1
|
Zanon P, Terraciano PB, Quandt L, Palma Kuhl C, Pandolfi Passos E, Berger M. Angiotensin II - AT1 receptor signalling regulates the plasminogen-plasmin system in human stromal endometrial cells increasing extracellular matrix degradation, cell migration and inducing a proinflammatory profile. Biochem Pharmacol 2024; 225:116280. [PMID: 38735446 DOI: 10.1016/j.bcp.2024.116280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/14/2024]
Abstract
The pivotal role of human endometrial stromal cells (hESCs) in the development of endometriosis lies in their ability to adopt a pro-invasive and proinflammatory profile upon migration to areas outside the uterus. However, the molecular mechanisms involved in these events remain unclear. In this study, we investigated how angiotensin II (Ang II) affects the plasminogen-plasmin system in hESCs, and the mechanisms underlying cell proliferation, migration, matrix degradation, and inflammation. Precursors, receptors, and peptidases involved in angiotensin metabolism increased significantly in Ang II-treated hESCs. The expression and activity of tissue (tPA)- and urokinase (uPA)- type plasminogen activators and the receptor for uPA (uPAR) were induced in the presence of Ang II. The up-regulation of tPA-uPA/uPAR pathway significantly contributes to heightened plasmin production both on the surface of hESCs and in their conditioned media. As a result, the plasmin generation induced by Ang II enhances the degradation of fibrin and matrix proteins, while also boosting hESC viability, proliferation, and migration through the up-regulation of growth factor expression. Notably, Ang II-induced hESC migration was dependent on the generation of active plasmin on cell surface. Ang II regulates oxidative and inflammatory signalling in hESCs primarily via NADPH oxidase and through the up-regulation of proinflammatory cytokines and adhesion molecules. Interestingly, Ang II receptor (AT1R) blockage, decreased plasmin generation, tPA-uPA/uPAR expression and hESC migration. Our results suggest that Ang II/AT1R axis regulates hESC proliferation and migration through tPA-uPA/uPAR pathway activation and plasmin generation. We propose the Ang II/AT1R axis as a potential target for endometriosis treatment.
Collapse
Affiliation(s)
- Pamela Zanon
- Grupo de Reprodução e Farmacologia Celular, Laboratório de Bioquímica Farmacológica, Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA-UFRGS), Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências de Saúde: Ginecologia e Obstetrícia (PPGGO), Faculdade de Medicina, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Paula Barros Terraciano
- Programa de Pós-Graduação em Ciências de Saúde: Ginecologia e Obstetrícia (PPGGO), Faculdade de Medicina, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Grupo de Reprodução e Farmacologia Celular, Laboratório de Embriologia e Diferenciação Celular, Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA-UFRGS), Porto Alegre, RS, Brazil
| | - Letícia Quandt
- Grupo de Reprodução e Farmacologia Celular, Laboratório de Bioquímica Farmacológica, Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA-UFRGS), Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências de Saúde: Ginecologia e Obstetrícia (PPGGO), Faculdade de Medicina, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Cristiana Palma Kuhl
- Programa de Pós-Graduação em Ciências de Saúde: Ginecologia e Obstetrícia (PPGGO), Faculdade de Medicina, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Grupo de Reprodução e Farmacologia Celular, Laboratório de Embriologia e Diferenciação Celular, Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA-UFRGS), Porto Alegre, RS, Brazil
| | - Eduardo Pandolfi Passos
- Programa de Pós-Graduação em Ciências de Saúde: Ginecologia e Obstetrícia (PPGGO), Faculdade de Medicina, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Grupo de Reprodução e Farmacologia Celular, Laboratório de Embriologia e Diferenciação Celular, Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA-UFRGS), Porto Alegre, RS, Brazil; Departamento de Ginecologia e Obstetrícia, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Centro de Fertilidade, Hospital Moinhos de Vento, Porto Alegre, RS, Brazil
| | - Markus Berger
- Grupo de Reprodução e Farmacologia Celular, Laboratório de Bioquímica Farmacológica, Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA-UFRGS), Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências de Saúde: Ginecologia e Obstetrícia (PPGGO), Faculdade de Medicina, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| |
Collapse
|
2
|
Zhang YA, Li FW, Dong YX, Xie WJ, Wang HB. PPAR-γ regulates the polarization of M2 macrophages to improve the microenvironment for autologous fat grafting. FASEB J 2024; 38:e23613. [PMID: 38661048 DOI: 10.1096/fj.202400126r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/19/2024] [Accepted: 04/02/2024] [Indexed: 04/26/2024]
Abstract
The unpredictable survival rate of autologous fat grafting (AFG) seriously affects its clinical application. Improving the survival rate of AFG has become an unresolved issue in plastic surgery. Peroxisome proliferator-activated receptor-γ (PPAR-γ) regulates the adipogenic differentiation of adipocytes, but the functional mechanism in AFG remains unclear. In this study, we established an animal model of AFG and demonstrated the superior therapeutic effect of PPAR-γ regulation in the process of AFG. From day 3 after fat grafting, the PPAR-γ agonist rosiglitazone group consistently showed better adipose integrity, fewer oil cysts, and fibrosis. Massive macrophage infiltration was observed after 7 days. At the same time, M2 macrophages begin to appear. At day 14, M2 macrophages gradually became the dominant cell population, which suppressed inflammation and promoted revascularization and fat regeneration. In addition, transcriptome sequencing showed that the differentially expressed genes in the Rosiglitazone group were associated with the pathways of adipose regeneration, differentiation, and angiogenesis; these results provide new ideas for clinical treatment.
