in PCOS stromal cells revealed that AR targets included genes involved in cell death and apoptosis, as well as genes commonly dysregulated in endometrial cancer. Enhanced MAGEA11 and AR-mediated transcriptional regulation may impact on a correct endometrial decidualisation response, subsequently affecting endometrial receptivity in these infertile women. Key messages MAGEA11 and AR are overexpressed in hyperandrogenic PCOS patients. MAGEA11-AR overexpression in PCOS correlates with delayed decidualisation. AR and MAGEA11 associate in a molecular complex. AR directly regulates a unique set of genes controlling gene differentiation.
Electronic supplementary material The online version of this article (10.1007/s00109-019-01809-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kinza Younas
- Reproductive Biology and Gynaecological Oncology, Swansea University Medical School, Singleton Park, Swansea, SA2 8PP, UK.,Abertawe Bro Morgannwg University Health Board, Sketty Lane, Swansea, SA2 8QA, UK
| | - Marcos Quintela
- Reproductive Biology and Gynaecological Oncology, Swansea University Medical School, Singleton Park, Swansea, SA2 8PP, UK
| | - Samantha Thomas
- Reproductive Biology and Gynaecological Oncology, Swansea University Medical School, Singleton Park, Swansea, SA2 8PP, UK
| | - Jetzabel Garcia-Parra
- Reproductive Biology and Gynaecological Oncology, Swansea University Medical School, Singleton Park, Swansea, SA2 8PP, UK
| | - Lauren Blake
- Reproductive Biology and Gynaecological Oncology, Swansea University Medical School, Singleton Park, Swansea, SA2 8PP, UK
| | - Helen Whiteland
- Reproductive Biology and Gynaecological Oncology, Swansea University Medical School, Singleton Park, Swansea, SA2 8PP, UK
| | - Adnan Bunkheila
- Reproductive Biology and Gynaecological Oncology, Swansea University Medical School, Singleton Park, Swansea, SA2 8PP, UK.,Abertawe Bro Morgannwg University Health Board, Sketty Lane, Swansea, SA2 8QA, UK
| | - Lewis W Francis
- Reproductive Biology and Gynaecological Oncology, Swansea University Medical School, Singleton Park, Swansea, SA2 8PP, UK
| | - Lavinia Margarit
- Reproductive Biology and Gynaecological Oncology, Swansea University Medical School, Singleton Park, Swansea, SA2 8PP, UK.,Abertawe Bro Morgannwg University Health Board, Sketty Lane, Swansea, SA2 8QA, UK
| | - Deyarina Gonzalez
- Reproductive Biology and Gynaecological Oncology, Swansea University Medical School, Singleton Park, Swansea, SA2 8PP, UK
| | - R Steven Conlan
- Reproductive Biology and Gynaecological Oncology, Swansea University Medical School, Singleton Park, Swansea, SA2 8PP, UK.
| |
Collapse
|
13
|
Cancer-testis antigens MAGEA proteins are incorporated into extracellular vesicles released by cells. Oncotarget 2019; 10:3694-3708. [PMID: 31217903 PMCID: PMC6557214 DOI: 10.18632/oncotarget.26979] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 05/13/2019] [Indexed: 12/21/2022] Open
Abstract
Melanoma-associated antigen A (MAGEA) family proteins represent a class of tumor antigens that are expressed in a variety of malignant tumors, but their expression in normal tissues is restricted to germ cells. MAGEA family consists of eleven proteins that are highly conserved sharing the common MAGE homology domain (MHD). In the current study, we show that MAGEA4 and MAGEA10 proteins are incorporated into extracellular vesicles released by mouse fibroblast and human osteosarcoma U2OS cells and are expressed, at least partly, on the surface of released EVs. The C-terminal part of the protein containing MHD domain is required for this activity. Expression of MAGEA proteins induced the budding of cells and formation of extracellular vesicles with 150 to 1500 nm in diameter. Our data suggest that the release of MAGEA-positive EVs is at least to some extent induced by the expression of MAGEA proteins itself. This may be one of the mechanisms of MAGEA proteins to induce cancer formation and progression.
Collapse
|
14
|
Expression dynamics of Mage family genes during self-renewal and differentiation of mouse pluripotent stem and teratocarcinoma cells. Oncotarget 2019; 10:3248-3266. [PMID: 31143371 PMCID: PMC6524934 DOI: 10.18632/oncotarget.26933] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 04/29/2019] [Indexed: 12/28/2022] Open
Abstract
The biological roles of cancer-testis antigens of the Melanoma antigen (Mage) family in mammalian development, stem cell differentiation and carcinogenesis are largely unknown. In order to understand the involvement of the Mage family genes in maintenance of normal and cancer stem cells, the expression patterns of Mage-a, Mage-b, Mage-d, Mage-e, Mage-h and Mage-l gene subfamilies were analyzed during the self-renewal and differentiation of mouse pluripotent stem and teratocarcinoma cells. Clustering analysis based on the gene expression profiles of undifferentiated and differentiating cell populations revealed strong correlations between Mage expression patterns and differentiation and malignant states. Gene co-expression analysis disclosed the potential contributions of Mage family members in self-renewal and differentiation of pluripotent stem and teratocarcinoma cells. Two gene clusters including Mage-a4 and Mage-a8, Mageb1, Mage-d1, Mage-d2, Mage-e1, Mage-l2 were identified as functional antagonists with opposing roles in the regulation of proliferation and differentiation of mouse pluripotent stem and teratocarcinoma cells. The identified aberrant expression patterns of Mage-a2, Mage-a6, Mage-b4, Mageb-16 and Mage-h1 in teratocarcinoma cells can be considered as specific teratocarcinoma biomarkers promoted the malignant phenotype. Our study first provides a model for the involvement of Mage family members in regulatory networks during the self-renewal and early differentiation of normal and cancerous stem cells for further research of the predicted functional modules and the development of new cancer treatment strategies.
Collapse
|
15
|
Abstract
Mammalian sex chromosomes evolved from an ordinary pair of autosomes. The X chromosome is highly conserved, whereas the Y chromosome varies among species in size, structure, and gene content. Unlike autosomes that contain randomly mixed collections of genes, the sex chromosomes are enriched in testis-biased genes related to sexual development and reproduction, particularly in spermatogenesis and male fertility. This review focuses on how sex chromosome dosage compensation takes place and why meiotic sex chromosome inactivation occurs during spermatogenesis. Furthermore, the review also emphasizes how testis-biased genes are enriched on the sex chromosomes and their functions in male fertility. It is concluded that sex chromosomes are critical to sexual development and male fertility; however, our understanding of how sex chromosome genes direct sexual development and fertility has been hampered by the structural complexities of the sex chromosomes and by the multicopy nature of the testis gene families that also play a role in immunity, cancer development, and brain function.
