1
|
Qin D, Chen Z, Deng X, Liu X, Peng L, Li G, Liu Y, Zhu X, Ding Q, Zhang X, Bao S. CD24+ decidual stromal cells: a novel heterogeneous population with impaired regulatory T cell induction and potential association with recurrent miscarriage. Fertil Steril 2024; 121:519-530. [PMID: 38036240 DOI: 10.1016/j.fertnstert.2023.11.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/21/2023] [Accepted: 11/21/2023] [Indexed: 12/02/2023]
Abstract
OBJECTIVE To explore the heterogeneity of CD24+ decidual stromal cells (DSCs) in patients with recurrent miscarriages (RMs). DESIGN We have discerned that the expression of CD24 serves to differentiate two stable and functionally distinct lineages of DSCs. The heterogeneity of CD24+ DSCs has been scrutinized, encompassing variances in stromal markers, transcriptional profiles, metabolic activity, and immune regulation. SETTING Department of Reproductive Immunology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University; Shanghai Institute of Immunity and Infection, Chinese Academy of Science. PATIENTS A total of 129 early decidual samples were obtained, comprising 36 from healthy donors and 93 from patients with RMs. Blood samples were collected before the surgical procedure. Paraffin-embedded segments from 20 decidual samples of patients with RMs were obtained. INTERVENTIONS None. MAIN OUTCOME MEASURES The flow cytometry was used to quantify the expression of CD24+ DSCs in both healthy donors and patients with RMs, although it also evaluated the cellular heterogeneity. To ascertain the transcriptomic profiles of CD24+ DSCs by reanalyzing our single-cell transcriptomic data. Additionally, to measure the metabolomic activity of CD24+ DSCs from patients with RMs, ultraperformance liquid chromatography-mass spectrometry was employed. Through the implementation of a coculture system, we unraveled the role of CD24+ DSCs in immune regulation. RESULTS Patients with RMs exhibit a notable enrichment of CD24+ DSCs, revealing a pronounced heterogeneity characterized by variations in stromal markers and transcriptional profiles. The heightened enrichment of CD24+ DSCs may play a pivotal role in triggering decidual inflammation and dysfunction in decidualization. Furthermore, CD24+ DSCs showed diverse metabolic activities and impeded the induction of naïve CD4+ T cells into regulatory T cells through the abundant secretion of 3-hydroxyisovaleric acid. Finally, our investigations have revealed that intraperitoneal administration of 3-hydroxyisovaleric acid in mouse models can elevate the risk of RM. CONCLUSION We have successfully identified a disease-associated subset of CD24+ decidual stromal cells that could potentially contribute to the development of RM through the impairment of decidual immune tolerance. Targeting these specific CD24+ DSCs might hold promising prospects for therapeutic interventions in the clinical management of RM.
Collapse
Affiliation(s)
- Dengke Qin
- Department of Reproductive Immunology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China; Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Zechuan Chen
- Shanghai Institute of Immunity and Infection, Chinese Academy of Science, Shanghai, People's Republic of China
| | - Xujing Deng
- Department of Reproductive Immunology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China; Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Xiaoshan Liu
- Shanghai Institute of Immunity and Infection, Chinese Academy of Science, Shanghai, People's Republic of China; Pasteurien College, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Liying Peng
- Department of Reproductive Immunology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China; Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Guohua Li
- Department of Reproductive Immunology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China; Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Yuan Liu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Xiuxian Zhu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Qiuhong Ding
- Department of Reproductive Immunology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China; Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Xiaoming Zhang
- Shanghai Institute of Immunity and Infection, Chinese Academy of Science, Shanghai, People's Republic of China
| | - Shihua Bao
- Department of Reproductive Immunology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China; Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China.
| |
Collapse
|
2
|
A Revised Stem Cell Theory for the Pathogenesis of Endometriosis. J Pers Med 2022; 12:jpm12020216. [PMID: 35207704 PMCID: PMC8875896 DOI: 10.3390/jpm12020216] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/23/2022] [Accepted: 02/01/2022] [Indexed: 02/04/2023] Open
Abstract
During the past decade, a stem cell-based hypothesis has emerged (among many others) to explain the pathogenesis of endometriosis. The initial hypothesis proposed that endometriosis arose from a single or a few specific cells with stem cell properties, including self-renewal and multi-lineage cell differentiation. The origins of the endometriosis-initiating stem cells were thought to be the bone marrow, uterine endometrium, and other tissues. Based on the implantation or metastatic theory in combination with the initial stem cell theory, one or a few multipotent stem/progenitor cells present in the eutopic endometrium or bone marrow translocate to ectopic sites via fallopian tubes during menstruation, vasculolymphatic routes, or through direct migration and invasion. Subsequently, they give rise to endometriotic lesions followed by differentiation into various cell components of endometriosis, including glandular and stromal cells. Recent somatic mutation analyses of deep infiltrating endometriosis, endometrioma, and eutopic normal endometrium using next-generation sequencing techniques have redefined the stem cell theory. It is now proposed that stem/progenitor cells of at least two different origins—epithelium and stroma—sequentially, differentially, but coordinately contribute to the genesis of endometriosis. The dual stem cell theory on how two (or more) stem/progenitor cells differentially and coordinately participate in the establishment of endometriotic lesions remains to be elucidated. Furthermore, the stem/progenitor cells involved in this theory also remain to be identified. Given that the origin of endometriosis is eutopic endometrium, the candidate cells for endometriotic epithelium-initiating cells are likely to be endometrial epithelial cells positive for either N-cadherin or SSEA-1 or both. The candidate cells for endometriotic stroma-initiating cells may be endometrial mesenchymal stem cells positive for SUSD2. Endometrial side population cells are also a possible candidate because they contain unipotent or multipotent cells capable of behaving as endometrial epithelial and stromal stem/progenitor cells.