Collapse
Affiliation(s)
- Ya-An Zhang
- Department of Plastic and Reconstructive Surgery, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Fang-Wei Li
- Department of Plastic and Reconstructive Surgery, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Yun-Xian Dong
- Department of Plastic and Reconstructive Surgery, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Wen-Jie Xie
- Department of Plastic and Reconstructive Surgery, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Hai-Bin Wang
- Department of Plastic and Reconstructive Surgery, Guangdong Second Provincial General Hospital, Guangzhou, China
| |
Collapse
|
3
|
Psilopatis I, Theocharis S, Beckmann MW. The role of peroxisome proliferator-activated receptors in endometriosis. Front Med (Lausanne) 2024; 11:1329406. [PMID: 38690174 PMCID: PMC11058831 DOI: 10.3389/fmed.2024.1329406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 04/01/2024] [Indexed: 05/02/2024] Open
Abstract
Endometriosis constitutes the most common cause of chronic pelvic pain in female patients and is associated with infertility. Although there is no known cause for the disease, it is a heritable condition that is determined by numerous genetic, epigenetic, and environmental aspects. Peroxisome proliferator-activated receptors (PPARs) represent nuclear receptor proteins that control gene expression. By using the MEDLINE and LIVIVO databases we conducted a literature review in order to look into the role of PPARs in the endometriosis pathophysiology and succeeded in revealing 36 pertinent publications between 2001 and 2022. In regards to PPAR expression in endometriosis, PPARγ seems to represent the most studied PPAR isoform in endometriosis and to influence various pathways involved in the disease onset and progression. It's interesting to note that diverse treatment agents targeting the PPAR system have been identified as innovative, effective therapeutic alternatives in the context of endometriosis treatment. In conclusion, PPARs appear to contribute an important role in both endometriosis pathophysiology and therapy.
Collapse
Affiliation(s)
- Iason Psilopatis
- Department of Gynecology and Obstetrics, Erlangen University Hospital, Friedrich Alexander University of Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Stamatios Theocharis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Matthias W. Beckmann
- Department of Gynecology and Obstetrics, Erlangen University Hospital, Friedrich Alexander University of Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| |
Collapse
|
4
|
Zhang Y, Wu L, Wen X, Lv X. Identification and validation of risk score model based on gene set activity as a diagnostic biomarker for endometriosis. Heliyon 2023; 9:e18277. [PMID: 37539146 PMCID: PMC10395533 DOI: 10.1016/j.heliyon.2023.e18277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 06/28/2023] [Accepted: 07/13/2023] [Indexed: 08/05/2023] Open
Abstract
Objective The enigmatic nature of Endometriosis (EMS) pathogenesis necessitates investigating alterations in signaling pathway activity to enhance our comprehension of the disease's characteristics. Methods Three published gene expression profiles (GSE11691, GSE25628, and GSE7305 datasets) were downloaded, and the "combat" algorithm was employed for batch correction, gene expression difference analysis, and pathway enrichment difference analysis. The protein-protein interaction (PPI) network was constructed to identify core genes, and the relative enrichment degree of gene sets was evaluated. The Lasso regression model identified candidate gene sets with diagnostic value, and a risk scoring diagnostic model was constructed for further validation on the GSE86534 and GSE5108 datasets. CIBERSORT was used to assess the composition of immune cells in EMS, and the correlation between EMS diagnostic value gene sets and immune cells was evaluated. Results A total of 568 differentially expressed genes were identified between eutopic and ectopic endometrium, with 10 core genes in the PPI network associated with cell cycle regulation. Inflammation-related pathways, including cytokine-receptor signaling and chemokine signaling pathways, were significantly more active in ectopic endometrium compared to eutopic endometrium. Diagnostic gene sets for EMS, such as homologous recombination, base excision repair, DNA replication, P53 signaling pathway, adherens junction, and SNARE interactions in vesicular transport, were identified. The risk score's area under the curve (AUC) was 0.854, as indicated by the receiver operating characteristic (ROC) curve, and the risk score's diagnostic value was validated by the validation cohort. Immune cell infiltration analysis revealed correlations between the risk score and Macrophages M2, Plasma cells, resting NK cells, activated NK cells, and regulatory T cells. Conclusion The risk scoring diagnostic model, based on pathway activity, demonstrates high diagnostic value and offers novel insights and strategies for the clinical diagnosis and treatment of Endometriosis.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Gynecology, Second Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha 410005, China
| | - Lulu Wu
- Department of Integrated Traditional Chinese and Western Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Xiang Wen
- Department of Pathology, The First People's Hospital of Huizhou City, Huizhou 516000, China
| | - Xiuwei Lv
- Department of Traditional Chinese Medicine, Rocket Force Medical Center of PLA, Beijing 100088, China
| |
Collapse
|
5
|
Psilopatis I, Vrettou K, Fleckenstein FN, Theocharis S. The Role of Peroxisome Proliferator-Activated Receptors in Preeclampsia. Cells 2023; 12:cells12040647. [PMID: 36831316 PMCID: PMC9954398 DOI: 10.3390/cells12040647] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/07/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Preeclampsia is a common pregnancy-related hypertensive disorder. Often presenting as preexisting or new-onset hypertension complicated by proteinuria and/or end-organ dysfunction, preeclampsia significantly correlates with maternal and perinatal morbidity and mortality. Peroxisome proliferator-activated receptors (PPARs) are nuclear receptor proteins that regulate gene expression. In order to investigate the role of PPARs in the pathophysiology of preeclampsia, we conducted a literature review using the MEDLINE and LIVIVO databases. The search terms "peroxisome proliferator-activated receptor", "PPAR", and "preeclampsia" were employed and we were able to identify 35 relevant studies published between 2002 and 2022. Different study groups reached contradictory conclusions in terms of PPAR expression in preeclamptic placentae. Interestingly, PPARγ agonists alone, or in combination with well-established pharmaceutical agents, were determined to represent novel, potent anti-preeclamptic treatment alternatives. In conclusion, PPARs seem to play a significant role in preeclampsia.