Collapse
Affiliation(s)
- Wan-Sheng Liu
- Department of Animal Science, Center for Reproductive Biology and Health, College of Agricultural Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
16
|
Epigenetic regulation of MAGE family in human cancer progression-DNA methylation, histone modification, and non-coding RNAs. Clin Epigenetics 2018; 10:115. [PMID: 30185218 PMCID: PMC6126015 DOI: 10.1186/s13148-018-0550-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 08/30/2018] [Indexed: 12/20/2022] Open
Abstract
The melanoma antigen gene (MAGE) proteins are a group of highly conserved family members that contain a common MAGE homology domain. Type I MAGEs are relevant cancer-testis antigens (CTAs), and originally considered as attractive targets for cancer immunotherapy due to their typically high expression in tumor tissues but restricted expression in normal adult tissues. Here, we reviewed the recent discoveries and ideas that illustrate the biological functions of MAGE family in cancer progression. Furthermore, we also highlighted the current understanding of the epigenetic mechanism of MAGE family expression in human cancers.
Collapse
|
17
|
Gordeeva O. Cancer-testis antigens: Unique cancer stem cell biomarkers and targets for cancer therapy. Semin Cancer Biol 2018; 53:75-89. [PMID: 30171980 DOI: 10.1016/j.semcancer.2018.08.006] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 08/15/2018] [Accepted: 08/17/2018] [Indexed: 02/07/2023]
Abstract
Cancer-testis antigens (CTAs) are considered as unique and promising cancer biomarkers and targets for cancer therapy. CTAs are multifunctional protein group with specific expression patterns in normal embryonic and adult cells and various types of cancer cells. CTAs are involved in regulating of the basic cellular processes during development, stem cell differentiation and carcinogenesis though the biological roles and cell functions of CTA families remain largely unclear. Analysis of CTA expression patterns in embryonic germ and somatic cells, pluripotent and multipotent stem cells, cancer stem cells and their cell descendants indicates that rearrangements of characteristic CTA profiles (aberrant expression) could be associated with cancer transformation and failure of the developmental program of cell lineage specification and germ line restriction. Therefore, aberrant CTA profiles can be used as panels of biomarkers for diagnoses and the selection of cancer treatment strategies. Moreover, immunogenic CTAs are prospective targets for cancer immunotherapy. Clinical trials testing broad range of cancer therapeutic vaccines against antigens of MAGEA and NY-ESO-1 families for treating various cancers have shown mixed clinical efficiency, safety and tolerability, suggesting the requirement of in-depth research of CTA expression in normal and cancer stem cells and extensive clinical trials for improving cancer immunotherapy technologies. This review focuses on recent advancement in study of CTAs in normal and cancer cells, particularly in normal and cancer stem cells, and provides a new insight into CTA expression patterns during normal and cancer stem cell lineage development. Additionally, new approaches in development of effective CTA-based therapies exclusively targeting cancer stem cells will be discussed.
Collapse
Affiliation(s)
- Olga Gordeeva
- Laboratory of Cell and Molecular Mechanisms of Histogenesis, Kol'tsov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov Street, Moscow, 119334, Russia.
| |
Collapse
|
18
|
Gündoğdu A, Aydın EB, Sezgintürk MK. A novel electrochemical immunosensor based on ITO modified by carboxyl-ended silane agent for ultrasensitive detection of MAGE-1 in human serum. Anal Biochem 2017; 537:84-92. [PMID: 28916435 DOI: 10.1016/j.ab.2017.08.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 08/25/2017] [Accepted: 08/26/2017] [Indexed: 10/18/2022]
Abstract
A new, low-cost electrochemical immunosensor was developed for rapid detection of Melanoma-associated antigen 1 (MAGE-1), a cancer biomarker. The fabrication procedure of immunosensor was based on the covalent immobilization of anti-MAGE-1, biorecognition molecule, on ITO electrode by carboxyethylsilanetriol (CTES) monolayer. The biosensing MAGE-1 antigen was monitored by using electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) technique. Apart from these techniques, single frequency impedance (SFI) was used for investigation of antibody-antigen interactions. Scanning electron microscopy (SEM), fourier transform infrared spectroscopy (FTIR), atomic force microscopy (AFM) were utilized for characterization of the proposed biosensor. To fabricate highly sensitive, good stability immunosensor, some parameters were optimized. Under optimal conditions, the developed electrochemical immunosensor for MAGE-1 exhibited a dynamic range of 4 fg/mL and 200 fg/mL with a low detection limit of 1.30 fg/mL. It had acceptable repeatability (5.05%, n = 20) and good storage stability (3.58% loss after 10 weeks). Moreover, this electrochemical immunosensor has been successfully applied to the determination of MAGE-1 in human serum samples.
Collapse
Affiliation(s)
- Aslı Gündoğdu
- Namık Kemal University, Faculty of Science, Chemistry Department, Biochemistry Division, Tekirdağ, Turkey
| | - Elif Burcu Aydın
- Namık Kemal University, Scientific and Technological Research Center, Tekirdağ, Turkey.
| | - Mustafa Kemal Sezgintürk
- Çanakkale Onsekiz Mart University, Faculty of Engineering, Bioengineering Department, Çanakkale, Turkey
| |
Collapse
|
19
|
Park S, Sung Y, Jeong J, Choi M, Lee J, Kwon W, Jang S, Park SJ, Kim JY, Kim SH, Yoon D, Ryoo ZY, Kim MO. Critical roles of hMAGEA2 in induced pluripotent stem cell pluripotency, proliferation, and differentiation. Cell Biochem Funct 2017; 35:392-400. [PMID: 28895148 DOI: 10.1002/cbf.3286] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/30/2017] [Accepted: 07/07/2017] [Indexed: 12/20/2022]
Abstract
Induced pluripotent stem (iPS) cells are important for clinical application and stem cell research. Although human melanoma-associated antigen A2 (hMAGEA2) expression is known to affect differentiation in embryonic stem cells, its specific role in iPS cells remains unclear. To evaluate the function of hMAGEA2 and its characteristics in iPS cells, we produced hMAGEA2-overexpressing iPS cells from hMAGEA2-overexpressing transgenic mice. Although the iPS cells with overexpressed hMAGEA2 did not differ in morphology, their pluripotency, and self-renewal related genes (Nanog, Oct3/4, Sox2, and Stat3), expression level was significantly upregulated. Moreover, hMAGEA2 contributed to the promotion of cell cycle progression, thereby accelerating cell proliferation. Through embryoid body formation in vitro and teratoma formation in vivo, we demonstrated that hMAGEA2 critically decreases the differentiation ability of iPS cells. These data indicate that hMAGEA2 intensifies the self-renewal, pluripotency, and degree of proliferation of iPS cells, while significantly repressing their differentiation efficiency. Therefore, our findings prove that hMAGEA2 plays key roles in iPS cells.