Collapse
|
3
|
Oliveira FR, Casalechi M, Carneiro MM, de Ávila I, Dela Cruz C, Del Puerto HL, Camargos AF, Abrão MS, Reis FM. Immunolocalization of stem/progenitor cell biomarkers Oct-4, C-kit and Musashi-1 in endometriotic lesions. Mol Biol Rep 2021; 48:6863-6870. [PMID: 34468911 DOI: 10.1007/s11033-021-06685-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/23/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Human endometrium harbors stem/progenitor cells (SPCs) that may contribute to the establishment of endometriosis when seeded outside the uterus. Oct-4, C-kit and Musashi-1 are some of the many proteins used to characterize SPCs, but their association with endometriosis is uncertain. OBJECTIVE AND DESIGN In this study, specimens of normal endometrium (n = 12), eutopic endometrium from women with endometriosis (n = 9), superficial peritoneal endometriosis (SUP, n = 12) and deep endometriosis (DE, n = 13) lesions were evaluated for localization and intensity of immunostaining for Oct-4, C-kit and Musashi-1. RESULTS The three markers were abundantly expressed in normal endometrium, eutopic endometrium from endometriosis patients, SUP and DE specimens. Oct-4 and C-kit expression did not vary across groups as regards intensity or frequency. C-kit staining signal was seldom detected in vascular endothelium of normal or eutopic endometrium from endometriosis patients; however, it was positive in 67% of the SUP lesions and in 25% of the DE lesions (p = 0.042). Musashi-1 was expressed in some endometriotic glands as cell clusters, but its signal was similar between the four types of tissue (p = 0.971) CONCLUSION: The wide distribution of Oct-4, C-kit and Musashi-1 in endometria of patients with and without endometriosis and in SUP and DE endometriotic lesions suggests that these markers are not suitable for the in situ characterization of endometrial SPCs and should not be taken as surrogates for the study of SPCs in the pathogenesis of endometriosis.
Collapse
Affiliation(s)
- Flavia R Oliveira
- Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Maíra Casalechi
- Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Márcia M Carneiro
- Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ivete de Ávila
- Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Cynthia Dela Cruz
- Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Helen L Del Puerto
- Department of Pathology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Aroldo F Camargos
- Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Maurício S Abrão
- Gynecologic Division, BP - A Beneficência Portuguesa de São Paulo, São Paulo, Brazil
- Obstetrics and Gynecology Department, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Fernando M Reis
- Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
- Division of Human Reproduction, Department of Obstetrics and Gynecology, Hospital das Clínicas, UFMG, Av. Alfredo Balena, 110, 9˚ andar, Belo Horizonte, MG, 30130-100, Brazil.
| |
Collapse
|
4
|
Yong PJ, Talhouk A, Anglesio MS. Somatic Genomic Events in Endometriosis: Review of the Literature and Approach to Phenotyping. Reprod Sci 2021; 28:2743-2757. [PMID: 33469880 DOI: 10.1007/s43032-020-00451-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/29/2020] [Indexed: 12/17/2022]
Abstract
In this review, we provide a survey and appraisal of research into somatic genomic events in endometriosis. Methodologies have evolved from conventional cytogenetics to next-generation sequencing, with findings ranging from chromosome imbalances to recurrent somatic cancer driver mutations. Somatic cancer driver mutations have been described in a range of endometriosis lesions, dominated by recurrent mutations in KRAS and PIK3CA as well as loss of PTEN and BAF250a (ARID1A). These somatic events appear to be largely restricted to the endometriosis glandular epithelium. Somatic mutations, particularly PTEN loss, have also been observed in eutopic (uterine) endometrium, although at lower mutant allele frequencies compared with ectopic lesions. Systematic studies of the potential clinical phenotype of these somatic genomic events have yet to be performed. Thus, we propose a framework to investigate the potential clinical phenotype associated with somatic genomic events in endometriosis. Technical requirements include pathology review of histological endometriosis, microdissection for tissue enrichment, orthogonal validation of whole genome/exome sequencing, and a germline sample for confirmation of somatic origin. Clinical requirements include annotation of surgical findings; patient demographics; cross-sectional and prospective data on pain and fertility; consideration of sampling multiple lesions in each patient, mutant allele frequency, and somatic events in the eutopic endometrium; and confirmation of any associations with mechanistic studies. Given the multifactorial nature of endometriosis-associated symptoms, it is likely that somatic events have small (or at most, moderate) effect sizes, and thus careful consideration will have to be given to future study design.
Collapse
Affiliation(s)
- Paul J Yong
- Department of Obstetrics and Gynaecology, University of British Columbia, Vancouver, British Columbia, Canada. .,BC Women's Centre for Pelvic Pain and Endometriosis, F2 - 4500 Oak Street, Vancouver, British Columbia, V6H3N1, Canada.
| | - Aline Talhouk
- Department of Obstetrics and Gynaecology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael S Anglesio
- Department of Obstetrics and Gynaecology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
5
|
Shen TC, Tsai CW, Chang WS, Wang YC, Hsu HM, Li HT, Gu J, Bau DT. Genetic variants in the nucleotide excision repair genes are associated with the risk of developing endometriosis. Biol Reprod 2020; 101:928-937. [PMID: 31373346 DOI: 10.1093/biolre/ioz150] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 03/06/2019] [Accepted: 07/31/2019] [Indexed: 12/17/2022] Open
Abstract
Endometriosis is a major health issue among women of reproductive age. However, its etiology has not yet been completely understood. We investigated 10 single nucleotide polymorphisms from six novel nucleotide excision repair genes and the susceptibility to endometriosis. A total of 153 patients with endometriosis were recruited during 2000-2010 from central Taiwan. Pathological confirmation was necessary for all patients, and exclusion criteria included the presence of leiomyoma, adenomyosis, or cancer of the uterine, cervix, or ovary and a prescription of hormone therapy. Furthermore, a total of 636 age-matched individuals without endometriosis were recruited during the same time period from central Taiwan. The polymerase chain reaction coupled with restriction fragment length polymorphism methodology was applied for genotyping. The multivariate logistic regression analysis showed that subjects carrying the ERCC1 rs11615 TT (OR = 2.04, 95% CI = 1.36-3.41), ERCC2 rs1799793 AA (OR = 1.86, 95% CI = 1.14-3.11), and ERCC6 rs2228528 AA genotypes (OR = 1.79, 95% CI = 1.13-2.83) exhibited significantly increased risks of developing endometriosis compared with their counterparts carrying the wild-type genotypes. This study suggests that certain single nucleotide polymorphisms of nucleotide excision repair genes excision repair cross-complementation group 1 (ERCC1, ERCC2, and ERCC6) predispose women to the development of endometriosis.
