1
|
Lattmann E, Räss L, Tognetti M, Gómez JMM, Lapaire V, Bruderer R, Reiter L, Feng Y, Steinmetz LM, Levesque MP. Size-exclusion chromatography combined with DIA-MS enables deep proteome profiling of extracellular vesicles from melanoma plasma and serum. Cell Mol Life Sci 2024; 81:90. [PMID: 38353833 PMCID: PMC10867102 DOI: 10.1007/s00018-024-05137-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 02/16/2024]
Abstract
Extracellular vesicles (EVs) are important players in melanoma progression, but their use as clinical biomarkers has been limited by the difficulty of profiling blood-derived EV proteins with high depth of coverage, the requirement for large input amounts, and complex protocols. Here, we provide a streamlined and reproducible experimental workflow to identify plasma- and serum- derived EV proteins of healthy donors and melanoma patients using minimal amounts of sample input. SEC-DIA-MS couples size-exclusion chromatography to EV concentration and deep-proteomic profiling using data-independent acquisition. From as little as 200 µL of plasma per patient in a cohort of three healthy donors and six melanoma patients, we identified and quantified 2896 EV-associated proteins, achieving a 3.5-fold increase in depth compared to previously published melanoma studies. To compare the EV-proteome to unenriched blood, we employed an automated workflow to deplete the 14 most abundant proteins from plasma and serum and thereby approximately doubled protein group identifications versus native blood. The EV proteome diverged from corresponding unenriched plasma and serum, and unlike the latter, separated healthy donor and melanoma patient samples. Furthermore, known melanoma markers, such as MCAM, TNC, and TGFBI, were upregulated in melanoma EVs but not in depleted melanoma plasma, highlighting the specific information contained in EVs. Overall, EVs were significantly enriched in intact membrane proteins and proteins related to SNARE protein interactions and T-cell biology. Taken together, we demonstrated the increased sensitivity of an EV-based proteomic workflow that can be easily applied to larger melanoma cohorts and other indications.
Collapse
Affiliation(s)
- Evelyn Lattmann
- Department of Dermatology, University Hospital Zurich, University of Zurich, Schlieren, Switzerland
| | - Luca Räss
- Biognosys AG, Schlieren, Switzerland
| | | | - Julia M Martínez Gómez
- Department of Dermatology, University Hospital Zurich, University of Zurich, Schlieren, Switzerland
| | - Valérie Lapaire
- Department of Dermatology, University Hospital Zurich, University of Zurich, Schlieren, Switzerland
| | | | | | | | - Lars M Steinmetz
- Stanford Genome Technology Center, Stanford University, Palo Alto, CA, USA.
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
| | - Mitchell P Levesque
- Department of Dermatology, University Hospital Zurich, University of Zurich, Schlieren, Switzerland.
| |
Collapse
|
2
|
Gibson SV, Madzharova E, Tan AC, Allen MD, Keller UAD, Louise Jones J, Carter EP, Grose RP. ADAMTS3 restricts cancer invasion in models of early breast cancer progression through enhanced fibronectin degradation. Matrix Biol 2023; 121:74-89. [PMID: 37336268 DOI: 10.1016/j.matbio.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/16/2023] [Accepted: 06/16/2023] [Indexed: 06/21/2023]
Abstract
Proteases have long been associated with cancer progression, due to their ability to facilitate invasion upon matrix remodelling. However, proteases are not simply degraders of the matrix, but also play fundamental roles in modulating cellular behaviour through the proteolytic processing of specific substrates. Indeed, proteases can elicit both pro- and anti- tumorigenic effects depending on context. Using a heterocellular spheroid model of breast cancer progression, we demonstrate the repressive function of myoepithelial ADAMTS3, with its loss directing myoepithelial-led invasion of luminal cells through a physiologically relevant matrix. Degradomic analysis, using terminal amine isotopic labelling of substrates (TAILS), combined with functional assays, implicate ADAMTS3 as a mediator of fibronectin degradation. We show further that loss of ADAMTS3 enhances levels of fibronectin in the microenvironment, promoting invasion through canonical integrin α5β1 activation. Our data highlight a tumour suppressive role for ADAMTS3 in early stage breast cancer, and contribute to the growing evidence that proteases can restrain cancer progression.
Collapse
Affiliation(s)
- Shayin V Gibson
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Elizabeta Madzharova
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Amandine C Tan
- Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, King's College London, SE5 8AF, UK
| | - Michael D Allen
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Ulrich Auf dem Keller
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - J Louise Jones
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Edward P Carter
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK; Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK.
| | - Richard P Grose
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK.