Collapse
Affiliation(s)
- Song Park
- School of Life Science, BK21 plus KNU Creative Bio Research Group, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea.,Core Protein Resources Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Yonghun Sung
- School of Life Science, BK21 plus KNU Creative Bio Research Group, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Jain Jeong
- School of Life Science, BK21 plus KNU Creative Bio Research Group, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Minjee Choi
- School of Life Science, BK21 plus KNU Creative Bio Research Group, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Jinhee Lee
- School of Life Science, BK21 plus KNU Creative Bio Research Group, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Wookbong Kwon
- School of Life Science, BK21 plus KNU Creative Bio Research Group, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Soyoung Jang
- School of Life Science, BK21 plus KNU Creative Bio Research Group, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Si Jun Park
- School of Life Science, BK21 plus KNU Creative Bio Research Group, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Jae Young Kim
- Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, Daegu, South Korea
| | - Sung Hyun Kim
- China-US (Henan) Hormel Cancer Institute, No.127 Dongming Road, Zhengzhou, Henan 450008, China
| | - Duhak Yoon
- The School of Animal BT Science, Kyungpook National University, Sangju-si, Gyeongsangbuk-do, South Korea
| | - Zae Young Ryoo
- School of Life Science, BK21 plus KNU Creative Bio Research Group, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Myoung Ok Kim
- The School of Animal BT Science, Kyungpook National University, Sangju-si, Gyeongsangbuk-do, South Korea
| |
Collapse
|
20
|
Gordeeva OF, Pochaev VA. Expression of cancer-testis antigens of the Mage family in mouse oocytes and early embryos. Russ J Dev Biol 2017. [DOI: 10.1134/s1062360417040051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Pitcovski J, Shahar E, Aizenshtein E, Gorodetsky R. Melanoma antigens and related immunological markers. Crit Rev Oncol Hematol 2017; 115:36-49. [DOI: 10.1016/j.critrevonc.2017.05.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 05/01/2017] [Accepted: 05/02/2017] [Indexed: 01/12/2023] Open
|
22
|
Lee AK, Potts PR. A Comprehensive Guide to the MAGE Family of Ubiquitin Ligases. J Mol Biol 2017; 429:1114-1142. [PMID: 28300603 DOI: 10.1016/j.jmb.2017.03.005] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 03/07/2017] [Accepted: 03/07/2017] [Indexed: 12/28/2022]
Abstract
Melanoma antigen (MAGE) genes are conserved in all eukaryotes and encode for proteins sharing a common MAGE homology domain. Although only a single MAGE gene exists in lower eukaryotes, the MAGE family rapidly expanded in eutherians and consists of more than 50 highly conserved genes in humans. A subset of MAGEs initially garnered interest as cancer biomarkers and immunotherapeutic targets due to their antigenic properties and unique expression pattern that is primary restricted to germ cells and aberrantly reactivated in various cancers. However, further investigation revealed that MAGEs not only drive tumorigenesis but also regulate pathways essential for diverse cellular and developmental processes. Therefore, MAGEs are implicated in a broad range of diseases including neurodevelopmental, renal, and lung disorders, and cancer. Recent biochemical and biophysical studies indicate that MAGEs assemble with E3 RING ubiquitin ligases to form MAGE-RING ligases (MRLs) and act as regulators of ubiquitination by modulating ligase activity, substrate specification, and subcellular localization. Here, we present a comprehensive guide to MAGEs highlighting the molecular mechanisms of MRLs and their physiological roles in germ cell and neural development, oncogenic functions in cancer, and potential as therapeutic targets in disease.
Collapse
Affiliation(s)
- Anna K Lee
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - Patrick Ryan Potts
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA.
| |
Collapse
|
23
|
Abstract
The nucleus is separated from the cytosol by the nuclear envelope, which is a double lipid bilayer composed of the outer nuclear membrane and the inner nuclear membrane. The intermediate filament proteins lamin A, lamin B, and lamin C form a network underlying the inner nuclear membrane. This proteinaceous network provides the nucleus with its strength, rigidity, and elasticity. Positioned within the inner nuclear membrane are more than 150 inner nuclear membrane proteins, many of which interact directly with lamins and require lamins for their inner nuclear membrane localization. Inner nuclear membrane proteins and the nuclear lamins define the nuclear lamina. These inner nuclear membrane proteins have tissue-specific expression and diverse functions including regulating cytoskeletal organization, nuclear architecture, cell cycle dynamics, and genomic organization. Loss or mutations in lamins and inner nuclear membrane proteins cause a wide spectrum of diseases. Here, I will review the functions of the well-studied nuclear lamina proteins and the diseases associated with loss or mutations in these proteins. © 2016 American Physiological Society. Compr Physiol 6:1655-1674, 2016.
Collapse
Affiliation(s)
- James M. Holaska
- Department of Pharmaceutical Sciences, University of the Sciences, Philadelphia, Pennsylvania, USA
| |
Collapse
|
24
|
Hou S, Xian L, Shi P, Li C, Lin Z, Gao X. The Magea gene cluster regulates male germ cell apoptosis without affecting the fertility in mice. Sci Rep 2016; 6:26735. [PMID: 27226137 PMCID: PMC4880894 DOI: 10.1038/srep26735] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 05/06/2016] [Indexed: 11/21/2022] Open
Abstract
While apoptosis is essential for male germ cell development, improper activation of apoptosis in the testis can affect spermatogenesis and cause reproduction defects. Members of the MAGE-A (melanoma antigen family A) gene family are frequently clustered in mammalian genomes and are exclusively expressed in the testes of normal animals but abnormally activated in a wide variety of cancers. We investigated the potential roles of these genes in spermatogenesis by generating a mouse model with a 210-kb genomic deletion encompassing six members of the Magea gene cluster (Magea1, Magea2, Magea3, Magea5, Magea6 and Magea8). Male mice carrying the deletion displayed smaller testes from 2 months old with a marked increase in apoptotic germ cells in the first wave of spermatogenesis. Furthermore, we found that Magea genes prevented stress-induced spermatogenic apoptosis after N-ethyl-N-nitrosourea (ENU) treatment during the adult stage. Mechanistically, deletion of the Magea gene cluster resulted in a dramatic increase in apoptotic germ cells, predominantly spermatocytes, with activation of p53 and induction of Bax in the testes. These observations demonstrate that the Magea genes are crucial in maintaining normal testicular size and protecting germ cells from excessive apoptosis under genotoxic stress.