Collapse
Affiliation(s)
- Iason Psilopatis
- Department of Diagnostic and Interventional Radiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt—Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Bld 10, Goudi, 11527 Athens, Greece
| | - Kleio Vrettou
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Bld 10, Goudi, 11527 Athens, Greece
| | - Florian Nima Fleckenstein
- Department of Diagnostic and Interventional Radiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt—Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
- BIH Charité Clinician Scientist Program, Berlin Institute of Health at Charité—Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, 10117 Berlin, Germany
- Correspondence: (F.N.F.); (S.T.)
| | - Stamatios Theocharis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Bld 10, Goudi, 11527 Athens, Greece
- Correspondence: (F.N.F.); (S.T.)
| |
Collapse
|
6
|
Wagner N, Wagner KD. Pharmacological Utility of PPAR Modulation for Angiogenesis in Cardiovascular Disease. Int J Mol Sci 2023; 24:ijms24032345. [PMID: 36768666 PMCID: PMC9916802 DOI: 10.3390/ijms24032345] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/22/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
Peroxisome proliferator activated receptors, including PPARα, PPARβ/δ, and PPARγ, are ligand-activated transcription factors belonging to the nuclear receptor superfamily. They play important roles in glucose and lipid metabolism and are also supposed to reduce inflammation and atherosclerosis. All PPARs are involved in angiogenesis, a process critically involved in cardiovascular pathology. Synthetic specific agonists exist for all PPARs. PPARα agonists (fibrates) are used to treat dyslipidemia by decreasing triglyceride and increasing high-density lipoprotein (HDL) levels. PPARγ agonists (thiazolidinediones) are used to treat Type 2 diabetes mellitus by improving insulin sensitivity. PPARα/γ (dual) agonists are supposed to treat both pathological conditions at once. In contrast, PPARβ/δ agonists are not in clinical use. Although activators of PPARs were initially considered to have favorable effects on the risk factors for cardiovascular disease, their cardiovascular safety is controversial. Here, we discuss the implications of PPARs in vascular biology regarding cardiac pathology and focus on the outcomes of clinical studies evaluating their benefits in cardiovascular diseases.
Collapse
|
7
|
The immunomodulatory effects of antihypertensive therapy: A review. Biomed Pharmacother 2022; 153:113287. [PMID: 35728352 DOI: 10.1016/j.biopha.2022.113287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 11/23/2022] Open
Abstract
Hypertension remains the leading preventable risk factor for stroke and coronary artery disease, significantly contributing to all-cause global mortality and predisposing patients to renal and heart failure, as well as peripheral vascular disease. Due to the widespread usage of antihypertensive drugs, global mean blood pressure has remained unchanged or even slightly decreased over the past four decades. However, considering the broad spectrum of mechanisms involved in the action of antihypertensive drugs and the prevalence of their target receptors on immune cells, possible immunomodulatory effects which may exert beneficial effects of lowering blood pressure but also potentially alter immune function should be considered. In this review, we attempt to assess the consequences to immune system function of administering the five most commonly prescribed groups of antihypertensive drugs and to explain the mechanisms behind those interactions. Finally, we show potential gaps in our understanding of the effects of antihypertensive drugs on patient health. With regard to the widespread use of these drugs in the adult population worldwide, the discussed results may be of vital importance to evidence-based decision-making in daily clinical practice.
Collapse
|
8
|
Kast RE, Alfieri A, Assi HI, Burns TC, Elyamany AM, Gonzalez-Cao M, Karpel-Massler G, Marosi C, Salacz ME, Sardi I, Van Vlierberghe P, Zaghloul MS, Halatsch ME. MDACT: A New Principle of Adjunctive Cancer Treatment Using Combinations of Multiple Repurposed Drugs, with an Example Regimen. Cancers (Basel) 2022; 14:2563. [PMID: 35626167 PMCID: PMC9140192 DOI: 10.3390/cancers14102563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/11/2022] [Accepted: 05/17/2022] [Indexed: 12/12/2022] Open
Abstract
In part one of this two-part paper, we present eight principles that we believe must be considered for more effective treatment of the currently incurable cancers. These are addressed by multidrug adjunctive cancer treatment (MDACT), which uses multiple repurposed non-oncology drugs, not primarily to kill malignant cells, but rather to reduce the malignant cells' growth drives. Previous multidrug regimens have used MDACT principles, e.g., the CUSP9v3 glioblastoma treatment. MDACT is an amalgam of (1) the principle that to be effective in stopping a chain of events leading to an undesired outcome, one must break more than one link; (2) the principle of Palmer et al. of achieving fractional cancer cell killing via multiple drugs with independent mechanisms of action; (3) the principle of shaping versus decisive operations, both being required for successful cancer treatment; (4) an idea adapted from Chow et al., of using multiple cytotoxic medicines at low doses; (5) the idea behind CUSP9v3, using many non-oncology CNS-penetrant drugs from general medical practice, repurposed to block tumor survival paths; (6) the concept from chess that every move creates weaknesses and strengths; (7) the principle of mass-by adding force to a given effort, the chances of achieving the goal increase; and (8) the principle of blocking parallel signaling pathways. Part two gives an example MDACT regimen, gMDACT, which uses six repurposed drugs-celecoxib, dapsone, disulfiram, itraconazole, pyrimethamine, and telmisartan-to interfere with growth-driving elements common to cholangiocarcinoma, colon adenocarcinoma, glioblastoma, and non-small-cell lung cancer. gMDACT is another example of-not a replacement for-previous multidrug regimens already in clinical use, such as CUSP9v3. MDACT regimens are designed as adjuvants to be used with cytotoxic drugs.