| |
Collapse
|
3
|
Bohannan ZS, Coffman F, Mitrofanova A. Random survival forest model identifies novel biomarkers of event-free survival in high-risk pediatric acute lymphoblastic leukemia. Comput Struct Biotechnol J 2022; 20:583-597. [PMID: 35116134 PMCID: PMC8777142 DOI: 10.1016/j.csbj.2022.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 12/30/2021] [Accepted: 01/01/2022] [Indexed: 12/16/2022] Open
Abstract
High-risk pediatric B-ALL patients experience 5-year negative event rates up to 25%. Although some biomarkers of relapse are utilized in the clinic, their ability to predict outcomes in high-risk patients is limited. Here, we propose a random survival forest (RSF) machine learning model utilizing interpretable genomic inputs to predict relapse/death in high-risk pediatric B-ALL patients. We utilized whole exome sequencing profiles from 156 patients in the TARGET-ALL study (with samples collected at presentation) further stratified into training and test cohorts (109 and 47 patients, respectively). To avoid overfitting and facilitate the interpretation of machine learning results, input genomic variables were engineered using a stepwise approach involving univariable Cox models to select variables directly associated with outcomes, genomic coordinate-based analysis to select mutational hotspots, and correlation analysis to eliminate feature co-linearity. Model training identified 7 genomic regions most predictive of relapse/death-free survival. The test cohort error rate was 12.47%, and a polygenic score based on the sum of the top 7 variables effectively stratified patients into two groups, with significant differences in time to relapse/death (log-rank P = 0.001, hazard ratio = 5.41). Our model outperformed other EFS modeling approaches including an RSF using gold-standard prognostic variables (error rate = 24.35%). Validation in 174 standard-risk patients and 3 patients who failed to respond to induction therapy confirmed that our RSF model and polygenic score were specific to high-risk disease. We propose that our feature selection/engineering approach can increase the clinical interpretability of RSF, and our polygenic score could be utilized for enhance clinical decision-making in high-risk B-ALL.
Collapse
Affiliation(s)
- Zachary S. Bohannan
- Rutgers, The State University of New Jersey, School of Health Professions, Department of Health Informatics, 65 Bergen Street, Suite 120, Newark, NJ 07107-1709, United States
| | - Frederick Coffman
- Rutgers, The State University of New Jersey, School of Health Professions, Department of Health Informatics, 65 Bergen Street, Suite 120, Newark, NJ 07107-1709, United States
| | - Antonina Mitrofanova
- Rutgers, The State University of New Jersey, School of Health Professions, Department of Health Informatics, 65 Bergen Street, Suite 120, Newark, NJ 07107-1709, United States
| |
Collapse
|
4
|
Identification of Estrogen Signaling in a Prioritization Study of Intraocular Pressure-Associated Genes. Int J Mol Sci 2021; 22:ijms221910288. [PMID: 34638643 PMCID: PMC8508848 DOI: 10.3390/ijms221910288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 12/12/2022] Open
Abstract
Elevated intraocular pressure (IOP) is the only modifiable risk factor for primary open-angle glaucoma (POAG). Herein we sought to prioritize a set of previously identified IOP-associated genes using novel and previously published datasets. We identified several genes for future study, including several involved in cytoskeletal/extracellular matrix reorganization, cell adhesion, angiogenesis, and TGF-β signaling. Our differential correlation analysis of IOP-associated genes identified 295 pairs of 201 genes with differential correlation. Pathway analysis identified β-estradiol as the top upstream regulator of these genes with ESR1 mediating 25 interactions. Several genes (i.e., EFEMP1, FOXC1, and SPTBN1) regulated by β-estradiol/ESR1 were highly expressed in non-glaucomatous human trabecular meshwork (TM) or Schlemm’s canal (SC) cells and specifically expressed in TM/SC cell clusters defined by single-cell RNA-sequencing. We confirmed ESR1 gene and protein expression in human TM cells and TM/SC tissue with quantitative real-time PCR and immunofluorescence, respectively. 17β-estradiol was identified in bovine, porcine, and human aqueous humor (AH) using ELISA. In conclusion, we have identified estrogen receptor signaling as a key modulator of several IOP-associated genes. The expression of ESR1 and these IOP-associated genes in TM/SC tissue and the presence of 17β-estradiol in AH supports a role for estrogen signaling in IOP regulation.
Collapse
|
5
|
Paule SG, Heng S, Samarajeewa N, Li Y, Mansilla M, Webb AI, Nebl T, Young SL, Lessey BA, Hull ML, Scelwyn M, Lim R, Vollenhoven B, Rombauts LJ, Nie G. Podocalyxin is a key negative regulator of human endometrial epithelial receptivity for embryo implantation. Hum Reprod 2021; 36:1353-1366. [PMID: 33822049 DOI: 10.1093/humrep/deab032] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 12/09/2020] [Indexed: 02/02/2023] Open
Abstract
STUDY QUESTION How is endometrial epithelial receptivity, particularly adhesiveness, regulated at the luminal epithelial surface for embryo implantation in the human? SUMMARY ANSWER Podocalyxin (PCX), a transmembrane protein, was identified as a key negative regulator of endometrial epithelial receptivity; specific downregulation of PCX in the luminal epithelium in the mid-secretory phase, likely mediated by progesterone, may act as a critical step in converting endometrial surface from a non-receptive to an implantation-permitting state. WHAT IS KNOWN ALREADY The human endometrium must undergo major molecular and cellular changes to transform from a non-receptive to a receptive state to accommodate embryo implantation. However, the fundamental mechanisms governing receptivity, particularly at the luminal surface where the embryo first interacts with, are not well understood. A widely held view is that upregulation of adhesion-promoting molecules is important, but the details are not well characterized. STUDY DESIGN, SIZE, DURATION This study first aimed to identify novel adhesion-related membrane proteins with potential roles in receptivity in primary human endometrial epithelial cells (HEECs). Further experiments were then conducted to determine candidates' in vivo expression pattern in the human endometrium across the menstrual cycle, regulation by progesterone using cell culture, and functional importance in receptivity using in vitro human embryo attachment and invasion models. PARTICIPANTS/MATERIALS, SETTING, METHODS Primary HEECs (n = 9) were isolated from the proliferative phase endometrial tissue, combined into three pools, subjected to plasma membrane protein enrichment by ultracentrifugation followed by proteomics analysis, which led to the discovery of PCX as a novel candidate of interest. Immunohistochemical analysis determined the in vivo expression pattern and cellular localization of PCX in the human endometrium across the menstrual cycle (n = 23). To investigate whether PCX is regulated by progesterone, the master driver