Collapse
Affiliation(s)
- Te-Chun Shen
- Terry Fox Cancer Research Laboratory, Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,Intensive Care Unit, Chu Shang Show Chwan Hospital, Nantou, Taiwan
| | - Chia-Wen Tsai
- Terry Fox Cancer Research Laboratory, Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan.,Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Wen-Shin Chang
- Terry Fox Cancer Research Laboratory, Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan.,Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yun-Chi Wang
- Terry Fox Cancer Research Laboratory, Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan
| | - Huai-Mei Hsu
- Terry Fox Cancer Research Laboratory, Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Hsin-Ting Li
- Terry Fox Cancer Research Laboratory, Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan
| | - Jian Gu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Da-Tian Bau
- Terry Fox Cancer Research Laboratory, Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan
| |
Collapse
|
6
|
Ponandai-Srinivasan S, Andersson KL, Nister M, Saare M, Hassan HA, Varghese SJ, Peters M, Salumets A, Gemzell-Danielsson K, Lalitkumar PGL. Aberrant expression of genes associated with stemness and cancer in endometria and endometrioma in a subset of women with endometriosis. Hum Reprod 2019; 33:1924-1938. [PMID: 30020448 DOI: 10.1093/humrep/dey241] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 06/30/2018] [Indexed: 12/20/2022] Open
Abstract
STUDY QUESTION Is there molecular evidence for a link between endometriosis and endometriosis-associated ovarian cancers (EAOC)? STUDY ANSWER We identified aberrant gene expression signatures associated with malignant transformation in a small subgroup of women with ovarian endometriosis. WHAT IS KNOWN ALREADY Epidemiological studies have shown an increased risk of EAOC in women with ovarian endometriosis. However, the cellular and molecular changes leading to EAOC are largely unexplored. STUDY DESIGN, SIZE, DURATION CD73+CD90+CD105+ multipotent stem cells/progenitors (SC cohort) were isolated from endometrium (n = 18) and endometrioma (n = 11) of endometriosis patients as well as from the endometrium of healthy women (n = 14). Extensive phenotypic and functional analyses were performed in vitro on expanded multipotent stem cells/progenitors to confirm their altered characteristics. Aberrant gene signatures were also validated in paired-endometrium and -endometrioma tissue samples from another cohort (Tissue cohort, n = 19) of endometriosis patients. PARTICIPANTS/MATERIALS, SETTINGS, METHODS Paired-endometrial and -endometriotic biopsies were obtained from women with endometriosis (ASRM stage III-IV) undergoing laparoscopic surgery. Control endometria were obtained from healthy volunteers. Isolated CD73+CD90+CD105+ SC were evaluated for the presence of known endometrial surface markers, colony forming efficiency, multi-lineage differentiation, cell cycle distribution and 3D-spheroid formation capacity. Targeted RT-PCR arrays, along with hierarchical and multivariate clustering tools, were used to determine both intergroup and intragroup gene expression variability for stem cell and cancer-associated markers, in both SC+ and tissue cohorts. MAIN RESULTS AND THE ROLE OF CHANCE Isolated and expanded SC+ from both control and patient groups showed significantly higher surface expression of W5C5+, clonal expansion and 3D-spheroid formation capacity (P < 0.05) compared with SC-. The SC+ cells also undergo mesenchymal lineage differentiation, unlike SC-. Gene expression from paired-endometriosis samples showed significant downregulation of PTEN, ARID1A and TNFα (P < 0.05) in endometrioma compared with paired-endometrium SC+ samples. Hierarchical and multivariate clustering from both SC+ and tissue cohorts together identified 4 out of 30 endometrioma samples with aberrant expression of stem cell and cancer-associated genes, such as KIT, HIF2α and E-cadherin, altered expression ratio of ER-β/ER-α and downregulation of tumour suppressor genes (PTEN and ARID1A). Thus, we speculate that above changes may be potentially relevant to the development of EAOC. LARGE-SCALE DATA N/A. LIMITATIONS, REASON FOR CAUTION As the reported frequency of EAOC is very low, we did not have access to those samples in our study. Moreover, by adopting a targeted gene array approach, we might have missed several other potentially-relevant genes associated with EAOC pathogenesis. The above panel of markers should be further validated in archived tissue samples from women with endometriosis who later in life developed EAOC. WIDER IMPLICATIONS OF THE FINDINGS Knowledge gained from this study, with further confirmation on EAOC cases, may help in developing screening methods to identify women with increased risk of EAOC. STUDY FUNDING/COMPETING INTEREST(S) The study is funded by the Swedish Research Council (2012-2844), a joint grant from Stockholm County and Karolinska Institutet (ALF), RGD network at Karolinska Institutet, Karolinska Institutet for doctoral education (KID), Estonian Ministry of Education and Research (IUT34-16), Enterprise Estonia (EU48695), Horizon 2020 innovation program (WIDENLIFE, 692065), European Union's FP7 Marie Curie Industry-Academia Partnerships and Pathways funding (IAPP, SARM, EU324509) and MSCA-RISE-2015 project MOMENDO (691058). All authors have no competing interest.
