1
|
Brumm AS, McCarthy A, Gerri C, Fallesen T, Woods L, McMahon R, Papathanasiou A, Elder K, Snell P, Christie L, Garcia P, Shaikly V, Taranissi M, Serhal P, Odia RA, Vasilic M, Osnato A, Rugg-Gunn PJ, Vallier L, Hill CS, Niakan KK. Initiation and maintenance of the pluripotent epiblast in pre-implantation human development is independent of NODAL signaling. Dev Cell 2024:S1534-5807(24)00639-7. [PMID: 39561779 DOI: 10.1016/j.devcel.2024.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 03/05/2024] [Accepted: 10/25/2024] [Indexed: 11/21/2024]
Abstract
The human blastocyst contains the pluripotent epiblast from which human embryonic stem cells (hESCs) can be derived. ACTIVIN/NODAL signaling maintains expression of the transcription factor NANOG and in vitro propagation of hESCs. It is unknown whether this reflects a functional requirement for epiblast development in human embryos. Here, we characterized NODAL signaling activity during pre-implantation human development. We showed that NANOG is an early molecular marker restricted to the nascent human pluripotent epiblast and was initiated prior to the onset of NODAL signaling. We further demonstrated that expression of pluripotency-associated transcription factors NANOG, SOX2, OCT4, and KLF17 were maintained in the epiblast in the absence of NODAL signaling activity. Genome-wide transcriptional analysis showed that NODAL signaling inhibition did not decrease NANOG transcription or impact the wider pluripotency-associated gene regulatory network. These data suggest differences in the signaling requirements regulating pluripotency in the pre-implantation human epiblast compared with existing hESC culture.
Collapse
Affiliation(s)
- A Sophie Brumm
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Afshan McCarthy
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Claudia Gerri
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Todd Fallesen
- Crick Advanced Light Microscopy, The Francis Crick Institute, London NW1 1AT, UK
| | - Laura Woods
- Loke Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Riley McMahon
- Loke Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | | | - Kay Elder
- Bourn Hall Clinic, Bourn, Cambridge CB23 2TN, UK
| | - Phil Snell
- Bourn Hall Clinic, Bourn, Cambridge CB23 2TN, UK
| | | | - Patricia Garcia
- Assisted Reproduction and Gynaecology Centre, London W1G 6LP, UK
| | - Valerie Shaikly
- Assisted Reproduction and Gynaecology Centre, London W1G 6LP, UK
| | | | - Paul Serhal
- Centre for Reproductive and Genetic Health, London W1W 5QS, UK
| | - Rabi A Odia
- Centre for Reproductive and Genetic Health, London W1W 5QS, UK
| | - Mina Vasilic
- Centre for Reproductive and Genetic Health, London W1W 5QS, UK
| | - Anna Osnato
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK; Department of Surgery, University of Cambridge, Cambridge CB2 0QQ, UK; Department of Development and Regeneration, University of Leuven, Leuven 3000, Belgium
| | - Peter J Rugg-Gunn
- Loke Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK; Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK
| | - Ludovic Vallier
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK; Department of Surgery, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Caroline S Hill
- Developmental Signalling Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Kathy K Niakan
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, London NW1 1AT, UK; Loke Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK; Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK.
| |
Collapse
|
2
|
Kolesnikova V, Revishchin A, Fab L, Alekseeva A, Ryabova A, Pronin I, Usachev DY, Kopylov A, Pavlova G. GQIcombi application to subdue glioma via differentiation therapy. Front Oncol 2024; 14:1322795. [PMID: 38988707 PMCID: PMC11233813 DOI: 10.3389/fonc.2024.1322795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 06/11/2024] [Indexed: 07/12/2024] Open
Abstract
Current therapy protocols fail to cure high-grade gliomas and prevent recurrence. Therefore, novel approaches need to be developed. A re-programing of glioma cell fate is an alternative attractive way to stop tumor growth. The two-step protocol applies the antiproliferative GQ bi-(AID-1-T) and small molecule inducers with BDNF to trigger neural differentiation into terminally differentiated cells, and it is very effective on GB cell cultures. This original approach is a successful example of the "differentiation therapy". To demonstrate a versatility of this approach, in this publication we have extended a palette of cell cultures to gliomas of II, III and IV Grades, and proved an applicability of that version of differential therapy for a variety of tumor cells. We have justified a sequential mode of adding of GQIcombi components to the glioma cells. We have shown a significant retardation of tumor growth after a direct injection of GQIcombi into the tumor in rat brain, model 101/8. Thus, the proposed strategy of influencing on cancer cell growth is applicable to be further translated for therapy use.
Collapse
Affiliation(s)
- Varvara Kolesnikova
- Laboratory of Neurogenetics and Genetics Development, Institute of Higher Nervous Activity and Neurophysiology of Russian Academy of Sciences (RAS), Moscow, Russia
| | - Alexander Revishchin
- Laboratory of Neurogenetics and Genetics Development, Institute of Higher Nervous Activity and Neurophysiology of Russian Academy of Sciences (RAS), Moscow, Russia
| | - Lika Fab
- Laboratory of Neurogenetics and Genetics Development, Institute of Higher Nervous Activity and Neurophysiology of Russian Academy of Sciences (RAS), Moscow, Russia
| | - Anna Alekseeva
- Laboratory of Neurogenetics and Genetics Development, Institute of Higher Nervous Activity and Neurophysiology of Russian Academy of Sciences (RAS), Moscow, Russia
- Laboratory of Neuromorphology, Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, Moscow, Russia
| | - Anastasia Ryabova
- Natural Sciences Center of Prokhorov General Physics Institute Russian Academy of Sciences (RAS), Moscow, Russia
| | - Igor Pronin
- Federal State Autonomous Institution «N. N. Burdenko National Medical Research Center of Neurosurgery» of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Dmitry Y. Usachev
- Federal State Autonomous Institution «N. N. Burdenko National Medical Research Center of Neurosurgery» of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Alexey Kopylov
- Chemistry Department, Lomonosov Moscow State University, Moscow, Russia
| | - Galina Pavlova
- Laboratory of Neurogenetics and Genetics Development, Institute of Higher Nervous Activity and Neurophysiology of Russian Academy of Sciences (RAS), Moscow, Russia
- Federal State Autonomous Institution «N. N. Burdenko National Medical Research Center of Neurosurgery» of the Ministry of Health of the Russian Federation, Moscow, Russia
- Department of Medical Genetics, Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
3
|
Khandani B, Movahedin M. Learning Towards Maturation of Defined Feeder-free Pluripotency Culture Systems: Lessons from Conventional Feeder-based Systems. Stem Cell Rev Rep 2024; 20:484-494. [PMID: 38079087 DOI: 10.1007/s12015-023-10662-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2023] [Indexed: 02/03/2024]
Abstract
Pluripotent stem cells (PSCs) are widely recognized as one of the most promising types of stem cells for applications in regenerative medicine, tissue engineering, disease modeling, and drug screening. This is due to their unique ability to differentiate into cells from all three germ layers and their capacity for indefinite self-renewal. Initially, PSCs were cultured using animal feeder cells, but these systems presented several limitations, particularly in terms of Good Manufacturing Practices (GMP) regulations. As a result, feeder-free systems were introduced as a safer alternative. However, the precise mechanisms by which feeder cells support pluripotency are not fully understood. More importantly, it has been observed that some aspects of the need for feeder cells like the optimal density and cell type can vary depending on conditions such as the developmental stage of the PSCs, phases of the culture protocol, the method used in culture for induction of pluripotency, and intrinsic variability of PSCs. Thus, gaining a better understanding of the divergent roles and necessity of feeder cells in various conditions would lead to the development of condition-specific defined feeder-free systems that resolve the failure of current feeder-free systems in some conditions. Therefore, this review aims to explore considerable feeder-related issues that can lead to the development of condition-specific feeder-free systems.