of endometrial differentiation, primary HEECs were treated in culture with estradiol and progesterone and analyzed by RT-PCR (n = 5) and western blot (n = 4). To demonstrate that PCX acts as a negative regulator of receptivity, PCX was overexpressed in Ishikawa cells (a receptive line) and the impact on receptivity was determined using in vitro attachment (n = 3-5) and invasion models (n = 4-6), in which an Ishikawa monolayer mimicked the endometrial surface and primary human trophoblast spheroids mimicked embryos. Mann-Whitney U-test and ANOVA analyses established statistical significance at *P ≤ 0.05 and **P ≤ 0.01. MAIN RESULTS AND THE ROLE OF CHANCE PCX was expressed on the apical surface of all epithelial and endothelial cells in the non-receptive endometrium, but selectively downregulated in the luminal epithelium from the mid-secretory phase coinciding with the establishment of receptivity. Progesterone was confirmed to be able to suppress PCX in primary HEECs, suggesting this hormone likely mediates the downregulation of luminal PCX in vivo for receptivity. Overexpression of PCX in Ishikawa monolayer inhibited not only the attachment but also the penetration of human embryo surrogates, demonstrating that PCX acts as an important negative regulator of epithelial receptivity for implantation. LIMITATIONS, REASONS FOR CAUTION Primary HEECs isolated from the human endometrial tissue contained a mixture of luminal and glandular epithelial cells, as further purification into subtypes was not possible due to the lack of specific markers. Future study would need to investigate how progesterone differentially regulates PCX in endometrial epithelial subtypes. In addition, this study used primary human trophoblast spheroids as human embryo mimics and Ishikawa as endometrial epithelial cells in functional models, future studies with human blastocysts and primary epithelial cells would further validate the findings. WIDER IMPLICATIONS OF THE FINDINGS The findings of this study add important new knowledge to the understanding of human endometrial remodeling for receptivity. The identification of PCX as a negative regulator of epithelial receptivity and the knowledge that its specific downregulation in the luminal epithelium coincides with receptivity development may provide new avenues to assess endometrial receptivity and individualize endometrial preparation protocols in assisted reproductive technology (ART). The study also discovered PCX as progesterone target in HEECs, identifying a potentially useful functional biomarker to monitor progesterone action, such as in the optimization of progesterone type/dose/route of administration for luteal support. STUDY FUNDING/COMPETING INTEREST(S) Study funding was obtained from ESHRE, Monash IVF and NHMRC. LR reports potential conflict of interests (received grants from Ferring Australia; personal fees from Monash IVF Group and Ferring Australia; and non-financial support from Merck Serono, MSD, and Guerbet outside the submitted work. LR is also a minority shareholder and the Group Medical Director for Monash IVF Group, a provider of fertility preservation services). The remaining authors have no potential conflict of interest to declare. TRIAL REGISTRATION NUMBER NA.
Collapse
Affiliation(s)
- Sarah G Paule
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Sophea Heng
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Implantation and Pregnancy Research Laboratory, School of Health and Biomedical Sciences, RMIT University, VIC, Australia
| | - Nirukshi Samarajeewa
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Implantation and Pregnancy Research Laboratory, School of Health and Biomedical Sciences, RMIT University, VIC, Australia
| | - Ying Li
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Implantation and Pregnancy Research Laboratory, School of Health and Biomedical Sciences, RMIT University, VIC, Australia
| | - Mary Mansilla
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Implantation and Pregnancy Research Laboratory, School of Health and Biomedical Sciences, RMIT University, VIC, Australia
| | - Andrew I Webb
- Advance Technology and Biology Division, The Walter and Eliza Hall Institute, Parkville, VIC, Australia
| | - Thomas Nebl
- Advance Technology and Biology Division, The Walter and Eliza Hall Institute, Parkville, VIC, Australia
| | - Steven L Young
- Department of Obstetrics and Gynecology, University of North Carolina, Chapel Hill, NC, USA
| | - Bruce A Lessey
- Department of Obstetrics and Gynecology, Greenville Health System, Greenville, SC, USA
| | - M Louise Hull
- The Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | | | - Rebecca Lim
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| | - Beverley Vollenhoven
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia.,Womens and Newborn Programme, Monash Health, Clayton, VIC, Australia
| | - Luk J Rombauts
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia.,Womens and Newborn Programme, Monash Health, Clayton, VIC, Australia
| | - Guiying Nie
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Implantation and Pregnancy Research Laboratory, School of Health and Biomedical Sciences, RMIT University, VIC, Australia
| |
Collapse
|
6
|
Abstract
The kexin-like proprotein convertases perform the initial proteolytic cleavages that ultimately generate a variety of different mature peptide and proteins, ranging from brain neuropeptides to endocrine peptide hormones, to structural proteins, among others. In this review, we present a general introduction to proprotein convertase structure and biochemistry, followed by a comprehensive discussion of each member of the kexin-like subfamily of proprotein convertases. We summarize current knowledge of human proprotein convertase insufficiency syndromes, including genome-wide analyses of convertase polymorphisms, and compare these to convertase null and mutant mouse models. These mouse models have illuminated our understanding of the roles specific convertases play in human disease and have led to the identification of convertase-specific substrates; for example, the identification of procorin as a specific PACE4 substrate in the heart. We also discuss the limitations of mouse null models in interpreting human disease, such as differential precursor cleavage due to species-specific sequence differences, and the challenges presented by functional redundancy among convertases in attempting to assign specific cleavages and/or physiological roles. However, in most cases, knockout mouse models have added substantively both to our knowledge of diseases caused by human proprotein convertase insufficiency and to our appreciation of their normal physiological roles, as clearly seen in the case of the furin, proprotein convertase 1/3, and proprotein convertase 5/6 mouse models. The creation of more sophisticated mouse models with tissue- or temporally-restricted expression of specific convertases will improve our understanding of human proprotein convertase insufficiency and potentially provide support for the emerging concept of therapeutic inhibition of convertases.