Collapse
Affiliation(s)
- Sakthivignesh Ponandai-Srinivasan
- Division of Obstetrics and Gynecology, Department of Women's and Children's Health, Karolinska Institutet, and Karolinska University Hospital, Stockholm, Sweden
| | - Karin L Andersson
- Division of Obstetrics and Gynecology, Department of Women's and Children's Health, Karolinska Institutet, and Karolinska University Hospital, Stockholm, Sweden.,Department of Territorial Health, Central Tuscany Healthcare, Piero Palagi Hospital, Florence, Italy
| | - Monica Nister
- Department of Oncology-Pathology, Karolinska Institutet, and Clinical Pathology/Cytology, Karolinska University Hospital, Stockholm, Sweden
| | - Merli Saare
- Competence Centre on Health Technologies, Tiigi 61b, Tartu, Estonia.,Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, L. Puusepa 8, Tartu, Estonia
| | - Halima A Hassan
- Division of Obstetrics and Gynecology, Department of Women's and Children's Health, Karolinska Institutet, and Karolinska University Hospital, Stockholm, Sweden
| | - Suby J Varghese
- Division of Obstetrics and Gynecology, Department of Women's and Children's Health, Karolinska Institutet, and Karolinska University Hospital, Stockholm, Sweden
| | - Maire Peters
- Competence Centre on Health Technologies, Tiigi 61b, Tartu, Estonia.,Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, L. Puusepa 8, Tartu, Estonia
| | - Andres Salumets
- Competence Centre on Health Technologies, Tiigi 61b, Tartu, Estonia.,Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, L. Puusepa 8, Tartu, Estonia.,Department of Obstetrics and Gynaecology, University of Helsinki and Helsinki University Hospital, Haartmaninkatu 2, Helsinki, Finland
| | - Kristina Gemzell-Danielsson
- Division of Obstetrics and Gynecology, Department of Women's and Children's Health, Karolinska Institutet, and Karolinska University Hospital, Stockholm, Sweden
| | - Parameswaran Grace Luther Lalitkumar
- Division of Obstetrics and Gynecology, Department of Women's and Children's Health, Karolinska Institutet, and Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
7
|
Dawson A, Fernandez ML, Anglesio M, Yong PJ, Carey MS. Endometriosis and endometriosis-associated cancers: new insights into the molecular mechanisms of ovarian cancer development. Ecancermedicalscience 2018; 12:803. [PMID: 29456620 PMCID: PMC5813919 DOI: 10.3332/ecancer.2018.803] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Indexed: 12/11/2022] Open
Abstract
Endometriosis is a fascinating disease that we strive to better understand. Molecular techniques are shedding new light on many important aspects of this disease: from pathogenesis to the recognition of distinct disease variants like deep infiltrating endometriosis. The observation that endometriosis is a cancer precursor has now been strengthened with the knowledge that mutations that are present in endometriosis-associated cancers can be found in adjacent endometriosis lesions. Recent genomic studies, placed in context, suggest that deep infiltrating endometriosis may represent a benign neoplasm that invades locally but rarely metastasises. Further research will help elucidate distinct aberrations which result in this phenotype. With respect to identifying those patients who may be at risk of developing endometriosis-associated cancers, a combination of molecular, pathological, and inheritance markers may define a high-risk group that might benefit from risk-reducing strategies.
Collapse
Affiliation(s)
- Amy Dawson
- Department of Obstetrics & Gynaecology, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia V6Z 2K8, Canada
| | - Marta Llauradó Fernandez
- Department of Obstetrics & Gynaecology, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia V6Z 2K8, Canada
| | - Michael Anglesio
- Department of Obstetrics & Gynaecology, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia V6Z 2K8, Canada.,Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada
| | - Paul J Yong
- Department of Obstetrics & Gynaecology, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia V6Z 2K8, Canada
| | - Mark S Carey
- Department of Obstetrics & Gynaecology, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia V6Z 2K8, Canada.,Department of Surgical Oncology, BC Cancer Agency, Vancouver, British Columbia V5Z 1G1, Canada
| |
Collapse
|
8
|
Zhao L, Gu C, Huang K, Han W, Fu M, Meng Y. Endometriosis research using capture microdissection techniques: Progress and future applications. Biomed Rep 2016; 5:531-540. [PMID: 27882213 DOI: 10.3892/br.2016.758] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 09/07/2016] [Indexed: 12/26/2022] Open
Abstract
Endometriosis is a common gynecological disease with high prevalence, while its etiology and pathophysiology have remained to be fully elucidated. Previous evidence suggested that this disorder may be in part or completely of somatic origin. However, traditional endometrial samples may not be ideal for investigation, as target cells, including epithelial and stromal cells, in endometriotic lesions are too sparse to be analyzed. Recently, capture microdissection techniques have been used to overcome these limitations and eliminate tissue heterogeneity in endometriosis research. Therefore, the present review summarized the alterations in epithelial and stromal cells in endometriosis tissues isolated through capture microdissection, outlined recent progress and provided directions for future investigation of the pathogenesis of endometriosis.