Collapse
Affiliation(s)
| | - Alex Alfieri
- Department of Neurosurgery, Cantonal Hospital of Winterthur, 8400 Winterthur, Switzerland; (A.A.); (M.-E.H.)
| | - Hazem I. Assi
- Naef K. Basile Cancer Center, American University of Beirut, Beirut 1100, Lebanon;
| | - Terry C. Burns
- Department of Neurological Surgery, Mayo Clinic, Rochester, MN 55905, USA;
| | - Ashraf M. Elyamany
- Oncology Unit, Hemato-Oncology Department, SECI Assiut University Egypt/King Saud Medical City, Riyadh 7790, Saudi Arabia;
| | - Maria Gonzalez-Cao
- Translational Cancer Research Unit, Dexeus University Hospital, 08028 Barcelona, Spain;
| | | | - Christine Marosi
- Clinical Division of Medical Oncology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria;
| | - Michael E. Salacz
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA;
| | - Iacopo Sardi
- Department of Pediatric Oncology, Meyer Children’s Hospital, Viale Pieraccini 24, 50139 Florence, Italy;
| | - Pieter Van Vlierberghe
- Department of Biomolecular Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium;
| | - Mohamed S. Zaghloul
- Children’s Cancer Hospital & National Cancer Institute, Cairo University, Cairo 11796, Egypt;
| | - Marc-Eric Halatsch
- Department of Neurosurgery, Cantonal Hospital of Winterthur, 8400 Winterthur, Switzerland; (A.A.); (M.-E.H.)
| |
Collapse
|
9
|
The ischemic time window of ectopic endometrial tissue crucially determines its ability to develop into endometriotic lesions. Sci Rep 2022; 12:5625. [PMID: 35379836 PMCID: PMC8980079 DOI: 10.1038/s41598-022-09577-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 03/21/2022] [Indexed: 11/08/2022] Open
Abstract
Endometriosis develop from shed endometrial fragments via retrograde menstruation. This affects the survival, proliferation and vascularization of the tissue and its final ability to form endometriotic lesions. Within this study, uterine tissue samples from donor mice were precultivated for 24 h or 72 h to simulate avascular periods. Their morphology, microvessel density, apoptotic activity and expression of angiogenesis-related proteins were analyzed in vitro. The formation of endometriotic lesions in vivo was assessed after transplantation of precultivated uterine tissue samples to the abdominal wall and dorsal skinfold chambers by means of high-resolution ultrasound, intravital fluorescence microscopy, histology and immunohistochemistry. In vitro, 72-h-precultivated uterine tissue samples exhibit extensive areas of tissue necrosis and high numbers of apoptotic cells as well as a significantly reduced cell and microvessel density. These samples failed to develop into endometriotic lesions. In contrast, the 24-h-precultivated samples showed, that their early vascularization and growth in vivo was improved when compared to controls. This indicates that avascular periods have a strong impact on the survival of ectopic endometrial tissue and the chance for the development of endometriosis.
Collapse
|
10
|
Marchandot B, Curtiaud A, Matsushita K, Trimaille A, Host A, Faller E, Garbin O, Akladios C, Jesel L, Morel O. Endometriosis and cardiovascular disease. EUROPEAN HEART JOURNAL OPEN 2022; 2:oeac001. [PMID: 35919664 PMCID: PMC9242051 DOI: 10.1093/ehjopen/oeac001] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/13/2021] [Indexed: 11/21/2022]
Abstract
Endometriosis is a chronic gynaecological disease affecting 1 in 10 reproductive-age women. It is defined as the presence of endometrium-like tissue outside the uterus. Beyond this placid anatomical definition, endometriosis is a complex, hormonal, inflammatory, and systemic condition that poses significant familial, psychological, and economic burden. The interaction between the cardiovascular system and endometriosis has become a field of interest as the underlying mutual mechanisms become better understood. On the basis of accumulating fundamental and clinical evidence, it is likely that there exists a close relationship between endometriosis and the cardiovascular system. Therefore, investigating the endometriosis-cardiovascular interaction is highly clinically significant. In this review, we highlight our current understanding of the pathophysiology of endometriosis with systemic hormonal, pro-inflammatory, pro-angiogenic, immunologic, and genetic processes beyond the peritoneal microenvironment. Additionally, we provide current clinical evidence about how endometriosis interacts with cardiovascular risk factors and cardiovascular disease (CVD). To date, only small associations between endometriosis and CVD have been reported in observational studies, inherently limited by the potential influence of unmeasured confounding. Cardiovascular disease in women with endometriosis remains understudied, under-recognized, and underdiagnosed. More detailed study of the cardiovascular-endometriosis interaction is needed to fully understand its clinical relevance, underlying pathophysiology, possible means of early diagnosis and prevention.