Collapse
Affiliation(s)
- Manita Shakya
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Iris Lindberg
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
7
|
Aljofan M, Alkhamaiseh S. Prevalence and Factors Influencing Use of Herbal Medicines During Pregnancy in Hail, Saudi Arabia: A cross-sectional study. Sultan Qaboos Univ Med J 2020; 20:e71-e76. [PMID: 32190372 PMCID: PMC7065689 DOI: 10.18295/squmj.2020.20.01.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/19/2019] [Accepted: 07/21/2019] [Indexed: 01/22/2023] Open
Abstract
Objectives The increasing prevalence of herbal medicine use is a global public health concern. Critically, many women continue to use herbal medicines during pregnancy despite potential maternofetal risks. The current study aimed to determine the prevalence of and factors associated with herbal medicine use during pregnancy in Saudi Arabia. Methods This cross-sectional study was conducted between February and May 2017. An Arabic-language 33-item survey assessing herbal medicine use was designed and distributed to 879 random women attending outpatient clinics at governmental and private hospitals in Hail, Saudi Arabia. Only women who were pregnant or had been pregnant in the previous 10 years were included. Results The mean age of the participants was 29.5 years, with 49% under 30 years old. Overall, 33% of the respondents claimed to have used herbal medicines during pregnancy. The most common reasons for doing so were to improve lactation (73%), improve the course of the pregnancy (56%) and facilitate labour (49%). Women who worked full-time and those with high school diplomas or above were significantly more likely to use herbal medicines during pregnancy (P <0.001 each). Conclusion To the best of the authors' knowledge, this is the first study to determine the prevalence and associated factors of herbal medicine use during pregnancy in Hail. The results showed a high prevalence of herbal medicine use among pregnant women in the region. Healthcare providers should therefore ensure that patients disclose the use of herbal medicines during pregnancy to avoid treatment complications or adverse herb-drug interactions.
Collapse
Affiliation(s)
- Mohamad Aljofan
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Astana, Kazakhstan
| | - Suhaib Alkhamaiseh
- Department of Clinical Pharmacy, University of Hail, Hail, Saudi Arabia.,Department of Pharmaceutical Chemistry, College of Pharmacy, Jerash University, Jordan
| |
Collapse
|
8
|
Aljofan M, Alkhamaisah SI, Younes KM, Gaipov A. Development and validation of a simple and sensitive HPLC method for the determination of liquid form of therapeutic substances. ELECTRONIC JOURNAL OF GENERAL MEDICINE 2019. [DOI: 10.29333/ejgm/112271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
9
|
Abstract
Background The anticancer activity of metformin has been confirmed against several cancer types in vitro and in vivo. However, the underlying mechanisms of metformin in the treatment of cancer are not fully understood. This systematic review aims to discuss the possible anticancer mechanism of action of metformin. Method A search through different databases was conducted, including Medline and EMBASE. Results A total of 96 articles were identified of which 56 were removed for duplication and 24 were excluded after reviewing the title and abstract. A total of 12 research articles were included that describe different antiproliferative mechanisms that may contribute to the antineoplastic effects of metformin. Conclusion This analysis discussed the potential anticancer activity of metformin and highlighted the importance of AMPK as a potential target for anticancer therapy.
Collapse
Affiliation(s)
- Mohamad Aljofan
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Nur-Sultan 010000, Kazakhstan
| | - Dieter Riethmacher
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Nur-Sultan 010000, Kazakhstan
| |
Collapse
|
10
|
Aljofan M, Altebainawi A, Alrashidi MN. Public knowledge, attitude and practice toward diabetes mellitus in Hail region, Saudi Arabia. Int J Gen Med 2019; 12:255-262. [PMID: 31410048 PMCID: PMC6643049 DOI: 10.2147/ijgm.s214441] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 06/20/2019] [Indexed: 11/23/2022] Open
Abstract
Background: There is a rapid increase in the number of people with type II diabetes worldwide with many preventable cases. Diabetes control or prevention is partially influenced by the individual’s knowledge, attitude and practice toward the disease. Objective: The aim of this study was to determine the general public knowledge, attitude and practice toward diabetes in the region of Hail, which is located northern of the Saudi capital. Methodology: This is a cross-sectional study conducted during the period of March 2018 until September 2018. We randomly selected participants over the age of 18 years at different locations. Results: A total of 738 participants (428 females and 310 males) with and an age range of 18–61 years and mean age of 35±12 were surveyed. The majority of the participants, regardless of education levels, residence and employment status showed high knowledge of diabetes (82%) and knew that physical activity can positively affect/prevent diabetes. Participant's age was found to have a significant association with participant's knowledge of diabetes with the ≥35 year old group knew the different types of diabetes (p<0.001) and knew that high carbohydrate consumption can increase the risk of diabetes (p<0.001), but only the younger group <18 year old's identified diabetes as a genetic disorder (p<0.001). Conclusion: The high knowledge of the disease and its risk factors were not truly mirrored in the participant’s attitude and practice toward the disease. Therefore, it is quite essential for the local health authorities to implement awareness programs to improve public attitude and practice toward diabetes.