Collapse
Affiliation(s)
- Siyuan Hou
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, China
| | - Li Xian
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, China
| | - Peiliang Shi
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, China
| | - Chaojun Li
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, China
| | - Zhaoyu Lin
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, China
| | - Xiang Gao
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, China
| |
Collapse
|
25
|
Oncogenic cancer/testis antigens: prime candidates for immunotherapy. Oncotarget 2016; 6:15772-87. [PMID: 26158218 PMCID: PMC4599236 DOI: 10.18632/oncotarget.4694] [Citation(s) in RCA: 228] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 06/21/2015] [Indexed: 12/15/2022] Open
Abstract
Recent developments have set the stage for immunotherapy as a supplement to conventional cancer treatment. Consequently, a significant effort is required to further improve efficacy and specificity, particularly the identification of optimal therapeutic targets for clinical testing. Cancer/testis antigens are immunogenic, highly cancer-specific, and frequently expressed in various types of cancer, which make them promising candidate targets for cancer immunotherapy, including cancer vaccination and adoptive T-cell transfer with chimeric T-cell receptors. Our current understanding of tumor immunology and immune escape suggests that targeting oncogenic antigens may be beneficial, meaning that identification of cancer/testis antigens with oncogenic properties is of high priority. Recent work from our lab and others provide evidence that many cancer/testis antigens, in fact, have oncogenic functions, including support of growth, survival and metastasis. This novel insight into the function of cancer/testis antigens has the potential to deliver more effective cancer vaccines. Moreover, immune targeting of oncogenic cancer/testis antigens in combination with conventional cytotoxic therapies or novel immunotherapies such as checkpoint blockade or adoptive transfer, represents a highly synergistic approach with the potential to improve patient survival.
Collapse
|
26
|
Gjerstorff MF, Terp MG, Hansen MB, Ditzel HJ. The role of GAGE cancer/testis antigen in metastasis: the jury is still out. BMC Cancer 2016; 16:7. [PMID: 26747105 PMCID: PMC4706694 DOI: 10.1186/s12885-015-1998-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 12/11/2015] [Indexed: 11/13/2022] Open
Abstract
Background GAGE cancer/testis antigens are frequently expressed in various types of malignancies and represent attractive targets for immunotherapy, however their role in cancer initiation and progression has remained elusive. GAGE proteins are expressed in normal cells during early development with migratory and invasive properties and were found to be upregulated in cancer cells with metastasizing potential in a gastric cancer model. Methods We have addressed the direct role of GAGE proteins in supporting metastasis using an isogenic metastasis model of human cancer, consisting of 4 isogenic cell lines, which are equally tumorigenic in immunodeficient mice, but differ with their ability to generate metastases in the lungs and lymph nodes. Results Although GAGE proteins were strongly upregulated in the highly metastatic clone (CL16) compared to non-metastatic (NM2C5), weakly metastatic (M4A4) and moderately metastatic clones (LM3), stable downregulation of GAGE expression did not affect the ability of CL16 cells to establish primary tumors and form metastasis in the lungs of immunodeficient mice. Conclusions These results suggest that GAGE proteins per se do not support metastasis and that further studies are needed to clarify the contribution of GAGE proteins to the metastatic potential of different types of cancer cells.
Collapse
Affiliation(s)
- Morten Frier Gjerstorff
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Winsloewparken 25, 3, Odense, DK-5000, Denmark.
| | - Mikkel Green Terp
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Winsloewparken 25, 3, Odense, DK-5000, Denmark.
| | - Malene Bredahl Hansen
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Winsloewparken 25, 3, Odense, DK-5000, Denmark.
| | - Henrik Jørn Ditzel
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Winsloewparken 25, 3, Odense, DK-5000, Denmark. .,Department of Oncology, Odense University Hospital, Sdr. Boulevard 29, Odense, DK-5000, Denmark.
| |
Collapse
|
27
|
Gordeeva OF. Expression of cancer-testis antigens of Mage-a and Mage-b families in mouse embryonic fibroblasts cultured in vitro. Russ J Dev Biol 2015. [DOI: 10.1134/s1062360415030030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Cancer testis antigen expression in testicular germ cell tumors and in intratubular germ cell neoplasia. Mod Pathol 2015; 28:742-4. [PMID: 25925286 DOI: 10.1038/modpathol.2014.144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
29
|
Yilmaz-Ozcan S, Sade A, Kucukkaraduman B, Kaygusuz Y, Senses KM, Banerjee S, Gure AO. Epigenetic mechanisms underlying the dynamic expression of cancer-testis genes, PAGE2, -2B and SPANX-B, during mesenchymal-to-epithelial transition. PLoS One 2014; 9:e107905. [PMID: 25229454 PMCID: PMC4168264 DOI: 10.1371/journal.pone.0107905] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Accepted: 08/22/2014] [Indexed: 12/14/2022] Open
Abstract
Cancer-testis (CT) genes are expressed in various cancers but not in normal tissues other than in cells of the germline. Although DNA demethylation of promoter-proximal CpGs of CT genes is linked to their expression in cancer, the mechanisms leading to demethylation are unknown. To elucidate such mechanisms we chose to study the Caco-2 colorectal cancer cell line during the course of its spontaneous differentiation in vitro, as we found CT genes, in particular PAGE2, -2B and SPANX-B, to be up-regulated during this process. Differentiation of these cells resulted in a mesenchymal-to-epithelial transition (MET) as evidenced by the gain of epithelial markers CDX2, Claudin-4 and E-cadherin, and a concomitant loss of mesenchymal markers Vimentin, Fibronectin-1 and Transgelin. PAGE2 and SPAN-X up-regulation was accompanied by an increase in Ten-eleven translocation-2 (TET2) expression and cytosine 5-hydroxymethylation as well as the disassociation of heterochromatin protein 1 and the polycomb repressive complex 2 protein EZH2 from promoter-proximal regions of these genes. Reversal of differentiation resulted in down-regulation of PAGE2, -2B and SPANX-B, and induction of epithelial-to-mesenchymal transition (EMT) markers, demonstrating the dynamic nature of CT gene regulation in this model.
Collapse
Affiliation(s)
- Sinem Yilmaz-Ozcan
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Asli Sade
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Baris Kucukkaraduman
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Yasemin Kaygusuz
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Kerem Mert Senses
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Sreeparna Banerjee
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Ali Osmay Gure
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
- * E-mail:
| |
Collapse
|
30
|
Differences in gene expression between mouse and human for dynamically regulated genes in early embryo. PLoS One 2014; 9:e102949. [PMID: 25089626 PMCID: PMC4121084 DOI: 10.1371/journal.pone.0102949] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 06/24/2014] [Indexed: 11/19/2022] Open
Abstract
Infertility is a worldwide concern that can be treated with in vitro fertilization (IVF). Improvements in IVF and infertility treatment depend largely on better understanding of the molecular mechanisms for human preimplantation development. Several large-scale studies have been conducted to identify gene expression patterns for the first five days of human development, and many functional studies utilize mouse as a model system. We have identified genes of possible importance for this time period by analyzing human microarray data and available data from online databases. We selected 70 candidate genes for human preimplantation development and investigated their expression in the early mouse development from oocyte to the 8-cell stage. Maternally loaded genes expectedly decreased in expression during development both in human and mouse. We discovered that 25 significantly upregulated genes after fertilization in human included 13 genes whose orthologs in mouse behaved differently and mimicked the expression profile of maternally expressed genes. Our findings highlight many significant differences in gene expression patterns during mouse and human preimplantation development. We also describe four cancer-testis antigen families that are also highly expressed in human embryos: PRAME, SSX, GAGE and MAGEA.