Collapse
Affiliation(s)
- Bardia Khandani
- Department of Stem Cells Technology and Tissue Regeneration, Faculty of Interdisciplinary Science and Technology, Tarbiat Modares University, Tehran, Iran
| | - Mansoureh Movahedin
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Jalal Ale Ahmad Highway, Tehran, 14115111, Iran.
| |
Collapse
|
4
|
Alonso-Alonso S, Esteve-Codina A, Martin-Mur B, Álvarez-González L, Ruiz-Herrera A, Santaló J, Ibáñez E. Blastomeres of 8-cell mouse embryos differ in their ability to generate embryonic stem cells and produce lines with different transcriptional signatures. Front Cell Dev Biol 2023; 11:1274660. [PMID: 37876553 PMCID: PMC10591181 DOI: 10.3389/fcell.2023.1274660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/25/2023] [Indexed: 10/26/2023] Open
Abstract
Embryonic stem cell (ESC) derivation from single blastomeres of 8-cell mouse embryos results in lower derivation rates than that from whole blastocysts, raising a biological question about the developmental potential of sister blastomeres. We aimed to assess the ability of 8-cell blastomeres to produce epiblast cells and ESC lines after isolation, and the properties of the resulting lines. Our results revealed unequal competence among sister blastomeres to produce ESC lines. At least half of the blastomeres possess a lower potential to generate ESCs, although culture conditions and blastomeres plasticity can redirect their non-pluripotent fate towards the epiblast lineage, allowing us to generate up to seven lines from the same embryo. Lines originated from the same embryo segregated into two groups according to their transcriptional signatures. While the expression of genes related to pluripotency and development was higher in one group, no differences were found in their trilineage differentiation ability. These results may help to improve our understanding of the ESC derivation process from single blastomeres and cell fate determination in the preimplantation mouse embryos.
Collapse
Affiliation(s)
- Sandra Alonso-Alonso
- Genome Integrity and Reproductive Biology Group, Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Anna Esteve-Codina
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Beatriz Martin-Mur
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Lucia Álvarez-González
- Genome Integrity and Reproductive Biology Group, Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Barcelona, Spain
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Aurora Ruiz-Herrera
- Genome Integrity and Reproductive Biology Group, Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Barcelona, Spain
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Josep Santaló
- Genome Integrity and Reproductive Biology Group, Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Elena Ibáñez
- Genome Integrity and Reproductive Biology Group, Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
5
|
Ai Z, Niu B, Yin Y, Xiang L, Shi G, Duan K, Wang S, Hu Y, Zhang C, Zhang C, Rong L, Kong R, Chen T, Guo Y, Liu W, Li N, Zhao S, Zhu X, Mai X, Li Y, Wu Z, Zheng Y, Fu J, Ji W, Li T. Dissecting peri-implantation development using cultured human embryos and embryo-like assembloids. Cell Res 2023; 33:661-678. [PMID: 37460804 PMCID: PMC10474050 DOI: 10.1038/s41422-023-00846-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/24/2023] [Indexed: 09/03/2023] Open
Abstract
Studies of cultured embryos have provided insights into human peri-implantation development. However, detailed knowledge of peri-implantation lineage development as well as underlying mechanisms remains obscure. Using 3D-cultured human embryos, herein we report a complete cell atlas of the early post-implantation lineages and decipher cellular composition and gene signatures of the epiblast and hypoblast derivatives. In addition, we develop an embryo-like assembloid (E-assembloid) by assembling naive hESCs and extraembryonic cells. Using human embryos and E-assembloids, we reveal that WNT, BMP and Nodal signaling pathways synergistically, but functionally differently, orchestrate human peri-implantation lineage development. Specially, we dissect mechanisms underlying extraembryonic mesoderm and extraembryonic endoderm specifications. Finally, an improved E-assembloid is developed to recapitulate the epiblast and hypoblast development and tissue architectures in the pre-gastrulation human embryo. Our findings provide insights into human peri-implantation development, and the E-assembloid offers a useful model to disentangle cellular behaviors and signaling interactions that drive human embryogenesis.
Collapse
Affiliation(s)
- Zongyong Ai
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China.
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China.
- Yunnan Provincial Academy of Science and Technology, Kunming, Yunnan, China.
| | - Baohua Niu
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
| | - Yu Yin
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
- Yunnan Provincial Academy of Science and Technology, Kunming, Yunnan, China
| | - Lifeng Xiang
- Department of Reproductive Medicine, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Gaohui Shi
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
| | - Kui Duan
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
- Yunnan Provincial Academy of Science and Technology, Kunming, Yunnan, China
| | - Sile Wang
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
- Yunnan Provincial Academy of Science and Technology, Kunming, Yunnan, China
| | - Yingjie Hu
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
| | - Chi Zhang
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
| | - Chengting Zhang
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
- Yunnan Provincial Academy of Science and Technology, Kunming, Yunnan, China
| | - Lujuan Rong
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
| | - Ruize Kong
- Department of Reproductive Medicine, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Tingwei Chen
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
| | - Yixin Guo
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, International Campus, Zhejiang University, Haining, Zhejiang, China
| | - Wanlu Liu
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, International Campus, Zhejiang University, Haining, Zhejiang, China
| | - Nan Li
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
| | - Shumei Zhao
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
- Yunnan Provincial Academy of Science and Technology, Kunming, Yunnan, China
| | - Xiaoqing Zhu
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
- Yunnan Provincial Academy of Science and Technology, Kunming, Yunnan, China
| | - Xuancheng Mai
- Department of Reproductive Medicine, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Yonggang Li
- Department of Reproductive Medicine, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Ze Wu
- Department of Reproductive Medicine, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Yi Zheng
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Jianping Fu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Weizhi Ji
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China.