Collapse
Affiliation(s)
- Benjamin Marchandot
- Division of Cardiovascular Medicine, Nouvel Hopital Civil, Strasbourg University Hospital, 1 place de l’Hôpital, 67000 Strasbourg, France
| | - Anais Curtiaud
- Division of Cardiovascular Medicine, Nouvel Hopital Civil, Strasbourg University Hospital, 1 place de l’Hôpital, 67000 Strasbourg, France
| | - Kensuke Matsushita
- Division of Cardiovascular Medicine, Nouvel Hopital Civil, Strasbourg University Hospital, 1 place de l’Hôpital, 67000 Strasbourg, France
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, FMTS, Strasbourg, France
| | - Antonin Trimaille
- Division of Cardiovascular Medicine, Nouvel Hopital Civil, Strasbourg University Hospital, 1 place de l’Hôpital, 67000 Strasbourg, France
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, FMTS, Strasbourg, France
| | - Aline Host
- Department of Obstetrics and Gynecology, Hautepierre Hospital, Strasbourg University Hospital, 1 place de l’Hôpital, 67000 Strasbourg, France
- ENDOALSACE, Strasbourg Expert Center for Endometriosis, Hautepierre Hospital, Strasbourg University Hospital, 1 place de l’Hôpital, 67000 Strasbourg, France
| | - Emilie Faller
- Department of Obstetrics and Gynecology, Hautepierre Hospital, Strasbourg University Hospital, 1 place de l’Hôpital, 67000 Strasbourg, France
- ENDOALSACE, Strasbourg Expert Center for Endometriosis, Hautepierre Hospital, Strasbourg University Hospital, 1 place de l’Hôpital, 67000 Strasbourg, France
| | - Olivier Garbin
- Department of Obstetrics and Gynecology, Hautepierre Hospital, Strasbourg University Hospital, 1 place de l’Hôpital, 67000 Strasbourg, France
- ENDOALSACE, Strasbourg Expert Center for Endometriosis, Hautepierre Hospital, Strasbourg University Hospital, 1 place de l’Hôpital, 67000 Strasbourg, France
| | - Chérif Akladios
- Department of Obstetrics and Gynecology, Hautepierre Hospital, Strasbourg University Hospital, 1 place de l’Hôpital, 67000 Strasbourg, France
- ENDOALSACE, Strasbourg Expert Center for Endometriosis, Hautepierre Hospital, Strasbourg University Hospital, 1 place de l’Hôpital, 67000 Strasbourg, France
| | - Laurence Jesel
- Division of Cardiovascular Medicine, Nouvel Hopital Civil, Strasbourg University Hospital, 1 place de l’Hôpital, 67000 Strasbourg, France
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, FMTS, Strasbourg, France
| | - Olivier Morel
- Division of Cardiovascular Medicine, Nouvel Hopital Civil, Strasbourg University Hospital, 1 place de l’Hôpital, 67000 Strasbourg, France
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, FMTS, Strasbourg, France
| |
Collapse
|
11
|
Liu Y, Hao H, Lan T, Jia R, Cao M, Zhou L, Zhao Z, Pan W. Physiological and pathological roles of Ang II and Ang- (1-7) in the female reproductive system. Front Endocrinol (Lausanne) 2022; 13:1080285. [PMID: 36619582 PMCID: PMC9817105 DOI: 10.3389/fendo.2022.1080285] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/05/2022] [Indexed: 12/25/2022] Open
Abstract
The local Renin-Angiotensin System (RAS) has been demonstrated to exist in a wide range of tissues and organs, In the female reproductive system, it is mainly found in the ovary, uterus and placenta. The RAS system is made up of a series of active substances and enzymes, in addition to the circulating endocrine renin-angiotensin system. The active peptides Angiotensin II (Ang II) and Angiotensin (1-7) (Ang-(1-7)), in particular, appear to have distinct activities in the local RAS system, which also controls blood pressure and electrolytes. Therefore, in addition to these features, angiotensin and its receptors in the reproductive system seemingly get involved in reproductive processes, such as follicle growth and development, as well as physiological functions of the placenta and uterus. In addition, changes in local RAS components may induce reproductive diseases as well as pathological states such as cancer. In most tissues, Ang II and Ang- (1-7) seem to maintain antagonistic effects, but this conclusion is not always true in the reproductive system, where they play similar functions in some physiological and pathological roles. This review investigated how Ang II, Ang- (1-7) and their receptors were expressed, localized, and active in the female reproductive system. This review also summarized their effects on follicle development, uterine and placental physiological functions. The changes of local RAS components in a series of reproductive system diseases including infertility related diseases and cancer and their influence on the occurrence and development of diseases were elucidated. This article reviews the physiological and pathological roles of Ang II and Ang- (1-7) in female reproductive system,a very intricate system of tissue factors that operate as agonists and antagonists was found. Besides, the development of novel therapeutic strategies targeting components of this system may be a research direction in future.