Collapse
|
31
|
Darrow EM, Chadwick BP. A novel tRNA variable number tandem repeat at human chromosome 1q23.3 is implicated as a boundary element based on conservation of a CTCF motif in mouse. Nucleic Acids Res 2014; 42:6421-35. [PMID: 24753417 PMCID: PMC4041453 DOI: 10.1093/nar/gku280] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 03/24/2014] [Accepted: 03/25/2014] [Indexed: 01/08/2023] Open
Abstract
The human genome contains numerous large tandem repeats, many of which remain poorly characterized. Here we report a novel transfer RNA (tRNA) tandem repeat on human chromosome 1q23.3 that shows extensive copy number variation with 9-43 repeat units per allele and displays evidence of meiotic and mitotic instability. Each repeat unit consists of a 7.3 kb GC-rich sequence that binds the insulator protein CTCF and bears the chromatin hallmarks of a bivalent domain in human embryonic stem cells. A tRNA containing tandem repeat composed of at least three 7.6-kb GC-rich repeat units reside within a syntenic region of mouse chromosome 1. However, DNA sequence analysis reveals that, with the exception of the tRNA genes that account for less than 6% of a repeat unit, the remaining 7.2 kb is not conserved with the notable exception of a 24 base pair sequence corresponding to the CTCF binding site, suggesting an important role for this protein at the locus.
Collapse
Affiliation(s)
- Emily M Darrow
- Department of Biological Science, Florida State University, Tallahassee, FL 32306-4295, USA
| | - Brian P Chadwick
- Department of Biological Science, Florida State University, Tallahassee, FL 32306-4295, USA
| |
Collapse
|
32
|
Mather JP, Roberts PE, Pan Z, Chen F, Hooley J, Young P, Xu X, Smith DH, Easton A, Li P, Bonvini E, Koenig S, Moore PA. Isolation of cancer stem like cells from human adenosquamous carcinoma of the lung supports a monoclonal origin from a multipotential tissue stem cell. PLoS One 2013; 8:e79456. [PMID: 24324581 PMCID: PMC3850920 DOI: 10.1371/journal.pone.0079456] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 09/23/2013] [Indexed: 01/06/2023] Open
Abstract
There is increasing evidence that many solid tumors are hierarchically organized with the bulk tumor cells having limited replication potential, but are sustained by a stem-like cell that perpetuates the tumor. These cancer stem cells have been hypothesized to originate from transformation of adult tissue stem cells, or through re-acquisition of stem-like properties by progenitor cells. Adenosquamous carcinoma (ASC) is an aggressive type of lung cancer that contains a mixture of cells with squamous (cytokeratin 5+) and adenocarcinoma (cytokeratin 7+) phenotypes. The origin of these mixtures is unclear as squamous carcinomas are thought to arise from basal cells in the upper respiratory tract while adenocarcinomas are believed to form from stem cells in the bronchial alveolar junction. We have isolated and characterized cancer stem-like populations from ASC through application of selective defined culture medium initially used to grow human lung stem cells. Homogeneous cells selected from ASC tumor specimens were stably expanded in vitro. Primary xenografts and metastatic lesions derived from these cells in NSG mice fully recapitulate both the adenocarcinoma and squamous features of the patient tumor. Interestingly, while the CSLC all co-expressed cytokeratins 5 and 7, most xenograft cells expressed either one, or neither, with <10% remaining double positive. We also demonstrated the potential of the CSLC to differentiate to multi-lineage structures with branching lung morphology expressing bronchial, alveolar and neuroendocrine markers in vitro. Taken together the properties of these ASC-derived CSLC suggests that ASC may arise from a primitive lung stem cell distinct from the bronchial-alveolar or basal stem cells.
Collapse
MESH Headings
- Adult
- Adult Stem Cells/metabolism
- Adult Stem Cells/pathology
- Animals
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Bronchi/metabolism
- Bronchi/pathology
- Carcinoma, Adenosquamous/genetics
- Carcinoma, Adenosquamous/metabolism
- Carcinoma, Adenosquamous/pathology
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Cell Differentiation
- Cell Proliferation
- Clone Cells
- Gene Expression
- Gene Expression Profiling
- Humans
- Keratin-5/genetics
- Keratin-5/metabolism
- Keratin-7/genetics
- Keratin-7/metabolism
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Mice
- Mice, SCID
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Pulmonary Alveoli/metabolism
- Pulmonary Alveoli/pathology
- Transplantation, Heterologous
Collapse
Affiliation(s)
- Jennie P. Mather
- MacroGenics, Inc., South San Francisco, California, United States of America
- * E-mail:
| | - Penelope E. Roberts
- MacroGenics, Inc., South San Francisco, California, United States of America
| | - Zhuangyu Pan
- MacroGenics, Inc., South San Francisco, California, United States of America
| | - Francine Chen
- MacroGenics, Inc., South San Francisco, California, United States of America
| | - Jeffrey Hooley
- MacroGenics, Inc., South San Francisco, California, United States of America
| | - Peter Young
- MacroGenics, Inc., South San Francisco, California, United States of America
| | - Xiaolin Xu
- MacroGenics, Inc., South San Francisco, California, United States of America
| | - Douglas H. Smith
- MacroGenics, Inc., South San Francisco, California, United States of America
| | - Ann Easton
- MacroGenics, Inc., South San Francisco, California, United States of America
| | - Panjing Li
- MacroGenics, Inc., South San Francisco, California, United States of America
| | - Ezio Bonvini
- MacroGenics, Inc., Rockville, Maryland, United States of America
| | - Scott Koenig
- MacroGenics, Inc., Rockville, Maryland, United States of America
| | - Paul A. Moore
- MacroGenics, Inc., Rockville, Maryland, United States of America
| |
Collapse
|
33
|
Kim R, Kulkarni P, Hannenhalli S. Derepression of Cancer/testis antigens in cancer is associated with distinct patterns of DNA hypomethylation. BMC Cancer 2013; 13:144. [PMID: 23522060 PMCID: PMC3618251 DOI: 10.1186/1471-2407-13-144] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 03/14/2013] [Indexed: 01/29/2023] Open
Abstract
Background The Cancer/Testis Antigens (CTAs) are a heterogeneous group of proteins whose expression is typically restricted to the testis. However, they are aberrantly expressed in most cancers that have been examined to date. Broadly speaking, the CTAs can be divided into two groups: the CTX antigens that are encoded by the X-linked genes and the non-X CT antigens that are encoded by the autosomes. Unlike the non-X CTAs, the CTX antigens form clusters of closely related gene families and their expression is frequently associated with advanced disease with poorer prognosis. Regardless however, the mechanism(s) underlying their selective derepression and stage-specific expression in cancer remain poorly understood, although promoter DNA demethylation is believed to be the major driver. Methods Here, we report a systematic analysis of DNA methylation profiling data from various tissue types to elucidate the mechanism underlying the derepression of the CTAs in cancer. We analyzed the methylation profiles of 501 samples including sperm, several cancer types, and their corresponding normal somatic tissue types. Results We found strong evidence for specific DNA hypomethylation of CTA promoters in the testis and cancer cells but not in their normal somatic counterparts. We also found that hypomethylation was clustered on the genome into domains that coincided with nuclear lamina-associated domains (LADs) and that these regions appeared to be insulated by CTCF sites. Interestingly, we did not observe any significant differences in the hypomethylation pattern between the CTAs without CpG islands and the CTAs with CpG islands in the proximal promoter. Conclusion Our results corroborate that widespread DNA hypomethylation appears to be the driver in the derepression of CTA expression in cancer and furthermore, demonstrate that these hypomethylated domains are associated with the nuclear lamina-associated domains (LADS). Taken together, our results suggest that wide-spread methylation changes in cancer are linked to derepression of germ-line-specific genes that is orchestrated by the three dimensional organization of the cancer genome.