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China.
- Yunnan Provincial Academy of Science and Technology, Kunming, Yunnan, China.
| | - Tianqing Li
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China.
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China.
- Yunnan Provincial Academy of Science and Technology, Kunming, Yunnan, China.
| |
Collapse
|
6
|
Transforming growth factor beta (TGFβ) pathway is essential for hypoblast and epiblast development in ovine post-hatching embryos. Theriogenology 2023; 196:112-120. [PMID: 36413867 DOI: 10.1016/j.theriogenology.2022.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/10/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022]
Abstract
The developmental failures occurring between blastocyst hatching and implantation in farm ungulates are a major cause of pregnancy losses. At the expanded blastocyst stage, three cell lineages emerge in the embryo: trophoblast, hypoblast and epiblast, the latter being the most vulnerable during post-hatching development. Transforming growth factor beta (TGFβ) signaling pathway is involved in hypoblast and epiblast development; however, previous in vitro functional studies are limited to the expanded blastocyst stage. In this study, we have analyzed the effect of TGFβ inhibition with 10, 20 or 40 μM SB431542 during ovine post-hatching developmental period using a recently developed culture system able to recapitulate major developmental landmarks. We have found a negative effect of TGFβ inhibition on hypoblast and epiblast development that could be partially reverted by Rho-associated protein kinase (ROCK) inhibitor Y-27632. Our findings provide new insights into the molecular networks regulating embryo development beyond the expanded blastocyst and could help to elucidate the causes of early pregnancy losses in farm ungulates.
Collapse
|
7
|
Cui F, Xu Z, Hu J, Lv Y. Spindle pole body component 25 and platelet-derived growth factor mediate crosstalk between tumor-associated macrophages and prostate cancer cells. Front Immunol 2022; 13:907636. [PMID: 35967419 PMCID: PMC9363606 DOI: 10.3389/fimmu.2022.907636] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/05/2022] [Indexed: 11/13/2022] Open
Abstract
Tumor-associated macrophages (TAMs) are involved in the growth of prostate cancer (PrC), while the molecular mechanisms underlying the interactive crosstalk between TAM and PrC cells remain largely unknown. Platelet-derived growth factor (PDGF) is known to promote mesenchymal stromal cell chemotaxis to the tumor microenvironment. Recently, activation of spindle pole body component 25 (SPC25) has been shown to promote PrC cell proliferation and is associated with PrC stemness. Here, the relationship between SPC25 and PDGF in the crosstalk between TAM and PrC was investigated. Significant increases in both PDGF and SPC25 levels were detected in PrC specimens compared to paired adjacent normal prostate tissues. A significant correlation was detected between PDGF and SPC25 levels in PrC specimens and cell lines. SPC25 increased PDGF production and tumor cell growth in cultured PrC cells and in xenotransplantation. Mechanistically, SPC25 appeared to activate PDGF in PrC likely through Early Growth Response 1 (Egr1), while the secreted PDGF signaled to TAM through PDGFR on macrophages and polarized macrophages, which, in turn, induced the growth of PrC cells likely through their production and secretion of transforming growth factor β1 (TGFβ1). Thus, our data suggest that SPC25 triggers the crosstalk between TAM and PrC cells via SPC25/PDGF/PDGFR/TGFβ1 receptor signaling to enhance PrC growth.
Collapse
Affiliation(s)
- Feilun Cui
- Department of Urology, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
| | - Zhipeng Xu
- Department of Urology, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
| | - Jianpeng Hu
- Department of Urology, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
- *Correspondence: Jianpeng Hu, ; Yumei Lv,
| | - Yumei Lv
- Department of Health Management Section, Zhenjiang College, Zhenjiang, China
- *Correspondence: Jianpeng Hu, ; Yumei Lv,
| |
Collapse
|
8
|
Alonso-Alonso S, Santaló J, Ibáñez E. Efficient generation of embryonic stem cells from single blastomeres of cryopreserved mouse embryos in the presence of signalling modulators. Reprod Fertil Dev 2022; 34:576-587. [PMID: 35157826 DOI: 10.1071/rd21297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/23/2022] [Indexed: 11/23/2022] Open
Abstract
CONTEXT Derivation of embryonic stem cells (ESC) from single blastomeres is an interesting alternative to the use of whole blastocysts, but derivation rates are lower and the requirements for successful ESC obtention are still poorly defined. AIMS To investigate the effects of embryo cryopreservation and of signalling modulators present during embryo culture and/or ESC establishment on ESC derivation efficiency from single 8-cell mouse blastomeres. METHOD Fresh and cryopreserved 2-cell embryos were cultured and biopsied at the 8-cell stage. Single blastomeres were cultured in the presence of 2i or R2i cocktails, with or without adrenocorticotropic hormone (ACTH). We analysed ESC derivation efficiencies and characterised pluripotency genes expression and karyotype integrity of the resulting lines. We also evaluated the impact of embryo preculture with R2i on epiblast cell numbers and derivation rates. KEY RESULTS The ESC generation was not compromised by embryo cryopreservation and ACTH was dispensable under most of the conditions tested. While 2i and R2i were similarly effective for ESC derivation, R2i provided higher karyotype integrity. Embryo preculture with R2i yielded increased numbers of epiblast cells but did not lead to increased ESC generation. CONCLUSIONS Our findings help to define a simplified and efficient procedure for the establishment of mouse ESC from single 8-cell blastomeres. IMPLICATIONS This study will contribute to improving the potential of this experimental procedure, providing a tool to investigate the developmental potential of blastomeres isolated from different embryonic stages and to reduce the number of embryos needed for ESC derivation.