Collapse
Affiliation(s)
- Luyang Zhao
- Department of Gynecology and Obstetrics, Chinese People's Liberation Army (PLA) Medical School, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Chenglei Gu
- Department of Gynecology and Obstetrics, Chinese People's Liberation Army (PLA) Medical School, Chinese PLA General Hospital, Beijing 100853, P.R. China; Department of Gynecology and Obstetrics, the 309th Hospital of the PLA, Beijing 100091, P.R. China
| | - Ke Huang
- Department of Gynecology and Obstetrics, Chinese People's Liberation Army (PLA) Medical School, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Weidong Han
- Department of Molecular Biology, Institute of Basic Medicine, PLA Medical School, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Meng Fu
- Department of Gynecology and Obstetrics, Chinese People's Liberation Army (PLA) Medical School, Chinese PLA General Hospital, Beijing 100853, P.R. China; Department of Gynecology and Obstetrics, Haidian Maternal and Child Health Hospital, Beijing 100080, P.R. China
| | - Yuanguang Meng
- Department of Gynecology and Obstetrics, Chinese People's Liberation Army (PLA) Medical School, Chinese PLA General Hospital, Beijing 100853, P.R. China
| |
Collapse
|
9
|
Au HK, Chang JH, Wu YC, Kuo YC, Chen YH, Lee WC, Chang TS, Lan PC, Kuo HC, Lee KL, Lee MT, Tzeng CR, Huang YH. TGF-βI Regulates Cell Migration through Pluripotent Transcription Factor OCT4 in Endometriosis. PLoS One 2015; 10:e0145256. [PMID: 26675296 PMCID: PMC4682958 DOI: 10.1371/journal.pone.0145256] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 11/30/2015] [Indexed: 01/16/2023] Open
Abstract
Transforming growth factor (TGF-β)/TGF-β receptor signal is known to promote cell migration. Up-regulation of TGF-β in serum/peritoneal fluid and increased levels of pluripotent transcription factor OCT4 in endometriotic tissues are frequently observed in patients with endometriosis. However, the mechanisms underlying how TGF-β/TGF-β receptor and OCT4 affect endometriotic cell migration still remain largely unknown. Therefore, endometriotic tissue with high cell migratory capacity were collected from patients with adenomyotic myometrium (n = 23) and chocolate cyst (n = 24); and endometrial tissue with low cell migratory capacity in normal endometrium or hyperplastic endometrium (n = 8) were collected as the controls. We found the mRNA levels of TGF-β receptor I (TGF-β RI) and OCT4 were significantly higher in the high-migratory ectopic endometriotic tissues than those of the low-migratory normal or hyperplastic endometrium. Positive correlations between TGF-β RI and OCT4, and either TGF-β RI or OCT4 with migration-related genes (SNAIL, SLUG and TWIST) regarding the mRNA levels were observed in human endometriotic tissues. TGF-βI dose-dependently increased the gene and protein levels of OCT4, SNAIL and N-Cadherin (N-CAD) and silencing of endogenous OCT4 significantly suppressed the TGF-βI-induced expressions of N-CAD and SNAIL in primary human endometriotic stromal cells and human endometrial carcinoma cell lines RL95-2 and HEC1A. Furthermore, TGF-βI significantly increased the migration ability of endometriotic cells and silencing of OCT4 dramatically suppressed the TGF-βI-induced cell migration activity evidenced by wound-closure assay, transwell assay, and confocal image of F-actin cellular distribution. In conclusion, the present findings demonstrate that the niche TGF-β plays a critical role in initiating expressions of pluripotent transcription factor OCT4 which may contribute to the ectopic endometrial growth by stimulating endometrial cell migration. These findings would be useful for developing therapeutic strategies targeting TGF-β-OCT4 signaling to prevent endometriosis in the future.
Collapse
Affiliation(s)
- Heng-Kien Au
- Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Center for Reproductive Medicine, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
- Department of Obstetrics and Gynecology, Taipei Medical University Hospital, Taipei, Taiwan
| | - Jui-Hung Chang
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Chih Wu
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Center for Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yung-Che Kuo
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Hsi Chen
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wei-Chin Lee
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Te-Sheng Chang
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Pei-Chi Lan
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Center for Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hung-Chih Kuo
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Kha-Liang Lee
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Mei-Tsu Lee
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chii-Ruey Tzeng
- Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Center for Reproductive Medicine, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
- Department of Obstetrics and Gynecology, Taipei Medical University Hospital, Taipei, Taiwan
| | - Yen-Hua Huang
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Center for Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei, Taiwan
- Center for Reproductive Medicine, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
- Comprehensive Cancer Center of Taipei Medical University, Taipei, Taiwan
- The Ph.D. Program for Translational Medicine, Taipei Medical University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
10
|
Gargett CE, Schwab KE, Deane JA. Endometrial stem/progenitor cells: the first 10 years. Hum Reprod Update 2015; 22:137-63. [PMID: 26552890 PMCID: PMC4755439 DOI: 10.1093/humupd/dmv051] [Citation(s) in RCA: 211] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 10/19/2015] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The existence of stem/progenitor cells in the endometrium was postulated many years ago, but the first functional evidence was only published in 2004. The identification of rare epithelial and stromal populations of clonogenic cells in human endometrium has opened an active area of research on endometrial stem/progenitor cells in the subsequent 10 years. METHODS The published literature was searched using the PubMed database with the search terms ‘endometrial stem cells and menstrual blood stem cells' until December 2014. RESULTS Endometrial epithelial stem/progenitor cells have been identified as clonogenic cells in human and as label-retaining or CD44+ cells in mouse endometrium, but their characterization has been modest. In contrast, endometrial mesenchymal stem/stromal cells (MSCs) have been well characterized and show similar properties to bone marrow MSCs. Specific markers for their enrichment have been identified, CD146+PDGFRβ+ (platelet-derived growth factor receptor beta) and SUSD2+ (sushi domain containing-2), which detected their perivascular location and likely pericyte identity in endometrial basalis and functionalis vessels. Transcriptomics and secretomics of SUSD2+ cells confirm their perivascular phenotype. Stromal fibroblasts cultured from endometrial tissue or menstrual blood also have some MSC characteristics and demonstrate broad multilineage differentiation potential for mesodermal, endodermal and ectodermal lineages, indicating their plasticity. Side population (SP) cells are a mixed population, although predominantly vascular cells, which exhibit adult stem cell properties, including tissue reconstitution. There is some evidence that bone marrow cells contribute a small population of endometrial epithelial and stromal cells. The discovery of specific markers for endometrial stem/progenitor cells has enabled the examination of their role in endometrial proliferative disorders, including endometriosis, adenomyosis and Asherman's syndrome. Endometrial MSCs (eMSCs) and menstrual blood stromal fibroblasts are an attractive source of MSCs for regenerative medicine because of their relative ease of acquisition with minimal morbidity. Their homologous and non-homologous use as autologous and allogeneic cells for therapeutic purposes is currently being assessed in preclinical animal models of pelvic organ prolapse and phase I/II clinical trials for cardiac failure. eMSCs and stromal fibroblasts also exhibit non-stem cell-associated immunomodulatory and anti-inflammatory properties, further emphasizing their desirable properties for cell-based therapies. CONCLUSIONS Much has been learnt about endometrial stem/progenitor cells in the 10 years since their discovery, although several unresolved issues remain. These include rationalizing the terminology and diagnostic characteristics used for distinguishing perivascular stem/progenitor cells from stromal fibroblasts, which also have considerable differentiation potential. The hierarchical relationship between clonogenic epithelial progenitor cells, endometrial and decidual SP cells, CD146+PDGFR-β+ and SUSD2+ cells and menstrual blood stromal fibroblasts still needs to be resolved. Developing more genetic animal models for investigating the role of endometrial stem/progenitor cells in endometrial disorders is required, as well as elucidating which bone marrow cells contribute to endometrial tissue. Deep sequencing and epigenetic profiling of enriched populations of endometrial stem/progenitor cells and their differentiated progeny at the population and single-cell level will shed new light on the regulation and function of endometrial stem/progenitor cells.