Collapse
Affiliation(s)
- Mohamad Aljofan
- Department of Biomedical Sciences, Nazarbayev University School of Medicine, Astana 010000, Kazakhstan
| | - Ali Altebainawi
- Pharmacy College, Hail University, Hail, Kingdom of Saudi Arabia.,Aja Pharmaceutical Industries Co. Ltd, Riyadh, Saudi Arabia.,Medication Safety Research Chair - KSU, Riyadh, Saudi Arabia
| | | |
Collapse
|
11
|
|
12
|
Ahat E, Xiang Y, Zhang X, Bekier ME, Wang Y. GRASP depletion-mediated Golgi destruction decreases cell adhesion and migration via the reduction of α5β1 integrin. Mol Biol Cell 2019; 30:766-777. [PMID: 30649990 PMCID: PMC6589770 DOI: 10.1091/mbc.e18-07-0462] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 12/03/2018] [Accepted: 01/09/2019] [Indexed: 11/21/2022] Open
Abstract
The Golgi apparatus is a membrane-bound organelle that serves as the center for trafficking and processing of proteins and lipids. To perform these functions, the Golgi forms a multilayer stacked structure held by GRASP55 and GRASP65 trans-oligomers and perhaps their binding partners. Depletion of GRASP proteins disrupts Golgi stack formation and impairs critical functions of the Golgi, such as accurate protein glycosylation and sorting. However, how Golgi destruction affects other cellular activities is so far unknown. Here, we report that depletion of GRASP proteins reduces cell attachment and migration. Interestingly, GRASP depletion reduces the protein level of α5β1 integrin, the major cell adhesion molecule at the surface of HeLa and MDA-MB-231 cells, due to decreased integrin protein synthesis. GRASP depletion also increases cell growth and total protein synthesis. These new findings enrich our understanding on the role of the Golgi in cell physiology and provide a potential target for treating protein-trafficking disorders.
Collapse
Affiliation(s)
- Erpan Ahat
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1085
| | - Yi Xiang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1085
| | - Xiaoyan Zhang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1085
| | - Michael E. Bekier
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1085
| | - Yanzhuang Wang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1085
- Department of Neurology, University of Michigan School of Medicine, Ann Arbor, MI 48109-1085
| |
Collapse
|
13
|
Zhan R, Wang F, Wu Y, Wang Y, Qian W, Liu M, Liu T, He W, Ren H, Luo G. Nitric oxide induces epidermal stem cell de-adhesion by targeting integrin β1 and Talin via the cGMP signalling pathway. Nitric Oxide 2018; 78:1-10. [PMID: 29698689 DOI: 10.1016/j.niox.2018.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 03/24/2018] [Accepted: 04/01/2018] [Indexed: 01/12/2023]
Abstract
OBJECTIVE Nitric oxide (NO) has emerged as a critical molecule in wound healing, but the mechanism underlying its activity is not well defined. Here, we explored the effect of NO on the de-adhesion of epidermal stem cells (ESCs) and the mechanism involved in this process. METHODS The effects of NO on isolated human and mouse ESCs cultured in the presence of different concentrations of the NO donor S-nitroso-N-acetyl penicillamine (SNAP) were evaluated in cell de-adhesion assays mediated by integrin β and collagen IV. Subsequently, changes in the expression of integrin β1 and the phosphorylation of Talin in response to different doses of SNAP were detected by Western blot analysis and real-time PCR in vitro. Furthermore, the roles of various soluble guanylyl cyclase (sGC)- and protein kinase G (PKG)-specific inhibitors and agonists in the effects of NO on ESC de-adhesion, integrin β1 expression and Talin phosphorylation were analysed. Moreover, the effects of NO on integrin β1 expression and sGC/cGMP/PKG signalling-mediated wound healing were detected in vivo using 5-bromo-2-deoxyuridine (BrdU) label-retaining cells (LRCs) in a scald model and an excision wound healing model, respectively. RESULTS SNAP promoted primary human and mouse ESC de-adhesion in a concentration-dependent manner in the integrin β1-and collagen IV-mediated adhesion assay, and this effect was suppressed by the sGC and PKG inhibitors. Additionally, integrin β1 expression and Talin phosphorylation at serine 425 (S425) were negatively correlated with SNAP levels, and this effect was blocked by the sGC and PKG inhibitors. Moreover, the roles of NO in integrin β1 expression and cGMP signalling pathway-mediated wound healing were confirmed in vivo. CONCLUSION Our data indicate that the stimulatory effects of NO on ESC de-adhesion related to integrin β1 expression and Talin phosphorylation were mediated by the cGMP signalling pathway, which is likely involved in wound healing.