Collapse
Affiliation(s)
- Sandra Alonso-Alonso
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Josep Santaló
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Elena Ibáñez
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
9
|
Abstract
Early embryogenesis is characterized by the segregation of cell lineages that fulfill critical roles in the establishment of pregnancy and development of the fetus. The formation of the blastocyst marks the emergence of extraembryonic precursors, needed for implantation, and of pluripotent cells, which differentiate toward the major lineages of the adult organism. The coordinated emergence of these cell types shows that these processes are broadly conserved in mammals. However, developmental heterochrony and changes in gene regulatory networks highlight unique evolutionary adaptations that may explain the diversity in placentation and in the mechanisms controlling pluripotency in mammals. The incorporation of new technologies, including single-cell omics, imaging, and gene editing, is instrumental for comparative embryology. Broadening the knowledge of mammalian embryology will provide new insights into the mechanisms driving evolution and development. This knowledge can be readily translated into biomedical and biotechnological applications in humans and livestock, respectively.
Collapse
Affiliation(s)
- Ramiro Alberio
- School of Biosciences, University of Nottingham, Nottingham NG7 2RD, United Kingdom;
| |
Collapse
|
10
|
Omidi M, Aflatoonian B, Tahajjodi SS, Khalili MA. Attempts for Generation of Embryonic Stem Cells from Human Embryos Following In Vitro Embryo Twinning. Stem Cells Dev 2019; 28:303-309. [PMID: 30608032 DOI: 10.1089/scd.2018.0168] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In vitro embryo twinning can be used to increase the number of the human embryos available for production of human embryonic stem cell (hESC) lines. The aim of this study was to generate hESCs following the production of the twin embryos by in vitro embryo splitting procedures. In total 21 chromosomally abnormal (three pronuclei) embryos underwent in vitro embryo twinning and were allowed to develop to the blastocyst stage. As a result, 42 twin embryos were obtained, of which 24 developed to blastocyst stage. Using micromanipulation technique, the zona-free blastocysts were recovered and plated onto mitotically inactivated Yazd human foreskin fibroblast (Batch18; YhFF#18) feeder layers in microdrops. After 3 to 5 days of blastocyst culture onto human foreskin fibroblast feeder layers, the hESC-like outgrowths were passaged onto new feeders in microdrops. The initial outgrowths of hESC-like cells were generated, and cells were proliferated, passaged, and some of them expressed hESC and trophoblastic markers; however, no cell lines were established. This might be due to the low cell number and poor quality of inner cell mass within these twin blastocysts. In vitro embryo twinning by increasing the number of the human embryos could be useful in the future for the generation of new pluripotent stem cell lines. However, the challenge remains to optimize the methods.
Collapse
Affiliation(s)
- Marjan Omidi
- 1 Research and Clinical Center for Infertility, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- 2 Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Behrouz Aflatoonian
- 2 Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- 3 Department of Reproductive Biology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- 4 Department of Advanced Medical Sciences and Technologies, School of Paramedicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Somayyeh Sadat Tahajjodi
- 1 Research and Clinical Center for Infertility, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- 2 Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Ali Khalili
- 1 Research and Clinical Center for Infertility, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- 3 Department of Reproductive Biology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
11
|
Chemical compound-based direct reprogramming for future clinical applications. Biosci Rep 2018; 38:BSR20171650. [PMID: 29739872 PMCID: PMC5938430 DOI: 10.1042/bsr20171650] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 03/29/2018] [Accepted: 04/11/2018] [Indexed: 12/14/2022] Open
Abstract
Recent studies have revealed that a combination of chemical compounds enables direct reprogramming from one somatic cell type into another without the use of transgenes by regulating cellular signaling pathways and epigenetic modifications. The generation of induced pluripotent stem (iPS) cells generally requires virus vector-mediated expression of multiple transcription factors, which might disrupt genomic integrity and proper cell functions. The direct reprogramming is a promising alternative to rapidly prepare different cell types by bypassing the pluripotent state. Because the strategy also depends on forced expression of exogenous lineage-specific transcription factors, the direct reprogramming in a chemical compound-based manner is an ideal approach to further reduce the risk for tumorigenesis. So far, a number of reported research efforts have revealed that combinations of chemical compounds and cell-type specific medium transdifferentiate somatic cells into desired cell types including neuronal cells, glial cells, neural stem cells, brown adipocytes, cardiomyocytes, somatic progenitor cells, and pluripotent stem cells. These desired cells rapidly converted from patient-derived autologous fibroblasts can be applied for their own transplantation therapy to avoid immune rejection. However, complete chemical compound-induced conversions remain challenging particularly in adult human-derived fibroblasts compared with mouse embryonic fibroblasts (MEFs). This review summarizes up-to-date progress in each specific cell type and discusses prospects for future clinical application toward cell transplantation therapy.
Collapse
|
12
|
Ghimire S, Van der Jeught M, Neupane J, Roost MS, Anckaert J, Popovic M, Van Nieuwerburgh F, Mestdagh P, Vandesompele J, Deforce D, Menten B, Chuva de Sousa Lopes S, De Sutter P, Heindryckx B. Comparative analysis of naive, primed and ground state pluripotency in mouse embryonic stem cells originating from the same genetic background. Sci Rep 2018; 8:5884. [PMID: 29650979 PMCID: PMC5897387 DOI: 10.1038/s41598-018-24051-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 03/13/2018] [Indexed: 01/28/2023] Open
Abstract
Mouse embryonic stem cells (mESCs) exist in a naive, primed and ground state of pluripotency. While comparative analyses of these pluripotency states have been reported, the mESCs utilized originated from various genetic backgrounds and were derived in different laboratories. mESC derivation in conventional LIF + serum culture conditions is strain dependent, with different genetic backgrounds potentially affecting subsequent stem cell characteristics. In the present study, we performed a comprehensive characterization of naive, primed and ground state mESCs originating from the same genetic background within our laboratory, by comparing their transcriptional profiles. We showed unique transcriptional profiles for naive, primed and ground state mESCs. While naive and ground state mESCs have more similar but not identical profiles, primed state mESCs show a very distinct profile. We further demonstrate that the differentiation propensity of mESCs to specific germ layers is highly dependent on their respective state of pluripotency.