Collapse
Affiliation(s)
- Caroline E Gargett
- The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton 3168, Victoria, Australia Department of Obstetrics and Gynaecology, Monash University, Monash Medical Centre, 246 Clayton Road, Clayton 3168, Victoria, Australia
| | - Kjiana E Schwab
- The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton 3168, Victoria, Australia
| | - James A Deane
- The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton 3168, Victoria, Australia Department of Obstetrics and Gynaecology, Monash University, Monash Medical Centre, 246 Clayton Road, Clayton 3168, Victoria, Australia
| |
Collapse
|
11
|
Djokovic D, Calhaz-Jorge C. Somatic stem cells and their dysfunction in endometriosis. Front Surg 2015; 1:51. [PMID: 25593975 PMCID: PMC4286966 DOI: 10.3389/fsurg.2014.00051] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 12/14/2014] [Indexed: 01/05/2023] Open
Abstract
Emerging evidence indicates that somatic stem cells (SSCs) of different types prominently contribute to endometrium-associated disorders such as endometriosis. We reviewed the pertinent studies available on PubMed, published in English language until December 2014 and focused on the involvement of SSCs in the pathogenesis of this common gynecological disease. A concise summary of the data obtained from in vitro experiments, animal models, and human tissue analyses provides insights into the SSC dysregulation in endometriotic lesions. In addition, a set of research results is presented supporting that SSC-targeting, in combination with hormonal therapy, may result in improved control of the disease, while a more in-depth characterization of endometriosis SSCs may contribute to the development of early-disease diagnostic tests with increased sensitivity and specificity. Key message: Seemingly essential for the establishment and progression of endometriotic lesions, dysregulated SSCs, and associated molecular alterations hold a promise as potential endometriosis markers and therapeutic targets.
Collapse
Affiliation(s)
- Dusan Djokovic
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa , Lisbon , Portugal ; Serviço de Obstetrícia e Ginecologia, Centro Hospitalar de Lisboa Ocidental, Hospital de São Francisco Xavier , Lisbon , Portugal
| | - Carlos Calhaz-Jorge
- Clínica Universitária de Obstetrícia e Ginecologia, Faculdade de Medicina, Universidade de Lisboa , Lisbon , Portugal ; Departamento de Obstetrícia, Ginecologia e Medicina da Reprodução, Centro Hospitalar de Lisboa Norte , Lisbon , Portugal
| |
Collapse
|
12
|
Franco-Murillo Y, Miranda-Rodríguez JA, Rendón-Huerta E, Montaño LF, Cornejo GV, Gómez LP, Valdez-Morales FJ, Gonzalez-Sanchez I, Cerbón M. Unremitting cell proliferation in the secretory phase of eutopic endometriosis: involvement of pAkt and pGSK3β. Reprod Sci 2014; 22:502-10. [PMID: 25194152 DOI: 10.1177/1933719114549843] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVE Endometriosis is linked to altered cell proliferation and stem cell markers c-kit/stem cell factor (SCF) in ectopic endometrium. Our aim was to investigate whether c-kit/SCF also plays a role in eutopic endometrium. DESIGN Eutopic endometrium obtained from 35 women with endometriosis and 25 fertile eumenorrheic women was analyzed for in situ expression of SCF/c-kit, Ki67, RAC-alpha serine/threonine-protein kinase (Akt), phosphorylated RAC-alpha serine/threonin-protein kinase (pAkt), Glycogen synthase kinase 3 beta (GSK3β), and phosphorylated glycogen synthase kinase 3 beta (pGSK3β), throughout the menstrual cycle. RESULTS Expression of Ki67 and SCF was higher in endometriosis than in control tissue (P < .05) and greater in secretory rather than proliferative (P < .01) endometrium in endometriosis. Expression of c-kit was also higher in endometriosis although similar in both phases. Expression of Akt and GSK3β was identical in all samples and cycle phases, whereas pAkt and pGSK3β, opposed to control tissue, remained overexpressed in the secretory phase in endometriosis. CONCLUSION Unceasing cell proliferation in the secretory phase of eutopic endometriosis is linked to deregulation of c-kit/SCF-associated signaling pathways.