Collapse
Affiliation(s)
- Yuanyuan Liu
- Department of Reproductive Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Haomeng Hao
- Department of Reproductive Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Tingting Lan
- Department of Reproductive Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Rui Jia
- Department of Reproductive Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Urology Hospital, Shenzhen, Guangdong, China
| | - Mingya Cao
- Department of Reproductive Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Liang Zhou
- Department of Reproductive Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhiming Zhao
- Department of Reproductive Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- *Correspondence: Wensen Pan, ; Zhiming Zhao,
| | - Wensen Pan
- Second Department of Respiratory and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- *Correspondence: Wensen Pan, ; Zhiming Zhao,
| |
Collapse
|
12
|
Nenicu A, Yordanova K, Gu Y, Menger MD, Laschke MW. Differences in growth and vascularization of ectopic menstrual and non-menstrual endometrial tissue in mouse models of endometriosis. Hum Reprod 2021; 36:2202-2214. [PMID: 34109385 DOI: 10.1093/humrep/deab139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/29/2021] [Indexed: 11/12/2022] Open
Abstract
STUDY QUESTION Is there a difference in the growth and vascularization between murine endometriotic lesions originating from menstrual or non-menstrual endometrial fragments? SUMMARY ANSWER Endometriotic lesions developing from menstrual and non-menstrual tissue fragments share many similarities, but also exhibit distinct differences in growth and vascularization, particularly under exogenous estrogen stimulation. WHAT IS KNOWN ALREADY Mouse models are increasingly used in endometriosis research. For this purpose, menstrual or non-menstrual endometrial fragments serve for the induction of endometriotic lesions. So far, these two fragment types have never been directly compared under identical experimental conditions. STUDY DESIGN, SIZE, DURATION This was a prospective experimental study in a murine peritoneal and dorsal skinfold chamber model of endometriosis. Endometrial tissue fragments from menstruated (n = 15) and non-menstruated (n = 21) C57BL/6 mice were simultaneously transplanted into the peritoneal cavity or dorsal skinfold chamber of non-ovariectomized (non-ovx, n = 17), ovariectomized (ovx, n = 17) and ovariectomized, estrogen-substituted (ovx+E2, n = 17) recipient animals and analyzed throughout an observation period of 28 and 14 days, respectively. PARTICIPANTS/MATERIALS, SETTING, METHODS The engraftment, growth and vascularization of the newly developing endometriotic lesions were analyzed by means of high-resolution ultrasound imaging, intravital fluorescence microscopy, histology and immunohistochemistry. MAIN RESULTS AND THE ROLE OF CHANCE Menstrual and non-menstrual tissue fragments developed into peritoneal endometriotic lesions without differences in growth, microvessel density and cell proliferation in non-ovx mice. Lesion formation out of both fragment types was markedly suppressed in ovx mice. In case of non-menstrual tissue fragments, this effect could be reversed by estrogen supplementation. In contrast, endometriotic lesions originating from menstrual tissue fragments exhibited a significantly smaller volume in ovx+E2 mice, which may be due to a reduced hormone sensitivity. Moreover, menstrual tissue fragments showed a delayed vascularization and a reduced blood perfusion after transplantation into dorsal skinfold chambers when compared to non-menstrual tissue fragments, indicating different vascularization modes of the two fragment types. To limit the role of chance, the experiments were conducted under standardized laboratory conditions. Statistical significance was accepted for a value of P < 0.05. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION Endometriotic lesions were induced by syngeneic tissue transplantation into recipient mice without the use of pathological endometriotic tissue of human nature. Therefore, the results obtained in this study may not fully relate to human patients with endometriosis. WIDER IMPLICATIONS OF THE FINDINGS The present study significantly contributes to the characterization of common murine endometriosis models. These models represent important tools for studies focusing on the basic mechanisms of endometriosis and the development of novel therapeutic strategies for the treatment of this frequent gynecological disease. The presented findings indicate that the combination of different experimental models and approaches may be the most appropriate strategy to study the pathophysiology and drug sensitivity of a complex disease such as endometriosis under preclinical conditions. STUDY FUNDING/COMPETING INTEREST(S) There was no specific funding of this study. The authors have no conflicts of interest to declare.
Collapse
Affiliation(s)
- A Nenicu
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - K Yordanova
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Y Gu
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - M D Menger
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - M W Laschke
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg/Saar, Germany
| |
Collapse
|
13
|
Vallée A, Vallée JN, Le Blanche A, Lecarpentier Y. PPARγ Agonists: Emergent Therapy in Endometriosis. Pharmaceuticals (Basel) 2021; 14:ph14060543. [PMID: 34204039 PMCID: PMC8229142 DOI: 10.3390/ph14060543] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/31/2021] [Accepted: 06/04/2021] [Indexed: 01/01/2023] Open
Abstract
Endometriosis is one of the major gynecological diseases of reproductive-age women. This disease is characterized by the presence of glands and stroma outside the uterine cavity. Several studies have shown the major role of inflammation, angiogenesis, adhesion and invasion, and apoptosis in endometriotic lesions. Nevertheless, the mechanisms underlying endometriotic mechanisms still remain unclear and therapies are not currently efficient. The introduction of new agents can be effective by improving the condition of patients. PPARγ ligands can directly modulate these pathways in endometriosis. However, data in humans remain low. Thus, the purpose of this review is to summarize the potential actions of PPARγ agonists in endometriosis by acting on inflammation, angiogenesis, invasion, adhesion, and apoptosis.