Collapse
Affiliation(s)
- Sabitri Ghimire
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Ghent, Belgium.
| | - Margot Van der Jeught
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - Jitesh Neupane
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - Matthias S Roost
- Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Jasper Anckaert
- Department of Pediatrics and Medical Genetics, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Gent, Belgium
| | - Mina Popovic
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - Filip Van Nieuwerburgh
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Pieter Mestdagh
- Department of Pediatrics and Medical Genetics, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Gent, Belgium
| | - Jo Vandesompele
- Department of Pediatrics and Medical Genetics, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Gent, Belgium
| | - Dieter Deforce
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Björn Menten
- Department of Pediatrics and Medical Genetics, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Gent, Belgium
| | - Susana Chuva de Sousa Lopes
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Ghent, Belgium.,Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Petra De Sutter
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - Björn Heindryckx
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Ghent, Belgium.
| |
Collapse
|
13
|
Ramos-Ibeas P, Nichols J, Alberio R. States and Origins of Mammalian Embryonic Pluripotency In Vivo and in a Dish. Curr Top Dev Biol 2017; 128:151-179. [PMID: 29477162 DOI: 10.1016/bs.ctdb.2017.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mouse embryonic stem cells (ESC), derived from preimplantation embryos in 1981, defined mammalian pluripotency for many decades. However, after the derivation of human ESC in 1998, comparative studies showed that different types of pluripotency exist in early embryos and that these can be captured in vitro under various culture conditions. Over the past decade much has been learned about the key signaling pathways, growth factor requirements, and transcription factor profiles of pluripotent cells in embryos, allowing improvement of derivation and culture conditions for novel pluripotent stem cell types. More recently, studies using single-cell transcriptomics of embryos from different species provided an unprecedented level of resolution of cellular interactions and cell fate decisions that are informing new ways to understand the emergence of pluripotency in different organisms. These new approaches enhance knowledge of species differences during early embryogenesis and will be instrumental for improving methodologies for generating intra- and interspecies chimeric animals using pluripotent stem cells. Here, we discuss the recent developments in our understanding of early embryogenesis in different mammalian species.
Collapse
Affiliation(s)
| | - Jennifer Nichols
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom; University of Cambridge, Cambridge, United Kingdom.
| | - Ramiro Alberio
- School of Biosciences, University of Nottingham, Nottingham, United Kingdom.
| |
Collapse
|
14
|
Naive-like ESRRB + iPSCs with the Capacity for Rapid Neural Differentiation. Stem Cell Reports 2017; 9:1825-1838. [PMID: 29129686 PMCID: PMC5785673 DOI: 10.1016/j.stemcr.2017.10.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 10/09/2017] [Accepted: 10/10/2017] [Indexed: 12/11/2022] Open
Abstract
Several groups have reported the existence of a form of pluripotency that resembles that of mouse embryonic stem cells (mESCs), i.e., a naive state, in human pluripotent stem cells; however, the characteristics vary between reports. The nuclear receptor ESRRB is expressed in mESCs and plays a significant role in their self-renewal, but its expression has not been observed in most naive-like human induced pluripotent stem cells (hiPSCs). In this study, we modified several methods for converting hiPSCs into a naive state through the transgenic expression of several reprogramming factors. The resulting cells express the components of the core transcriptional network of mESCs, including ESRRB, at high levels, which suggests the existence of naive-state hiPSCs that are similar to mESCs. We also demonstrate that these cells differentiate more readily into neural cells than do conventional hiPSCs. These features may be beneficial for their use in disease modeling and regenerative medicine.
Collapse
|
15
|
Boroviak T, Nichols J. Primate embryogenesis predicts the hallmarks of human naïve pluripotency. Development 2017; 144:175-186. [PMID: 28096211 PMCID: PMC5430762 DOI: 10.1242/dev.145177] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Naïve pluripotent mouse embryonic stem cells (ESCs) resemble the preimplantation epiblast and efficiently contribute to chimaeras. Primate ESCs correspond to the postimplantation embryo and fail to resume development in chimaeric assays. Recent data suggest that human ESCs can be ‘reset’ to an earlier developmental stage, but their functional capacity remains ill defined. Here, we discuss how the naïve state is inherently linked to preimplantation epiblast identity in the embryo. We hypothesise that distinctive features of primate development provide stringent criteria to evaluate naïve pluripotency in human and other primate cells. Based on our hypothesis, we define 12 key hallmarks of naïve pluripotency, five of which are specific to primates. These hallmarks may serve as a functional framework to assess human naïve ESCs. Summary: This Hypothesis article highlights several fundamental differences between rodent and primate early development and exploits these to predict key hallmarks of naïve pluripotency in primates.
Collapse
Affiliation(s)
- Thorsten Boroviak
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Jennifer Nichols
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK.,Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 4BG, UK
| |
Collapse
|
16
|
Wu J, Izpisua Belmonte JC. Stem Cells: A Renaissance in Human Biology Research. Cell 2017; 165:1572-1585. [PMID: 27315475 DOI: 10.1016/j.cell.2016.05.043] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Indexed: 12/18/2022]
Abstract
The understanding of human biology and how it relates to that of other species represents an ancient quest. Limited access to human material, particularly during early development, has restricted researchers to only scratching the surface of this inherently challenging subject. Recent technological innovations, such as single cell "omics" and human stem cell derivation, have now greatly accelerated our ability to gain insights into uniquely human biology. The opportunities afforded to delve molecularly into scarce material and to model human embryogenesis and pathophysiological processes are leading to new insights of human development and are changing our understanding of disease and choice of therapy options.
Collapse
Affiliation(s)
- Jun Wu
- Gene Expression Laboratory, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd., La Jolla, CA 92037, USA; Universidad Católica San Antonio de Murcia (UCAM) Campus de los Jerónimos, 135, Guadalupe 30107, Murcia, Spain
| | - Juan Carlos Izpisua Belmonte
- Gene Expression Laboratory, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd., La Jolla, CA 92037, USA.
| |
Collapse
|
17
|
Van der Jeught M, Taelman J, Duggal G, Ghimire S, Lierman S, Chuva de Sousa Lopes SM, Deforce D, Deroo T, De Sutter P, Heindryckx B. Application Of Small Molecules Favoring Naïve Pluripotency during Human Embryonic Stem Cell Derivation. Cell Reprogram 2016; 17:170-80. [PMID: 26053517 DOI: 10.1089/cell.2014.0085] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
In mice, inhibition of both the fibroblast growth factor (FGF) mitogen-activated protein kinase kinase/extracellular-signal regulated kinase (MEK/Erk) and the Wnt signaling inhibitor glycogen synthase-3β (GSK3β) enables the derivation of mouse embryonic stem cells (mESCs) from nonpermissive strains in the presence of leukemia inhibitory factor (LIF). Whereas mESCs are in an uncommitted naïve state, human embryonic stem cells (hESCs) represent a more advanced state, denoted as primed pluripotency. This burdens hESCs with a series of characteristics, which, in contrast to naïve ESCs, makes them not ideal for key applications such as cell-based clinical therapies and human disease modeling. In this study, different small molecule combinations were applied during human ESC derivation. Hereby, we aimed to sustain the naïve pluripotent state, by interfering with various key signaling pathways. First, we tested several combinations on existing, 2i (PD0325901 and CHIR99021)-derived mESCs. All combinations were shown to be equally adequate to sustain the expression of naïve pluripotency markers. Second, these conditions were tested during hESC derivation. Overall, the best results were observed in the presence of medium supplemented with 2i, LIF, and the noncanonical Wnt signaling agonist Wnt5A, alone and combined with epinephrine. In these conditions, outgrowths repeatedly showed an ESC progenitor-like morphology, starting from day 3. Culturing these "progenitor cells" did not result in stable, naïve hESC lines in the current conditions. Although Wnt5A could not promote naïve hESC derivation, we found that it was sustaining the conversion of established hESCs toward a more naïve state. Future work should aim to distinct the effects of the various culture formulations, including our Wnt5A-supplemented medium, reported to promote stable naïve pluripotency in hESCs.