Collapse
Affiliation(s)
- Yanira Franco-Murillo
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico, Federal District, Mexico
| | | | - Erika Rendón-Huerta
- Departamento Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de Mexico, Mexico, Federal District, Mexico
| | - Luis F Montaño
- Departamento Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de Mexico, Mexico, Federal District, Mexico
| | | | - Lucila Poblano Gómez
- Servicio de Ginecología y Obstetricia, Hospital Español, Mexico, Federal District, Mexico
| | | | - Ignacio Gonzalez-Sanchez
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico, Federal District, Mexico
| | - Marco Cerbón
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico, Federal District, Mexico
| |
Collapse
|
13
|
Nikoo S, Ebtekar M, Jeddi-Tehrani M, Shervin A, Bozorgmehr M, Vafaei S, Kazemnejad S, Zarnani AH. Menstrual blood-derived stromal stem cells from women with and without endometriosis reveal different phenotypic and functional characteristics. Mol Hum Reprod 2014; 20:905-18. [PMID: 24939730 DOI: 10.1093/molehr/gau044] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Retrograde flow of menstrual blood cells during menstruation is considered as the dominant theory for the development of endometriosis. Moreover, current evidence suggests that endometrial-derived stem cells are key players in the pathogenesis of endometriosis. In particular, endometrial stromal stem cells have been suggested to be involved in the pathogenesis of this disease. Here, we aimed to use menstrual blood, as a novel source of endometrial stem cells, to investigate whether stromal stem cells from endometriosis (E-MenSCs) and non-endometriosis (NE-MenSCs) women differed regarding their morphology, CD marker expression pattern, proliferation, invasion and adhesion capacities and their ability to express certain immunomodulatory molecules. E-MenSCs were morphologically different from NE-MenSCs and showed higher expression of CD9, CD10 and CD29. Furthermore, E-MenSCs had higher proliferation and invasion potentials compared with NE-MenSCs. The amount of indoleamine 2,3-dioxygenase-1 (IDO1) and cyclooxygenase-2 (COX-2) in E-MenSCs co-cultured with allogenic peripheral blood mononuclear cells (PBMCs) was shown to be higher both at the gene and protein levels, and higher IDO1 activity was detected in the endometriosis group. However, NE-MenSCs revealed increased concentrations of forkhead transcription factor-3 (FOXP3) when compared with E-MenSCs. Nonetheless, interferon (IFN)-γ, Interleukin (IL)-10 and monocyte chemoattractant protein-1 (MCP-1) levels were higher in the supernatant of E-MenSCs-PBMC co-cultures. Here, we showed that there are inherent differences between E-MenSCs and NE-MenSCs. These findings propose the key role MenSCs could play in the pathogenesis of endometriosis and further support the retrograde and stem cell theories of endometriosis. Hence, considering its renewable and easily available nature, menstrual blood could be viewed as a reliable and inexpensive material for studies addressing the cellular and molecular aspects of endometriosis.
Collapse
Affiliation(s)
- Shohreh Nikoo
- Reproductive Immunology Research Center, Avicenna Research Institute, ACECR, PO Box 19615-1177, Tehran, Iran
| | - Massoumeh Ebtekar
- Department of Immunology, Faculty of Medicine, Tarbiat Modares University, PO Box 14117-13116, Tehran, Iran
| | - Mahmood Jeddi-Tehrani
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Adel Shervin
- Reproductive Immunology Research Center, Avicenna Research Institute, ACECR, PO Box 19615-1177, Tehran, Iran
| | - Mahmood Bozorgmehr
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Sedigheh Vafaei
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Somayeh Kazemnejad
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Amir-Hassan Zarnani
- Reproductive Immunology Research Center, Avicenna Research Institute, ACECR, PO Box 19615-1177, Tehran, Iran Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Gargett CE, Schwab KE, Brosens JJ, Puttemans P, Benagiano G, Brosens I. Potential role of endometrial stem/progenitor cells in the pathogenesis of early-onset endometriosis. Mol Hum Reprod 2014; 20:591-8. [DOI: 10.1093/molehr/gau025] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
15
|
KOBAYASHI HIROSHI, IMANAKA SHOGO, NAKAMURA HARUKI, TSUJI AYUMI. Understanding the role of epigenomic, genomic and genetic alterations in the development of endometriosis (Review). Mol Med Rep 2014; 9:1483-505. [DOI: 10.3892/mmr.2014.2057] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 03/03/2014] [Indexed: 11/05/2022] Open
|
16
|
Genetic, epigenetic and stem cell alterations in endometriosis: new insights and potential therapeutic perspectives. Clin Sci (Lond) 2013; 126:123-38. [PMID: 24059589 DOI: 10.1042/cs20130099] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Human endometrium is a highly dynamic tissue, undergoing periodic growth and regression at each menstrual cycle. Endometriosis is a frequent chronic pathological status characterized by endometrial tissue with an ectopic localization, causing pelvic pain and infertility and a variable clinical presentation. In addition, there is well-established evidence that, although endometriosis is considered benign, it is associated with an increased risk of malignant transformation in approximately 1.0% of affected women, with the involvement of multiple pathways of development. Increasing evidence supports a key contribution of different stem/progenitor cell populations not only in the cyclic regeneration of eutopic endometrium, but also in the pathogenesis of at least some types of endometriosis. Evidence has arisen from experiments in animal models of disease through different kinds of assays (including clonogenicity, the label-retaining cell approach, the analysis of undifferentiation markers), as well as from descriptive studies on ectopic and eutopic tissue samples harvested from affected women. Changes in stem cell populations in endometriotic lesions are associated with genetic and epigenetic alterations, including imbalance of miRNA expression, histone and DNA modifications and chromosomal aberrations. The present short review mainly summarizes the latest observations contributing to the current knowledge regarding the presence and the potential contribution of stem/progenitor cells in eutopic endometrium and the aetiology of endometriosis, together with a report of the most recently identified genetic and epigenetic alterations in endometriosis. We also describe the potential advantages of single cell molecular profiling in endometrium and in endometriotic lesions. All these data can have clinical implications and provide a basis for new potential therapeutic applications.