Collapse
Affiliation(s)
- Alexandre Vallée
- Department of Clinical Research and Innovation (DRCI), Foch Hospital, 92150 Suresnes, France
- Correspondence:
| | - Jean-Noël Vallée
- Centre Hospitalier Universitaire (CHU) Amiens Picardie, Université Picardie Jules Verne (UPJV), 80000 Amiens, France;
- DACTIM-Mis, Laboratoire de Mathématiques et Applications (LMA), UMR CNRS 7348, Université de Poitiers, 86000 Poitiers, France
| | - Alain Le Blanche
- Laboratoire CeRSM (EA-2931), UPL, Université Paris Nanterre, F92000 Nanterre, France;
- Hôpital René-Dubos de Pontoise and Université de Versailles-Saint-Quentin, Simone Veil UFR des Sciences de la Santé, 78180 Montigny-le-Bretonneux, France
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l’Est Francilien (GHEF), 77100 Meaux, France;
| |
Collapse
|
14
|
Pellicer N, Galliano D, Herraiz S, Bagger YZ, Arce JC, Pellicer A. Use of dopamine agonists to target angiogenesis in women with endometriosis. Hum Reprod 2021; 36:850-858. [PMID: 33355352 DOI: 10.1093/humrep/deaa337] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/10/2020] [Indexed: 12/20/2022] Open
Abstract
Endometriosis requires medical management during a woman's reproductive years. Most treatments aim to create a hypoestrogenic milieu, but for patients wishing to conceive, drugs that allow normal ovarian function are needed. Targeting angiogenesis, a hallmark of the disease, using dopamine agonists (DAs) is a promising strategy for endometriosis treatment. Herein, we review experimental and clinical data that investigate this concept. In experimental models of endometriosis, DAs (bromocriptine, cabergoline, quinagolide) downregulate proangiogenic and upregulate antiangiogenic pathways in inflammatory, endothelial and endometrial cells, blocking cellular proliferation and reducing lesion size. Impaired secretion of vascular endothelial growth factor (VEGF) and inactivation of its receptor type-2 are key events. VEGF inhibition also reduces nerve fiber density in lesions. In humans, quinagolide shows similar effects on lesions, and DAs reduce pain and endometrioma size. Moreover, a 20-fold downregulation of Serpin-1, the gene that encodes for plasminogen activator inhibitor 1 (PAI-1), has been observed after DAs treatment. Pentoxifylline, a PAI-1, increases pregnancy rates in women with endometriosis. Thus, the data support the use of DAs in the medical management of endometriosis to reduce lesion size and pain while maintaining ovulation. A combined approach of DAs and pentoxifylline is perhaps a smart way of targeting the disease from a completely different angle than current medical treatments.
Collapse
Affiliation(s)
- Nuria Pellicer
- Women's Health Area, La Fe University Hospital, 46026 Valencia, Spain.,IVI Foundation, 46026 Valencia, Spain.,Reproductive Medicine Research Group; Biomedical Research Institute la Fe, 46026 Valencia, Spain
| | - Daniela Galliano
- IVI Foundation, 46026 Valencia, Spain.,IVI-RMA Rome, 00197 Rome, Italy
| | - Sonia Herraiz
- IVI Foundation, 46026 Valencia, Spain.,Reproductive Medicine Research Group; Biomedical Research Institute la Fe, 46026 Valencia, Spain
| | - Yu Z Bagger
- Ferring Pharmaceuticals, 2300 Copenhagen, Denmark
| | | | - Antonio Pellicer
- IVI Foundation, 46026 Valencia, Spain.,Reproductive Medicine Research Group; Biomedical Research Institute la Fe, 46026 Valencia, Spain.,IVI-RMA Rome, 00197 Rome, Italy
| |
Collapse
|
15
|
Martone S, Troìa L, Marcolongo P, Luisi S. Role of medical treatment of endometriosis. Minerva Obstet Gynecol 2021; 73:304-316. [PMID: 34008385 DOI: 10.23736/s2724-606x.21.04784-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Endometriosis is a chronic benign disease that affects women of reproductive age. Medical therapy is often the first line of management for women with endometriosis in order to ameliorate symptoms or to prevent post-surgical disease recurrence. Currently, there are several medical options for the management of patients with endometriosis and long-term treatments should balance clinical efficacy (controlling pain symptoms and preventing recurrence of disease after surgery) with an acceptable safety-profile. Non-steroidal anti-inflammatory drugs (NSAIDs) are widely used in the treatment of chronic inflammatory conditions, being efficacious in relieving primary dysmenorrhea. Combined oral contraceptives and progestins, available for multiple routes of administration, are commonly administered as first-line hormonal therapies. Several studies demonstrated that they succeed in improving pain symptoms in the majority of patients; moreover, they are well tolerated and not expensive. Gonadotropin-releasing hormone-agonists are prescribed when first line therapies are ineffective, not tolerated or contraindicated. Even if these drugs are efficacious in treating women not responding to COCs or progestins, they are not orally available and have a less favorable tolerability profile (needing an appropriate add-back therapy). Because few data are available on long-term efficacy and safety of aromatase inhibitors they should be reserved only for women with symptoms who are refractory to other treatments only in a research environment. Almost all of the currently available treatment options for endometriosis suppress ovarian function and are not curative. For this reason, research into new drugs is unsurprisingly demanding. Amongst the drugs currently under investigation, gonadotropin-releasing hormone antagonists have shown most promise, currently in late-stage clinical development. There is a number of potential future therapies currently tested only in vitro, in animal models of endometriosis or in early clinical studies with a small sample size. Further studies are necessary to conclude whether these treatments would be of value for the treatment of endometriosis.