Collapse
Affiliation(s)
- Robert Kim
- James Buchanan Brady Urological Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | | | | |
Collapse
|
34
|
Gjerstorff MF, Rösner HI, Pedersen CB, Greve KBV, Schmidt S, Wilson KL, Mollenhauer J, Besir H, Poulsen FM, Møllegaard NE, Ditzel HJ. GAGE cancer-germline antigens are recruited to the nuclear envelope by germ cell-less (GCL). PLoS One 2012; 7:e45819. [PMID: 23029259 PMCID: PMC3447759 DOI: 10.1371/journal.pone.0045819] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 08/22/2012] [Indexed: 01/21/2023] Open
Abstract
GAGE proteins are highly similar, primate-specific molecules with unique primary structure and undefined cellular roles. They are restricted to cells of the germ line in adult healthy individuals, but are broadly expressed in a wide range of cancers. In a yeast two-hybrid screen we identified the metazoan transcriptional regulator, Germ cell-less (GCL), as an interaction partner of GAGE12I. GCL directly binds LEM-domain proteins (LAP2β, emerin, MAN1) at the nuclear envelope, and we found that GAGE proteins were recruited to the nuclear envelope inner membrane by GCL. Based on yeast two-hybrid analysis and pull-down experiments of GCL polypeptides, GCL residues 209–320 (which includes the BACK domain) were deduced sufficient for association with GAGE proteins. GAGE mRNAs and GCL mRNA were demonstrated in human testis and most types of cancers, and at the protein level GAGE members and GCL were co-expressed in cancer cell lines. Structural studies of GAGE proteins revealed no distinct secondary or tertiary structure, suggesting they are intrinsically disordered. Interestingly GAGE proteins formed stable complexes with dsDNA in vitro at physiological concentrations, and GAGE12I bound several different dsDNA fragments, suggesting sequence-nonspecific binding. Dual association of GAGE family members with GCL at the nuclear envelope inner membrane in cells, and with dsDNA in vitro, implicate GAGE proteins in chromatin regulation in germ cells and cancer cells.
Collapse
Affiliation(s)
- Morten F Gjerstorff
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Kulkarni P, Shiraishi T, Rajagopalan K, Kim R, Mooney SM, Getzenberg RH. Cancer/testis antigens and urological malignancies. Nat Rev Urol 2012; 9:386-96. [PMID: 22710665 DOI: 10.1038/nrurol.2012.117] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cancer/testis antigens (CTAs) are a group of tumour-associated antigens (TAAs) that display normal expression in the adult testis--an immune-privileged organ--but aberrant expression in several types of cancers, particularly in advanced cancers with stem cell-like characteristics. There has been an explosion in CTA-based research since CTAs were first identified in 1991 and MAGE-1 was shown to elicit an autologous cytotoxic T-lymphocyte (CTL) response in a patient with melanoma. The resulting data have not only highlighted a role for CTAs in tumorigenesis, but have also underscored the translational potential of these antigens for detecting and treating many types of cancers. Studies that have investigated the use of CTAs for the clinical management of urological malignancies indicate that these TAAs have potential roles as novel biomarkers, with increased specificity and sensitivity compared to those currently used in the clinic, and therapeutic targets for cancer immunotherapy. Increasing evidence supports the utilization of these promising tools for urological indications.
Collapse
Affiliation(s)
- Prakash Kulkarni
- James Buchanan Brady Urological Institute, 600 North Wolfe Street, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| | | | | | | | | | | |
Collapse
|
36
|
Bai Q, Assou S, Haouzi D, Ramirez JM, Monzo C, Becker F, Gerbal-Chaloin S, Hamamah S, De Vos J. Dissecting the first transcriptional divergence during human embryonic development. Stem Cell Rev Rep 2012; 8:150-62. [PMID: 21750961 PMCID: PMC3285757 DOI: 10.1007/s12015-011-9301-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The trophoblast cell lineage is specified early at the blastocyst stage, leading to the emergence of the trophectoderm and the pluripotent cells of the inner cell mass. Using a double mRNA amplification technique and a comparison with transcriptome data on pluripotent stem cells, placenta, germinal and adult tissues, we report here some essential molecular features of the human mural trophectoderm. In addition to genes known for their role in placenta (CGA, PGF, ALPPL2 and ABCG2), human trophectoderm also strongly expressed Laminins, such as LAMA1, and the GAGE Cancer/Testis genes. The very high level of ABCG2 expression in trophectoderm, 7.9-fold higher than in placenta, suggests a major role of this gene in shielding the very early embryo from xenobiotics. Several genes, including CCKBR and DNMT3L, were specifically up-regulated only in trophectoderm, indicating that the trophoblast cell lineage shares with the germinal lineage a transient burst of DNMT3L expression. A trophectoderm core transcriptional regulatory circuitry formed by 13 tightly interconnected transcription factors (CEBPA, GATA2, GATA3, GCM1, KLF5, MAFK, MSX2, MXD1, PPARD, PPARG, PPP1R13L, TFAP2C and TP63), was found to be induced in trophectoderm and maintained in placenta. The induction of this network could be recapitulated in an in vitro trophoblast differentiation model.
Collapse
Affiliation(s)
- Qiang Bai
- INSERM U1040, Montpellier, 34000, France
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Meek DW, Marcar L. MAGE-A antigens as targets in tumour therapy. Cancer Lett 2012; 324:126-32. [PMID: 22634429 DOI: 10.1016/j.canlet.2012.05.011] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 05/10/2012] [Accepted: 05/13/2012] [Indexed: 10/28/2022]
Abstract
MAGE-A proteins constitute a sub-family of Cancer-Testis Antigens which are expressed mainly, but not exclusively, in germ cells. They are also expressed in various human cancers where they are associated with, and may drive, malignancy. MAGE-A proteins are highly immunogenic and are considered as potential targets for cancer vaccines and/or immuno-therapy. Moreover, recent advances in our understanding of their molecular pathology have revealed interactions that offer potential as therapeutic targets. Here we review recent progress in this area and consider how these interactions might be exploited, especially for the treatment of malignant cancers for which available treatments are inadequate.