Collapse
Affiliation(s)
- Margot Van der Jeught
- 1 Ghent Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital , 9000 Ghent, Belgium .,4 These authors contributed equally to this work
| | - Jasin Taelman
- 1 Ghent Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital , 9000 Ghent, Belgium .,4 These authors contributed equally to this work
| | - Galbha Duggal
- 1 Ghent Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital , 9000 Ghent, Belgium
| | - Sabitri Ghimire
- 1 Ghent Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital , 9000 Ghent, Belgium
| | - Sylvie Lierman
- 1 Ghent Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital , 9000 Ghent, Belgium
| | - Susana M Chuva de Sousa Lopes
- 1 Ghent Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital , 9000 Ghent, Belgium .,2 Department of Anatomy and Embryology, Leiden University Medical Center , 2300 Leiden, The Netherlands
| | - Dieter Deforce
- 3 Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University , 9000 Ghent, Belgium
| | - Tom Deroo
- 1 Ghent Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital , 9000 Ghent, Belgium
| | - Petra De Sutter
- 1 Ghent Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital , 9000 Ghent, Belgium
| | - Björn Heindryckx
- 1 Ghent Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital , 9000 Ghent, Belgium
| |
Collapse
|
18
|
HosseinNia P, Tahmoorespur M, Hosseini SM, Hajian M, Ostadhosseini S, Nasiri MR, Nasr-Esfahani MH. Stage-Specific Profiling of Transforming Growth Factor-β, Fibroblast Growth Factor and Wingless-int Signaling Pathways during Early Embryo Development in The Goat. CELL JOURNAL 2016; 17:648-58. [PMID: 26862524 PMCID: PMC4746415 DOI: 10.22074/cellj.2016.3837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 11/23/2014] [Indexed: 12/24/2022]
Abstract
Objective This research intends to unravel the temporal expression profiles of genes in-
volved in three developmentally important signaling pathways [transforming growth factor-β
(TGF-β), fibroblast growth factor (FGF) and wingless/int (WNT)] during preand peri-implan-
tation goat embryo development.
Materials and Methods In this experimental study, we examined the transcripts that
encoded the ligand, receptor, intracellular signal transducer and modifier, and the down-
stream effector, for each signaling pathway. In vitro mature MII oocytes and embryos at
three distinctive stages [8-16 cell stage, day-7 (D7) blastocysts and day-14 (D14) blas-
tocysts] were separately prepared in triplicate for comparative real-time reverse tran-
scriptase polymerase chain reaction (RT-PCR) using the selected gene sets.
Results Most components of the three signaling pathways were present at more or less
stable levels throughout the assessed oocyte and embryo developmental stages. The
transcripts for TGF-β, FGF and WNT signaling pathways were all induced in unfertilized
MII-oocytes. However, developing embryos showed gradual patterns of decrease in the
activities of TGF-β, FGF and WNT components with renewal thereafter.
Conclusion The results suggested that TGF-β, FGF and WNT are maternally active
signaling pathways required during earlier, rather than later, stages of preand peri-
implantation goat embryo development.
Collapse
Affiliation(s)
- Pouria HosseinNia
- Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran; Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mojtaba Tahmoorespur
- Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Sayyed Morteza Hosseini
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mehdi Hajian
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Somayeh Ostadhosseini
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohammad Reza Nasiri
- Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohammad Hossein Nasr-Esfahani
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| |
Collapse
|
19
|
Boroviak T, Loos R, Lombard P, Okahara J, Behr R, Sasaki E, Nichols J, Smith A, Bertone P. Lineage-Specific Profiling Delineates the Emergence and Progression of Naive Pluripotency in Mammalian Embryogenesis. Dev Cell 2015; 35:366-82. [PMID: 26555056 PMCID: PMC4643313 DOI: 10.1016/j.devcel.2015.10.011] [Citation(s) in RCA: 307] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 09/01/2015] [Accepted: 10/14/2015] [Indexed: 12/11/2022]
Abstract
Naive pluripotency is manifest in the preimplantation mammalian embryo. Here we determine transcriptome dynamics of mouse development from the eight-cell stage to postimplantation using lineage-specific RNA sequencing. This method combines high sensitivity and reporter-based fate assignment to acquire the full spectrum of gene expression from discrete embryonic cell types. We define expression modules indicative of developmental state and temporal regulatory patterns marking the establishment and dissolution of naive pluripotency in vivo. Analysis of embryonic stem cells and diapaused embryos reveals near-complete conservation of the core transcriptional circuitry operative in the preimplantation epiblast. Comparison to inner cell masses of marmoset primate blastocysts identifies a similar complement of pluripotency factors but use of alternative signaling pathways. Embryo culture experiments further indicate that marmoset embryos utilize WNT signaling during early lineage segregation, unlike rodents. These findings support a conserved transcription factor foundation for naive pluripotency while revealing species-specific regulatory features of lineage segregation.