Collapse
|
17
|
Verit FF, Cetin O. Biomarkers of endometriosis. Fertil Steril 2013; 100:e19. [DOI: 10.1016/j.fertnstert.2013.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 07/09/2013] [Indexed: 10/26/2022]
|
18
|
Fassbender A, Vodolazkaia A, Saunders P, Lebovic D, Waelkens E, De Moor B, D'Hooghe T. Reply of the Authors. Fertil Steril 2013; 100:e20. [DOI: 10.1016/j.fertnstert.2013.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 07/09/2013] [Indexed: 11/26/2022]
|
19
|
|
20
|
Ng YH, Rome S, Jalabert A, Forterre A, Singh H, Hincks CL, Salamonsen LA. Endometrial exosomes/microvesicles in the uterine microenvironment: a new paradigm for embryo-endometrial cross talk at implantation. PLoS One 2013; 8:e58502. [PMID: 23516492 PMCID: PMC3596344 DOI: 10.1371/journal.pone.0058502] [Citation(s) in RCA: 260] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 02/05/2013] [Indexed: 12/20/2022] Open
Abstract
Exosomes are nanoparticles (∼100 nm diameter) released from cells, which can transfer small RNAs and mRNA via the extracellular environment to cells at distant sites. We hypothesised that exosomes or the slightly larger microvesicles (100-300 nm) are released from the endometrial epithelium into the uterine cavity, and that these contain specific micro (mi)RNA that could be transferred to either the trophectodermal cells of the blastocyst or to endometrial epithelial cells, to promote implantation. The aim of this study was to specifically identify and characterise exosomes/microvesicles (mv) released from endometrial epithelial cells and to determine whether exosomes/mv are present in uterine fluid. Immunostaining demonstrated that the tetraspanins, CD9 and CD63 used as cell surface markers of exosomes are present on the apical surfaces of endometrial epithelial cells in tissue sections taken across the menstrual cycle: CD63 showed cyclical regulation. Exosome/mv pellets were prepared from culture medium of endometrial epithelial cell (ECC1 cells) and from uterine fluid and its associated mucus by sequential ultracentifugation. Exosomes/mv were positively identified in all preparations by FACS and immunofluorescence staining following exosome binding to beads. Size particle analysis confirmed the predominance of particles of 50-150 nm in each of these fluids. MiRNA analysis of the ECC1 cells and their exosomes/mv demonstrated sorting of miRNA into exosomes/mv: 13 of the 227 miRNA were specific to exosomes/mv, while a further 5 were not present in these. The most abundant miRNA in exosomes/mv were hsa-miR-200c, hsa-miR-17 and hsa-miR-106a. Bioinformatic analysis showed that the exosome/mv-specific miRNAs have potential targets in biological pathways highly relevant for embryo implantation. Thus exosomes/mv containing specific miRNA are present in the microenvironment in which embryo implantation occurs and may contribute to the endometrial-embryo cross talk essential for this process.
Collapse
Affiliation(s)
- York Hunt Ng
- Prince Henry's Institute of Medical Research, Melbourne, Victoria, Australia
| | - Sophie Rome
- Laboratory CarMeN (Inserm 1060, INRA 1235, INSA), University of Lyon, Faculté de Médecine Lyon-Sud, Oullins, France
| | - Audrey Jalabert
- Laboratory CarMeN (Inserm 1060, INRA 1235, INSA), University of Lyon, Faculté de Médecine Lyon-Sud, Oullins, France
| | - Alexis Forterre
- Laboratory CarMeN (Inserm 1060, INRA 1235, INSA), University of Lyon, Faculté de Médecine Lyon-Sud, Oullins, France
| | - Harmeet Singh
- Prince Henry's Institute of Medical Research, Melbourne, Victoria, Australia
| | - Cassandra L. Hincks
- Prince Henry's Institute of Medical Research, Melbourne, Victoria, Australia
| | - Lois A. Salamonsen
- Prince Henry's Institute of Medical Research, Melbourne, Victoria, Australia
| |
Collapse
|
21
|
Chang JH, Au HK, Lee WC, Chi CC, Ling TY, Wang LM, Kao SH, Huang YH, Tzeng CR. Expression of the pluripotent transcription factor OCT4 promotes cell migration in endometriosis. Fertil Steril 2013; 99:1332-1339.e5. [PMID: 23290742 DOI: 10.1016/j.fertnstert.2012.11.033] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 11/09/2012] [Accepted: 11/16/2012] [Indexed: 12/29/2022]
Abstract
OBJECTIVE To identify the impact of the pluripotent transcription factor OCT4 in endometrial cell migration and endometriosis. DESIGN The OCT4 expression and cell migration study. SETTING Research institution and reproductive medical clinic. PATIENT(S) Nine subjects with normal endometrium, 3 subjects with normal myometrium, 36 patients with hyperplastic endometrium, and 58 patients with endometriosis. INTERVENTION(S) The expression of OCT4 messenger RNA in normal endometrium, normal myometrium, hyperplastic endometrium, and ectopic endometriotic tissues was analyzed using reverse transcription and quantitative real-time polymerase chain reaction (PCR). The effect of OCT4 expression on the migration activity of the endometrial cells was examined. MAIN OUTCOME MEASURE(S) Reverse transcription and quantitative real-time PCR, Western blotting, and wound closure and transwell assays. RESULT(S) The expression of OCT4 and NANOG messenger RNA was significantly higher in ectopic endometriotic tissues, compared with that of the normal endometrium, the normal myometrium, and the hyperplastic endometrium. The level of OCT4 messenger RNA in endometriotic tissues was positively correlated with the expression of genes associated with cell migration. Overexpression of the OCT4 protein in primary human endometriotic stromal cells and human RL95-2 and HEC1A endometrial carcinoma cell lines resulted in decreased levels of E-CADHERIN, the increased expression of the VIMENTIN, TWIST, and SLUG proteins, and an increase in the migration activity of endometrial cells in transwell and wound closure assays. CONCLUSION(S) The transcription of the OCT4 gene is significantly up-regulated in human ectopic endometriotic tissues. The expression of OCT4 may contribute to the pathology of ectopic endometrial growth by stimulating the migration activity of endometrial cells.
Collapse
Affiliation(s)
- Jui-Hung Chang
- Department of Biochemistry, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|