Collapse
Affiliation(s)
- David W Meek
- Division of Cancer Research, Medical Research Institute, College of Medicine, Dentistry and Nursing, University of Dundee, Ninewells Hospital, Dundee DD1 9SY, United Kingdom.
| | | |
Collapse
|
38
|
Ghafouri-Fard S, Modarressi MH. Expression of cancer-testis genes in brain tumors: implications for cancer immunotherapy. Immunotherapy 2012; 4:59-75. [PMID: 22150001 DOI: 10.2217/imt.11.145] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Cancer-testis (CT) genes have a restricted expression in normal tissues except testis and a wide range of tumor types. Testis is an immune-privileged site as a result of a blood barrier and lack of HLA class I expression on the surface of germ cells. Hence, if testis-specific genes are expressed in other tissues, they can be immunogenic. Expression of some CT genes in a high percentage of brain tumors makes them potential targets for immunotherapy. In addition, expression of CT genes in cancer stem cells may provide special targets for treatment of cancer recurrences and metastasis. The presence of antibodies against different CT genes in patients with advanced tumors has raised the possibility of polyvalent antitumor vaccine application.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran 19857-17443, Iran.
| | | |
Collapse
|
39
|
Chen YT, Chiu R, Lee P, Beneck D, Jin B, Old LJ. Chromosome X-encoded cancer/testis antigens show distinctive expression patterns in developing gonads and in testicular seminoma. Hum Reprod 2011; 26:3232-43. [DOI: 10.1093/humrep/der330] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
40
|
Epigenetic regulation of the X-chromosomal macrosatellite repeat encoding for the cancer/testis gene CT47. Eur J Hum Genet 2011; 20:185-91. [PMID: 21811308 DOI: 10.1038/ejhg.2011.150] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Macrosatellite repeats (MSRs) present an extreme example of copy number variation, yet their epigenetic regulation in normal and malignant cells is largely understudied. The CT47 cancer/testis antigen located on human Xq24 is organized as an array of 4.8 kb large units. CT47 is expressed in the testis and in certain types of cancer, but not in non-malignant somatic tissue. We used CT47 as a model to study a possible correlation between copy number variation, epigenetic regulation and transcription originating from MSRs in normal and malignant cells. In lymphoblastoid cell lines and primary fibroblasts, CT47 expression was absent, consistent with the observed heterochromatic structure and DNA hypermethylation of the CT47 promoter. Heterochromatinization of CT47 occurs early during development as human embryonic stem cells show high levels of DNA methylation and repressive chromatin modifications in the absence of CT47 expression. In small-cell lung carcinoma cell lines with low levels of CT47 transcripts, we observed reduced levels of histone 3 lysine 9 trimethylation (H3K9me3) and trimethylated lysine 27 of histone H3 (H3K27me3) without concomitant increase in euchromatic histone modifications. DNA methylation levels in the promoter region of CT47 are also significantly reduced in these cells. This supports a model in which during oncogenic transformation, there is a relative loss of repressive chromatin markers resulting in leaky expression of CT47. We conclude that some MSRs, like CT47 and the autosomal MSRs TAF11-Like, PRR20, ZAV and D4Z4, the latter being involved in facioscapulohumeral muscular dystrophy, seem to be governed by common regulatory mechanisms with their abundant expression mostly being restricted to the germ line.
Collapse
|
41
|
Lifantseva N, Koltsova A, Krylova T, Yakovleva T, Poljanskaya G, Gordeeva O. Expression patterns of cancer-testis antigens in human embryonic stem cells and their cell derivatives indicate lineage tracks. Stem Cells Int 2011; 2011:795239. [PMID: 21785609 PMCID: PMC3140037 DOI: 10.4061/2011/795239] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 04/25/2011] [Indexed: 11/20/2022] Open
Abstract
Pluripotent stem cells can differentiate into various lineages but undergo genetic and epigenetic changes during long-term cultivation and, therefore, require regular monitoring. The expression patterns of cancer-testis antigens (CTAs) MAGE-A2, -A3, -A4, -A6, -A8, -B2, and GAGE were examined in undifferentiated human embryonic stem (hES) cells, their differentiated derivatives, teratocarcinoma (hEC) cells, and cancer cell lines of neuroectodermal and mesodermal origin. Undifferentiated hES cells and embryoid body cells expressed MAGE-A3, -A6, -A4, -A8, and GAGEs while later differentiated derivatives expressed only MAGE-A8 or MAGE-A4. Likewise, mouse pluripotent stem cells also express CTAs of Magea but not Mageb family. Despite similarity of the hES and hEC cell expression patterns, MAGE-A2 and MAGE-B2 were detected only in hEC cells but not in hES cells. Moreover, our analysis has shown that CTAs are aberrantly expressed in cancer cell lines and display low tissue specificity. The identification of CTA expression patterns in pluripotent stem cells and their derivatives may be useful for isolation of abnormally CTA-expressing cells to improve the safety of stem-cell based therapy.
Collapse
Affiliation(s)
- Nadya Lifantseva
- Kol'tsov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov Street, Moscow 119334, Russia
| | | | | | | | | | | |
Collapse
|
42
|
Tremblay DC, Alexander G, Moseley S, Chadwick BP. Expression, tandem repeat copy number variation and stability of four macrosatellite arrays in the human genome. BMC Genomics 2010; 11:632. [PMID: 21078170 PMCID: PMC3018141 DOI: 10.1186/1471-2164-11-632] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Accepted: 11/15/2010] [Indexed: 11/13/2022] Open
Abstract
Background Macrosatellites are some of the largest variable number tandem repeats in the human genome, but what role these unusual sequences perform is unknown. Their importance to human health is clearly demonstrated by the 4q35 macrosatellite D4Z4 that is associated with the onset of the muscle degenerative disease facioscapulohumeral muscular dystrophy. Nevertheless, many other macrosatellite arrays in the human genome remain poorly characterized. Results Here we describe the organization, tandem repeat copy number variation, transmission stability and expression of four macrosatellite arrays in the human genome: the TAF11-Like array located on chromosomes 5p15.1, the SST1 arrays on 4q28.3 and 19q13.12, the PRR20 array located on chromosome 13q21.1, and the ZAV array at 9q32. All are polymorphic macrosatellite arrays that at least for TAF11-Like and SST1 show evidence of meiotic instability. With the exception of the SST1 array that is ubiquitously expressed, all are expressed at high levels in the testis and to a lesser extent in the brain. Conclusions Our results extend the number of characterized macrosatellite arrays in the human genome and provide the foundation for formulation of hypotheses to begin assessing their functional role in the human genome.