Collapse
Affiliation(s)
- Thorsten Boroviak
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Remco Loos
- European Bioinformatics Institute, European Molecular Biology Laboratory, Wellcome Trust Genome Campus, Cambridge CB10 1SD, UK
| | - Patrick Lombard
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Junko Okahara
- Department of Applied Developmental Biology, Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kanagawa 210-0821, Japan
| | - Rüdiger Behr
- Deutsches Primatenzentrum (German Primate Center), Leibniz-Institut für Primatenforschung, Kellnerweg 4, 37077 Göttingen, Germany; DZHK (German Center for Cardiovascular Research), Wilhelmsplatz 1, 37073 Göttingen, Germany
| | - Erika Sasaki
- Department of Applied Developmental Biology, Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kanagawa 210-0821, Japan; Keio Advanced Research Center, Keio University, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Jennifer Nichols
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 3EG, UK
| | - Austin Smith
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK; Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK.
| | - Paul Bertone
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK; European Bioinformatics Institute, European Molecular Biology Laboratory, Wellcome Trust Genome Campus, Cambridge CB10 1SD, UK; Genome Biology and Developmental Biology Units, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany.
| |
Collapse
|
20
|
Blakeley P, Fogarty NME, del Valle I, Wamaitha SE, Hu TX, Elder K, Snell P, Christie L, Robson P, Niakan KK. Defining the three cell lineages of the human blastocyst by single-cell RNA-seq. Development 2015; 142:3151-65. [PMID: 26293300 PMCID: PMC4582176 DOI: 10.1242/dev.123547] [Citation(s) in RCA: 211] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 08/05/2015] [Indexed: 12/16/2022]
Abstract
Here, we provide fundamental insights into early human development by single-cell RNA-sequencing of human and mouse preimplantation embryos. We elucidate conserved transcriptional programs along with those that are human specific. Importantly, we validate our RNA-sequencing findings at the protein level, which further reveals differences in human and mouse embryo gene expression. For example, we identify several genes exclusively expressed in the human pluripotent epiblast, including the transcription factor KLF17. Key components of the TGF-β signalling pathway, including NODAL, GDF3, TGFBR1/ALK5, LEFTY1, SMAD2, SMAD4 and TDGF1, are also enriched in the human epiblast. Intriguingly, inhibition of TGF-β signalling abrogates NANOG expression in human epiblast cells, consistent with a requirement for this pathway in pluripotency. Although the key trophectoderm factors Id2, Elf5 and Eomes are exclusively localized to this lineage in the mouse, the human orthologues are either absent or expressed in alternative lineages. Importantly, we also identify genes with conserved expression dynamics, including Foxa2/FOXA2, which we show is restricted to the primitive endoderm in both human and mouse embryos. Comparison of the human epiblast to existing embryonic stem cells (hESCs) reveals conservation of pluripotency but also additional pathways more enriched in hESCs. Our analysis highlights significant differences in human preimplantation development compared with mouse and provides a molecular blueprint to understand human embryogenesis and its relationship to stem cells. Summary: Single-cell RNA-sequencing of human and mouse embryos reveals conserved and human-specific transcriptional programmes as well as a functional requirement for TGFβ signalling in human embryos.
Collapse
Affiliation(s)
- Paul Blakeley
- Human Embryology and Stem Cell Laboratory, The Francis Crick Institute, Mill Hill Laboratory, London NW7 1AA, UK
| | - Norah M E Fogarty
- Human Embryology and Stem Cell Laboratory, The Francis Crick Institute, Mill Hill Laboratory, London NW7 1AA, UK
| | - Ignacio del Valle
- Human Embryology and Stem Cell Laboratory, The Francis Crick Institute, Mill Hill Laboratory, London NW7 1AA, UK
| | - Sissy E Wamaitha
- Human Embryology and Stem Cell Laboratory, The Francis Crick Institute, Mill Hill Laboratory, London NW7 1AA, UK
| | - Tim Xiaoming Hu
- Genome Institute of Singapore, A-STAR, Singapore 138672, Singapore MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK
| | - Kay Elder
- Bourn Hall Clinic, Bourn, Cambridge CB23 2TN, UK
| | - Philip Snell
- Bourn Hall Clinic, Bourn, Cambridge CB23 2TN, UK
| | | | - Paul Robson
- Genome Institute of Singapore, A-STAR, Singapore 138672, Singapore The Jackson Laboratory for Genomic Medicine, Farmington, CT 06030, USA
| | - Kathy K Niakan
- Human Embryology and Stem Cell Laboratory, The Francis Crick Institute, Mill Hill Laboratory, London NW7 1AA, UK
| |
Collapse
|
21
|
Van der Jeught M, O'Leary T, Duggal G, De Sutter P, Chuva de Sousa Lopes S, Heindryckx B. The post-inner cell mass intermediate: implications for stem cell biology and assisted reproductive technology. Hum Reprod Update 2015; 21:616-26. [PMID: 26089403 DOI: 10.1093/humupd/dmv028] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 06/01/2015] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Until recently, the temporal events that precede the generation of pluripotent embryonic stem cells (ESCs) and their equivalence with specific developmental stages in vivo was poorly understood. Our group has discovered the existence of a transient epiblast-like structure, coined the post-inner cell mass (ICM) intermediate or PICMI, that emerges before human ESC (hESCs) are established, which supports their primed nature (i.e. already showing some predispositions towards certain cell types) of pluripotency. METHODS The PICMI results from the progressive epithelialization of the ICM and it expresses a mixture of early and late epiblast markers, as well as some primordial germ cell markers. The PICMI is a closer progenitor of hESCs than the ICM and it can be seen as the first proof of why all existing hESCs, until recently, display a primed state of pluripotency. RESULTS Even though the pluripotent characteristics of ESCs differ from mouse (naïve) to human (primed), it has recently been shown in mice that a similar process of self-organization at the transition from ICM to (naïve) mouse ESCs (mESCs) transforms the amorphous ICM into a rosette of polarized epiblast cells, a mouse PICMI. The transient PICMI stage is therefore at the origin of both mESCs and hESCs. In addition, several groups have now reported the conversion from primed to the naïve (mESCs-like) hESCs, broadening the pluripotency spectrum and opening new opportunities for the use of pluripotent stem cells. CONCLUSIONS In this review, we discuss the recent discoveries of mouse and human transient states from ICM to ESCs and their relation towards the state of pluripotency in the eventual stem cells, being naïve or primed. We will now further investigate how these intermediate and/or different pluripotent stages may impact the use of human stem cells in regenerative medicine and assisted reproductive technology.