Collapse
Affiliation(s)
- Rixing Zhan
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Key Laboratory of Proteomics of Chongqing, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing 400038, China; School of Nursing, The Third Military Medical University (Army Medical University), Chongqing 400038, China.
| | - Fan Wang
- Department of Plastic and Reconstructive Surgery, Southwestern Hospital, The Third Military Medical University (Army Medical University), Chongqing 400038, China.
| | - Ying Wu
- The Institute of Hepatobiliary Surgery, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing, China.
| | - Ying Wang
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Key Laboratory of Proteomics of Chongqing, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing 400038, China.
| | - Wei Qian
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Key Laboratory of Proteomics of Chongqing, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing 400038, China.
| | - Menglong Liu
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Key Laboratory of Proteomics of Chongqing, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing 400038, China.
| | - Tengfei Liu
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Key Laboratory of Proteomics of Chongqing, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing 400038, China.
| | - Weifeng He
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Key Laboratory of Proteomics of Chongqing, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing 400038, China.
| | - Hui Ren
- School of Nursing, The Third Military Medical University (Army Medical University), Chongqing 400038, China.
| | - Gaoxing Luo
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Key Laboratory of Proteomics of Chongqing, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing 400038, China.
| |
Collapse
|
14
|
Abstract
PURPOSE Integrin αvβ3 (ITG αvβ3) participates in the process of implantation between the embryo and the endometrium. This study investigated the effects of prostaglandin E2 (PGE2) on endometrial receptivity and implantation efficiency of the embryo, and their possible mechanisms. METHODS Quantitative real-time reverse transcription PCR (qRT-PCR) and western blotting were used to detect the changes in mRNA and protein levels of ITG αvβ3 in RL95-2 cells after administering PGE2. BeWo trophoblast cells and RL95-2 endometrial epithelial cells were used to establish an in vitro model, which was used to observe the adhesion rate and spreading efficiency between BeWo spheroids and RL95-2 cell monolayers after pretreatment with different concentrations of PGE2. RESULTS PGE2 at 200 nM increased the mRNA and protein levels of ITG αv significantly (p < 0.05); 100 nM PGE2 increased the mRNA and protein levels of ITG β3 significantly (p < 0.05). PGE2 at 200 nM increased significantly the adhesion and spreading efficiency of BeWo spheres to RL95-2 cell monolayers. CONCLUSIONS An appropriate concentration of PGE2 might increase the expression of ITG αvβ3, which would, promote embryo adhesion and spreading efficiency. This study provides further evidence that increased expression of ITG αvβ3 might promote implantation by improving endometrial receptivity.
Collapse
Affiliation(s)
- Xiaman Huang
- a Obstetrical Department, The First Affiliated Hospital of Jinan University , Guangzhou , Guangdong , PR China
| | - Haizhi Liu
- a Obstetrical Department, The First Affiliated Hospital of Jinan University , Guangzhou , Guangdong , PR China
| | - Ruiman Li
- a Obstetrical Department, The First Affiliated Hospital of Jinan University , Guangzhou , Guangdong , PR China
| |
Collapse
|
15
|
Yu L, Hu R, Sullivan C, Swanson RJ, Oehninger S, Sun YP, Bocca S. MFGE8 regulates TGF-β-induced epithelial mesenchymal transition in endometrial epithelial cells in vitro. Reproduction 2016; 152:225-33. [PMID: 27340235 DOI: 10.1530/rep-15-0585] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 06/17/2016] [Indexed: 12/28/2022]
Abstract
This study investigated the role of milk fat globule-epidermal growth factor-factor 8 (MFGE8) in TGF-β-induced epithelial-mesenchymal transition (EMT) of endometrial epithelial cells. These were in vitro studies using human endometrial epithelial cells and mouse blastocysts. We investigated the ability of TGF-β to induce EMT in endometrial epithelial cells (HEC-1A) by assessment of cytological phenotype (by light and atomic force microscopy), changes in expression of the markers of cell adhesion/differentiation E- and N-cadherin, and of the transcription factor Snail (by immunofluorescence and immunoblotting), and competence to support embryo attachment in a mouse blastocyst outgrowth assay. We also studied the effects of E-cadherin expression in cells transfected by retroviral shRNA vectors specifically silencing MFGE8. Results demonstrated that TGF-β induced EMT as demonstrated by phenotypic cell changes, by a switch of cadherin expression as well as by upregulation of the expression of the mesenchymal markers Snail and Vimentin. Upon MFGE8 knockdown, these processes were interfered with, suggesting that MFGE8 and TGF-β together may participate in regulation of EMT. This study demonstrated for the first time that endometrial MFGE8 modulates TGF-β-induced EMT in human endometrium cells.