Collapse
Affiliation(s)
- Deanna C Tremblay
- Department of Biological Sciences, Florida State University, King Life Science Building, Tallahassee, FL 32306-4295, USA
| | | | | | | |
Collapse
|
43
|
Gjerstorff MF, Burns J, Ditzel HJ. Cancer-germline antigen vaccines and epigenetic enhancers: future strategies for cancer treatment. Expert Opin Biol Ther 2010; 10:1061-75. [PMID: 20420535 DOI: 10.1517/14712598.2010.485188] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
IMPORTANCE OF THE FIELD Immunotherapy holds great potential for disseminated cancer, and cancer-germline (CG) antigens are among the most promising tumor targets. They are widely expressed in different cancer types and are essentially tumor-specific, since their expression in normal tissues is largely restricted to immune-privileged sites. Although the therapeutic potential of these antigens may be compromised by their highly heterogeneous expression in many tumors and low frequency in some cancers, recent developments suggest that tumor-cell-selective enhancement of CG antigen gene expression can be achieved using epigenetic modifiers. AREAS COVERED IN THIS REVIEW We provide an overview of the potential of CG antigens as targets for cancer immunotherapy, including advantages and disadvantages. We also discuss the current state of development of CG antigen vaccines, and the potential synergistic effect of combining CG antigen immunotherapeutic strategies with epigenetic modifiers. WHAT THE READER WILL GAIN The reader will gain an overview of the past, present and future role of CG antigens in cancer immunotherapy. TAKE HOME MESSAGE Chemoimmunotherapy using epigenetic drugs and CG antigen vaccines may be a useful approach for treating cancer.
Collapse
|
44
|
Low J, Dowless M, Shiyanova T, Rowlinson S, Ricci-Vitiani L, de Maria R, Pallini R, Stancato L. Knockdown of cancer testis antigens modulates neural stem cell marker expression in glioblastoma tumor stem cells. ACTA ACUST UNITED AC 2010; 15:830-9. [PMID: 20639497 DOI: 10.1177/1087057110374983] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The cancer stem cell hypothesis posits that a subpopulation of cancer stem cells is frequently responsible for a tumor's progression and resistance to treatment. The differential cellular morphology and gene expression between cancer stem cells and the majority of the tumor is becoming a point of attack for research into the next generation of therapeutic agents that may work through an induction of differentiation rather than apoptosis. Advances in the field of high-content imaging (HCI), combined with modern shRNA technology and subpopulation analysis tools, have created an ideal screening system to detect these morphological changes in a subset of cells upon gene knockdown. The authors examined several glioblastoma stem cell isolates pre- and postdifferentiation to elucidate the phenotypic effects caused by both serum differentiation and gene knockdown. Neural markers were first characterized in these cells at varying states of differentiation using HCI and immunoblots. The authors then chose one of these isolates, in both the pre- and postdifferentiated forms, for further analysis and screened for morphological changes upon shRNA knockdown of a panel of cancer testis antigens (CTAs). CTAs are a family of proteins that are normally expressed in male germ cells as well as heterogeneously expressed in some metastatic tumors. This gene family has also been implicated in the differentiation of normal human stem cells, therefore making it an ideal candidate for modulation in tumor stem cells. Using their approach, the authors identified the differential effects of gene knockdown in both cell types leading to either changes in neural stem cell marker expression or a decreased cell density likely due to growth arrest or cell death. The resolution that HCI brings to a screen at the subpopulation level makes it an excellent tool for the analysis of phenotypic changes induced by shRNA knockdown in a variety of tumor stem cells.
Collapse
Affiliation(s)
- Jonathan Low
- Department of Cancer Cell Growth and Survival, Eli Lilly and Company, Indianapolis, IN, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Aoki H, Hara A, Niwa M, Yamada Y, Kunisada T. In vitro and in vivo differentiation of human embryonic stem cells into retina-like organs and comparison with that from mouse pluripotent epiblast stem cells. Dev Dyn 2009; 238:2266-79. [PMID: 19544586 DOI: 10.1002/dvdy.22008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Correctly inducing the differentiation of pluripotent hESCs to a specific lineage with high purity is highly desirable for regenerative cell therapy. Our first effort to perform in vitro differentiation of hESCs resulted in a limited recapitulation of the ocular tissue structures. When undifferentiated hESCs were placed in vivo into the ocular tissue, in this case into the vitreous cavity, 3-dimensional retina-like structures reminiscent of the invagination of the optic vesicle were generated. Immunohistochemical analysis confirmed the presence of both a neural retina-like cell layer and a retinal pigmented epithelium-like cell layer, possibly equivalent to the developing E12.5 mouse retina. Furthermore, mouse epiblast-derived stem cells, which are reported to share some characteristics with hESCs, but not with mouse ESCs, also generated retinal anlage-like structures in vivo. hESC-derived retina-like structures present a novel therapeutic possibility for retinal diseases and also provide a novel experimental system to study early human eye development.
Collapse
Affiliation(s)
- Hitomi Aoki
- Department of Tissue and Organ Development, Regeneration, and Advanced Medical Science, Gifu University Graduate School of Medicine, Gifu, Japan
| | | | | | | | | |
Collapse
|
46
|
Gjerstorff M, Burns JS, Nielsen O, Kassem M, Ditzel H. Epigenetic modulation of cancer-germline antigen gene expression in tumorigenic human mesenchymal stem cells: implications for cancer therapy. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 175:314-23. [PMID: 19498007 DOI: 10.2353/ajpath.2009.080893] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cancer-germline antigens are promising targets for cancer immunotherapy, but whether such therapies will also eliminate the primary tumor stem cell population remains undetermined. We previously showed that long-term cultures of telomerized adult human bone marrow mesenchymal stem cells can spontaneously evolve into tumor-initiating, mesenchymal stem cells (hMSC-TERT20), which have characteristics of clinical sarcoma cells. In this study, we used the hMSC-TERT20 tumor stem cell model to investigate the potential of cancer-germline antigens to serve as tumor stem cell targets. We found that tumorigenic transformation of hMSC-TERT20 cells induced the expression of members of several cancer-germline antigen gene families (ie, GAGE, MAGE-A, and XAGE-1), with promoter hypomethylation and histone acetylation of the corresponding genes. Both in vitro cultures and tumor xenografts derived from tumorigenic hMSC-TERT20 single cell subclones exhibited heterogeneous expression of both GAGE and MAGE-A proteins, and similar patterns of expression were observed in clinical sarcomas. Importantly, histone deacetylase and DNA methyltransferase inhibitors were able to induce more ubiquitous expression levels of cancer-germline antigens in hMSC-TERT20 cells, while their expression levels in primary human mesenchymal stem cells remained unaffected. The expression pattern of cancer-germline antigens in tumorigenic mesenchymal stem cells and sarcomas, plus their susceptibility to enhancement by epigenetic modulators, makes them promising targets for immunotherapeutic approaches to cancer treatment.
Collapse
Affiliation(s)
- Morten Gjerstorff
- Medical Biotechnology Center, University of Southern Denmark, Odense C, Denmark
| | | | | | | | | |
Collapse
|
47
|
Current world literature. Curr Opin Endocrinol Diabetes Obes 2009; 16:260-77. [PMID: 19390324 DOI: 10.1097/med.0b013e32832c937e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|