Collapse
Affiliation(s)
- Margot Van der Jeught
- Ghent Fertility and Stem Cell Team (G-FAST), Department for Reproductive Medicine, Ghent University Hospital, De Pintelaan 185, Ghent 9000, Belgium
| | - Thomas O'Leary
- Ghent Fertility and Stem Cell Team (G-FAST), Department for Reproductive Medicine, Ghent University Hospital, De Pintelaan 185, Ghent 9000, Belgium Present address: Coastal Fertility Specialists, 1375 Hospital Drive, Mt Pleasant, SC 29464, USA
| | - Galbha Duggal
- Ghent Fertility and Stem Cell Team (G-FAST), Department for Reproductive Medicine, Ghent University Hospital, De Pintelaan 185, Ghent 9000, Belgium Present address: Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Petra De Sutter
- Ghent Fertility and Stem Cell Team (G-FAST), Department for Reproductive Medicine, Ghent University Hospital, De Pintelaan 185, Ghent 9000, Belgium
| | - Susana Chuva de Sousa Lopes
- Ghent Fertility and Stem Cell Team (G-FAST), Department for Reproductive Medicine, Ghent University Hospital, De Pintelaan 185, Ghent 9000, Belgium Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, Leiden 2333 ZC, The Netherlands
| | - Björn Heindryckx
- Ghent Fertility and Stem Cell Team (G-FAST), Department for Reproductive Medicine, Ghent University Hospital, De Pintelaan 185, Ghent 9000, Belgium
| |
Collapse
|
22
|
Hassani SN, Pakzad M, Asgari B, Taei A, Baharvand H. Suppression of transforming growth factor β signaling promotes ground state pluripotency from single blastomeres. Hum Reprod 2014; 29:1739-48. [PMID: 24963166 DOI: 10.1093/humrep/deu134] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
STUDY QUESTION Can transforming growth factor β (TGFβ) inhibition promote ground state pluripotency of embryonic stem cells (ESCs) from single blastomeres (SBs) of cleavage embryos in different mouse stains? SUMMARY ANSWER Small molecule suppression of extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) and TGFβ signaling (designated as R2i) can enhance the generation of mouse ESCs from SBs of different cleavage stage embryos compared with the dual suppression of ERK1/2 and glycogen synthase kinase 3 (GSK3), designated as 2i, regardless of the strain of mouce. WHAT IS KNOWN ALREADY It is known that chemical inhibition of TGFβ promotes ground state pluripotency in the generation and sustenance of naïve ES cells from mouse blastocysts compared with the well-known 2i condition. However, the positive effect of this inhibition on mouse ESCs from early embryonic SBs remains obscure. STUDY DESIGN, SIZE, DURATION We used 155 cleavage-stage mouse embryos to optimize the culture conditions for blastocyst development. Then, to assess the effects of R2i and 2i on ESC generation from SBs, we cultured isolated SBs in 2i and R2i for 10 days. SBs were replated under the same conditions to produce ESCs. In total, 46 embryos and 321 SBs from two- to eight-cell stages were recovered from NMRI and BALB/c mouse strains and used in this study. PARTICIPANTS/MATERIALS, SETTING, METHODS Blastomeres from 2- to 8-cell stage mouse embryos were dispersed and individually seeded into a 96-well plates that included mitotically inactivated feeder cells. ESCs were generated in B27N2 defined medium supplemented with R2i or 2i. Randomly selected ESC lines, generated from SBs of each stage, were assessed for pluripotency and germ-line transmission. MAIN RESULTS AND THE ROLE OF CHANCE We demonstrated that dual inhibition of ERK1/2 and TGFβ (R2i) enhanced efficient blastocyst development and efficient establishment of ESCs from SB of 2- to 8-cell stage mouse embryos compared with the dual inhibition of ERK1/2 and GSK3 (2i) regardless of the embryonic stage and strain of mice. The proportions of SBs that produced ESC were 50-60 versus 20-30%. LIMITATIONS, REASONS FOR CAUTION This study was done with mouse embryos, it is not known whether these findings are transferable to humans. WIDER IMPLICATIONS OF THE FINDINGS These findings resulted in an increased efficiency of ESC generation from one biopsied blastomere for autogeneic or allogeneic matched pluripotent cells without the need to destroy viable embryos. The results also provided information about the developmental capacity of early embryonic blastomeres. STUDY FUNDING/COMPETING INTERESTS This study was funded by grants provided from Royan Institute, the Iranian Council of Stem Cell Research and Technology and the Iran National Science Foundation. The authors have no conflict of interest to declare.
Collapse
Affiliation(s)
- Seyedeh-Nafiseh Hassani
- Department of Stem Cells and Developmental Biology at the Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, PO Box 19395-4644, Tehran, Iran Department of Developmental Biology, University of Science and Culture, ACECR, Tehran, Iran
| | - Mohammad Pakzad
- Department of Stem Cells and Developmental Biology at the Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, PO Box 19395-4644, Tehran, Iran
| | - Behrouz Asgari
- Department of Stem Cells and Developmental Biology at the Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, PO Box 19395-4644, Tehran, Iran
| | - Adeleh Taei
- Department of Stem Cells and Developmental Biology at the Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, PO Box 19395-4644, Tehran, Iran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology at the Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, PO Box 19395-4644, Tehran, Iran Department of Developmental Biology, University of Science and Culture, ACECR, Tehran, Iran
| |
Collapse
|
23
|
Du J, Wu Y, Ai Z, Shi X, Chen L, Guo Z. Mechanism of SB431542 in inhibiting mouse embryonic stem cell differentiation. Cell Signal 2014; 26:2107-16. [PMID: 24949833 DOI: 10.1016/j.cellsig.2014.06.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 06/09/2014] [Accepted: 06/09/2014] [Indexed: 12/22/2022]
Abstract
SB431542 (SB) is an established small molecular inhibitor that specifically binds to the ATP binding domains of the activin receptor-like kinase receptors, ALK5, ALK4 and ALK7, and thus specifically inhibits Smad2/3 activation and blocks TGF-β signal transduction. SB maintains the undifferentiated state of mouse embryonic stem cells. However, the way of SB in maintaining the undifferentiated state of mouse embryonic stem cells remains unclear. Considering that SB could not maintain embryonic stem cells pluripotency when leukemia inhibitory factor was withdrawn, we sought to identify the mechanism of SB on pluripotent maintenance. Transcripts regulated by SB, including message RNAs and small non-coding RNAs were examined through microarray and deep-sequence experiments. After examination, Western blot analysis, and quantitative real-time PCR verification, we found that SB regulated the transcript expressions related to self-renewal and differentiation. SB mainly functioned by inhibiting differentiation. The key pluripotent factors expression were not significantly affected by SB, and intrinsic differentiation-related transcripts including fibroblast growth factor family members, were significantly down-regulated by SB. Moreover, SB could partially inhibit the retinoic acid response to neuronal differentiation of mouse embryonic stem cells.
Collapse
Affiliation(s)
- Juan Du
- College of Life Sciences, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, China
| | - Yongyan Wu
- College of Veterinary Medicine, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, China
| | - Zhiying Ai
- College of Life Sciences, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, China
| | - Xiaoyan Shi
- College of Life Sciences, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, China
| | - Linlin Chen
- College of Life Sciences, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, China
| | - Zekun Guo
- College of Veterinary Medicine, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, China.
| |
Collapse
|