Collapse
Affiliation(s)
- Liang Yu
- The Jones Institute for Reproductive MedicineDepartment of Obstetrics and Gynecology, Eastern Virginia Medical School, Norfolk, Virginia, USA Reproductive Medical CenterThe First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Rong Hu
- Reproductive Medicine CenterKey Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Claretta Sullivan
- Department of SurgeryEastern Virginia Medical School, Norfolk, Virginia, USA
| | - R James Swanson
- Department of Biological SciencesOld Dominion University, Norfolk, Virginia, USA
| | - Sergio Oehninger
- The Jones Institute for Reproductive MedicineDepartment of Obstetrics and Gynecology, Eastern Virginia Medical School, Norfolk, Virginia, USA
| | - Ying-Pu Sun
- Reproductive Medical CenterThe First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Silvina Bocca
- The Jones Institute for Reproductive MedicineDepartment of Obstetrics and Gynecology, Eastern Virginia Medical School, Norfolk, Virginia, USA
| |
Collapse
|
16
|
Yamamoto H, Ramos-Molina B, Lick AN, Prideaux M, Albornoz V, Bonewald L, Lindberg I. Posttranslational processing of FGF23 in osteocytes during the osteoblast to osteocyte transition. Bone 2016; 84:120-130. [PMID: 26746780 PMCID: PMC4755901 DOI: 10.1016/j.bone.2015.12.055] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 12/04/2015] [Accepted: 12/09/2015] [Indexed: 11/29/2022]
Abstract
FGF23 is an O-glycosylated circulating peptide hormone with a critical role in phosphate homeostasis; it is inactivated by cellular proprotein convertases in a pre-release degradative pathway. We have here examined the metabolism of FGF23 in a model bone cell line, IDG-SW3, prior to and following differentiation, as well as in regulated secretory cells. Labeling experiments showed that the majority of (35)S-labeled FGF23 was cleaved to smaller fragments which were constitutively secreted by all cell types. Intact FGF23 was much more efficiently stored in differentiated than in undifferentiated IDG-SW3 cells. The prohormone convertase PC2 has recently been implicated in FGF23 degradation; however, FGF23 was not targeted to forskolin-stimulatable secretory vesicles in a regulated cell line, suggesting that it lacks a targeting signal to PC2-containing compartments. In vitro, PC1/3 and PC2, but not furin, efficiently cleaved glycosylated FGF23; surprisingly, PC5/6 accomplished a small amount of conversion. FGF23 has recently been shown to be phosphorylated by the kinase FAM20C, a process which was shown to reduce FGF23 glycosylation and promote its cleavage; our in vitro data, however, show that phosphorylation does not directly impact cleavage, as both PC5/6 and furin were able to efficiently cleave unglycosylated, phosphorylated FGF23. Using qPCR, we found that the expression of FGF23 and PC5/6, but not PC2 or furin, increased substantially following osteoblast to osteocyte differentiation. Western blotting confirmed the large increase in PC5/6 expression upon differentiation. FGF23 has been linked to a variety of bone disorders ranging from autosomal dominant hypophosphatemic rickets to chronic kidney disease. A better understanding of the biosynthetic pathway of this hormone may lead to new treatments for these diseases.
Collapse
Affiliation(s)
- Hiroyuki Yamamoto
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Bruno Ramos-Molina
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Adam N Lick
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Matthew Prideaux
- School of Dentistry, Department of Oral and Craniofacial Sciences, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Valeria Albornoz
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Lynda Bonewald
- School of Dentistry, Department of Oral and Craniofacial Sciences, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Iris Lindberg
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
17
|
Heng S, Paule SG, Li Y, Rombauts LJ, Vollenhoven B, Salamonsen LA, Nie G. Posttranslational removal of α-dystroglycan N terminus by PC5/6 cleavage is important for uterine preparation for embryo implantation in women. FASEB J 2015; 29:4011-22. [DOI: 10.1096/fj.14-269456] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 06/02/2015] [Indexed: 11/11/2022]
|
18
|
Development of a high-throughput assay for human proprotein convertase 5/6 for detecting uterine receptivity. Anal Biochem 2014; 475:14-21. [PMID: 25554488 DOI: 10.1016/j.ab.2014.12.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 12/16/2014] [Accepted: 12/18/2014] [Indexed: 11/23/2022]
Abstract
Embryo implantation requires a healthy embryo and a receptive uterus. In women, the inner lining of the uterus, the endometrium, remains in a hostile state and becomes receptive for embryo implantation for only a short period during each menstrual cycle. Determining endometrial receptivity is vital in in vitro fertilization (IVF) treatment because the timing of embryo transfer needs to be synchronized with endometrial receptivity. We have previously demonstrated that proprotein convertase 5/6A (PC6) is highly expressed in the receptive endometrium and that PC6 is critical for receptivity establishment in women. Furthermore, endometrial PC6 is secreted into the uterine fluid, and levels correlate with receptivity status. Detection of PC6 in uterine fluids, therefore, would provide a nonsurgical assessment of endometrial receptivity. However, to date no assays are available for human PC6. In this study, we produced three PC6 monoclonal antibodies (mAbs) and developed a sandwich enzyme-linked immunosorbent assay (ELISA) for PC6 detection in human uterine fluids. The PC6 mAbs were confirmed to be highly specific to PC6, and the ELISA detected PC6 in human uterine fluids with a significantly higher level during the receptive phase. This newly established PC6 ELISA provides an important tool in the development of noninvasive strategies to detect endometrial receptivity in women.
Collapse
|
19
|
Paule S, Nebl T, Webb AI, Vollenhoven B, Rombauts LJF, Nie G. Proprotein convertase 5/6 cleaves platelet-derived growth factor A in the human endometrium in preparation for embryo implantation. Mol Hum Reprod 2014; 21:262-70. [PMID: 25429785 DOI: 10.1093/molehr/gau109] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Establishment of endometrial receptivity is vital for successful embryo implantation. Proprotein convertase 5/6 (referred to as PC6) is up-regulated in the human endometrium specifically at the time of epithelial receptivity. PC6, a serine protease of the proprotein convertase family, plays an important role in converting precursor proteins into their active forms through specific proteolysis. The proform of platelet-derived growth factor A (pro-PDGFA) requires PC cleavage to convert to the active-PDGFA. We investigated the PC6-mediated activation of PDGFA in the human endometrium during the establishment of receptivity. Proteomic analysis identified that the pro-PDGFA was increased in the conditioned medium of HEC1A cells in which PC6 was stably knocked down by small interfering RNA (PC6-siRNA). Western blot analysis demonstrated an accumulation of the pro-PDGFA but a reduction in the active-PDGFA in PC6-siRNA cell lysates and medium compared with control. PC6 cleavage of pro-PDGFA was further confirmed in vitro by incubation of recombinant pro-PDGFA with PC6. Immunohistochemistry revealed cycle-stage-specific localization of the active-PDGFA in the human endometrium. During the non-receptive phase, the active-PDGFA was barely detectable. In contrast, it was localized specifically to the apical surface of the luminal and glandular epithelium in the receptive phase. Furthermore, the active-PDGFA was detected in uterine lavage with levels being significantly higher in the receptive than the non-receptive phase. We thus identified that the secreted PDGFA may serve as a biomarker for endometrial receptivity. This is also the first study demonstrating that the active-PDGFA localizes to the apical surface of the endometrium during receptivity.
Collapse
Affiliation(s)
- Sarah Paule
- Implantation and Placental Development Laboratory, MIMR-PHI Institute of Medical Research, Clayton, Victoria 3168, Australia Monash University, Clayton, Victoria 3168, Australia
| | - Thomas Nebl
- Systems Biology and Personalised Medicine Division, The Walter and Eliza Hall Institute, Parkville, Victoria 3052, Australia
| | - Andrew I Webb
- Systems Biology and Personalised Medicine Division, The Walter and Eliza Hall Institute, Parkville, Victoria 3052, Australia
| | - Beverley Vollenhoven
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria 3168, Australia Women's and Children's Programme, Monash Health, Clayton, Victoria 3168, Australia Monash IVF, Clayton, Victoria 3168, Australia
| | - Luk J F Rombauts
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria 3168, Australia Women's and Children's Programme, Monash Health, Clayton, Victoria 3168, Australia Monash IVF, Clayton, Victoria 3168, Australia
| | - Guiying Nie
- Implantation and Placental Development Laboratory, MIMR-PHI Institute of Medical Research, Clayton, Victoria 3168, Australia Monash University, Clayton, Victoria 3168, Australia
| |
Collapse
|
20
|
Ho H, Singh H, Heng S, Nero TL, Paule S, Parker MW, Johnson AT, Jiao GS, Nie G. Small molecule proprotein convertase inhibitors for inhibition of embryo implantation. PLoS One 2013; 8:e81380. [PMID: 24324690 PMCID: PMC3852413 DOI: 10.1371/journal.pone.0081380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 10/14/2013] [Indexed: 11/19/2022] Open
Abstract
Uterine proprotein convertase (PC) 6 plays a critical role in embryo implantation and is pivotal for pregnancy establishment. Inhibition of PC6 may provide a novel approach for the development of non-hormonal and female-controlled contraceptives. We investigated a class of five synthetic non-peptidic small molecule compounds that were previously reported as potent inhibitors of furin, another PC member. We examined (i) the potency of these compounds in inhibiting PC6 activity in vitro; (ii) their binding modes in the PC6 active site in silico; (iii) their efficacy in inhibiting PC6-dependent cellular processes essential for embryo implantation using human cell-based models. All five compounds showed potent inhibition of PC6 activity in vitro, and in silico docking demonstrated that these inhibitors could adopt a similar binding mode in the PC6 active site. However, when these compounds were tested for their inhibition of decidualization of primary human endometrial stromal cells, a PC6-dependent cellular process critical for embryo implantation, only one (compound 1o) showed potent inhibition. The lack of activity in the cell-based assay may reflect the inability of the compounds to penetrate the cell membrane. Because compound's lipophilicity is linked to cell penetration, a measurement of lipophilicity (logP) was calculated for each compound. Compound 1o is unique as it appears the most lipophilic among the five compounds. Compound 1o also inhibited another crucial PC6-dependent process, the attachment of human trophoblast spheroids to endometrial epithelial cells (a model for human embryo attachment). We thus identified compound 1o as a potent small molecule PC6 inhibitor with pharmaceutical potential to inhibit embryo implantation. Our findings also highlight that human cell-based functional models are vital to complement the biochemical and in silico analyses in the selection of promising drug candidates. Further investigations for compound 1o are warranted in animal models to test its utility as an implantation-inhibiting contraceptive drug.
Collapse
Affiliation(s)
- Huiting Ho
- Prince Henry's Institute of Medical Research, Clayton, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Harmeet Singh
- Prince Henry's Institute of Medical Research, Clayton, Victoria, Australia
| | - Sophea Heng
- Prince Henry's Institute of Medical Research, Clayton, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Tracy L. Nero
- Biota Structural Biology Laboratory and ACRF Rational Drug Discovery Centre, St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Sarah Paule
- Prince Henry's Institute of Medical Research, Clayton, Victoria, Australia
| | - Michael W. Parker
- Biota Structural Biology Laboratory and ACRF Rational Drug Discovery Centre, St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Alan T. Johnson
- Department of Chemistry, PanThera Biopharma LLC, Aiea, Hawaii, United States of America
| | - Guan-Sheng Jiao
- Department of Chemistry, PanThera Biopharma LLC, Aiea, Hawaii, United States of America
- * E-mail: (GN); (GSJ)
| | - Guiying Nie
- Prince Henry's Institute of Medical Research, Clayton, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
- * E-mail: (GN); (GSJ)
| |
Collapse
|
21
|
Salamonsen LA, Edgell T, Rombauts LJ, Stephens AN, Robertson DM, Rainczuk A, Nie G, Hannan NJ. Proteomics of the human endometrium and uterine fluid: a pathway to biomarker discovery. Fertil Steril 2013; 99:1086-92. [DOI: 10.1016/j.fertnstert.2012.09.013] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 09/04/2012] [Accepted: 09/07/2012] [Indexed: 01/01/2023]
|