Collapse
Affiliation(s)
- Simona Martone
- Department of Molecular and Developmental Medicine, Obstetrics and Gynecology, University of Siena, Siena, Italy
| | - Libera Troìa
- Department of Molecular and Developmental Medicine, Obstetrics and Gynecology, University of Siena, Siena, Italy
| | - Paola Marcolongo
- Department of Molecular and Developmental Medicine, Obstetrics and Gynecology, University of Siena, Siena, Italy
| | - Stefano Luisi
- Department of Molecular and Developmental Medicine, Obstetrics and Gynecology, University of Siena, Siena, Italy -
| |
Collapse
|
16
|
Moazzami B, Chaichian S, Samie S, Zolbin MM, Jesmi F, Akhlaghdoust M, Pishkuhi MA, Mirshafiei ZS, Khalilzadeh F, Safari D. Does endometriosis increase susceptibility to COVID-19 infections? A case-control study in women of reproductive age. BMC Womens Health 2021; 21:119. [PMID: 33752656 PMCID: PMC7983080 DOI: 10.1186/s12905-021-01270-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 03/16/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND In today's world, coronavirus disease 2019 (COVID-19) is the most critical health problem and research is continued on studying the associated factors. But it is not clear whether endometriosis increases the risk of COVID-19. METHODS Women who referred to the gynecology clinic were evaluated and 507 women with endometriosis (case group) were compared with 520 women without endometriosis (control group). COVID-19 infection, symptoms, exposure, hospitalization, isolation, H1N1 infection and vaccination, and past medical history of the participants were recorded and compared between the groups using IBM SPSS Statistics for Windows version 21. RESULTS Comparison between the groups represent COVID-19 infection in 3.2% of the case group and 3% of the control group (P = 0.942). The control group had a higher frequency of asymptomatic infection (95.7% vs. 94.5%; P < 0.001) and fever (1.6% vs. 0%; P = 0.004), while the frequency of rare symptoms was more common in the case group (P < 0.001). The average disease period was 14 days in both groups (P = 0.694). COVID-19 infection was correlated with close contact (r = 0.331; P < 0.001 in the case group and r = 0.244; P < 0.001 in the control group), but not with the history of thyroid disorders, H1N1 vaccination, traveling to high-risk areas, and social isolation (P > 0.05). CONCLUSION Endometriosis does not increase the susceptibility to COVID-19 infections, but alters the manifestation of the disease. The prevalence of the disease may depend on the interaction between the virus and the individual's immune system but further studies are required in this regard.
Collapse
Affiliation(s)
- Bahram Moazzami
- Pars Advanced and Minimally Invasive Medical Manners Research Center, Pars Hospital, Tehran, Iran
| | - Shahla Chaichian
- Pars Advanced and Minimally Invasive Medical Manners Research Center, Pars Hospital, Tehran, Iran.
| | - Saeed Samie
- Pars Advanced and Minimally Invasive Medical Manners Research Center, Pars Hospital, Tehran, Iran
| | - Masoumeh Majidi Zolbin
- Pediatric Urology and Regenerative Medicine Research Center, Section of Tissue Engineering and Stem Cells Therapy, Children's Hospital Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Jesmi
- Pars Advanced and Minimally Invasive Medical Manners Research Center, Pars Hospital, Tehran, Iran
| | - Meisam Akhlaghdoust
- Pars Advanced and Minimally Invasive Medical Manners Research Center, Pars Hospital, Tehran, Iran
| | - Mahin Ahmadi Pishkuhi
- PhD Student in Epidemiology, Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Sadat Mirshafiei
- Pars Advanced and Minimally Invasive Medical Manners Research Center, Pars Hospital, Tehran, Iran
| | - Fereshteh Khalilzadeh
- Pars Advanced and Minimally Invasive Medical Manners Research Center, Pars Hospital, Tehran, Iran
| | - Dorsa Safari
- Pars Advanced and Minimally Invasive Medical Manners Research Center, Pars Hospital, Tehran, Iran
| |
Collapse
|
17
|
Kiwi Root Extract Inhibits the Development of Endometriosis in Mice by Downregulating Inflammatory Factors. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:4536132. [PMID: 33574880 PMCID: PMC7857878 DOI: 10.1155/2021/4536132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 11/15/2020] [Accepted: 12/26/2020] [Indexed: 11/17/2022]
Abstract
Purpose To determine whether the kiwi root extract inhibits the development of endometriosis in mice by suppressing inflammatory factors. Materials and Methods The mouse model of endometriosis was induced by surgery after which the mice were continuously injected with the drug for 14 days. On the 14th day, the mice were sacrificed, and the peritoneal fluid was obtained for enzyme-linked immunosorbent assay. Endometrial ectopic tissue was weighed and analyzed by tissue immunochemistry, RT-PCR, western blotting, and gelatin zymography experiment. Results Kiwi root extract significantly reduced endometriotic lesion volume and downregulated the proinflammatory cytokines IL-6, IL-8, IL-1β, and TNF-α, as well as the angiogenic factor VEGF-A. It also inhibited the mRNA and protein expression of COX-1 and COX-2, IL-6, TGF-β1, EP2 receptor, and ER-β in endometriotic lesions but did not affect the expression of MMP-9 and MMP-2. Conclusions Kiwi root extract could significantly inhibit the growth of surgery-induced endometriosis in mice. Our results suggest that the kiwi root extract may inhibit the development and progression of ectopic endometrium through disruption of neovascularization and reducing inflammation, which may be beneficial in treating this common gynecological disease.
Collapse
|
18
|
Vignali M, Solima E, Barbera V, Becherini C, Belloni GM. Approaching ovarian endometrioma with medical therapy. Minerva Obstet Gynecol 2020; 73:215-225. [PMID: 33314904 DOI: 10.23736/s2724-606x.20.04751-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Endometriosis is a chronic inflammatory gynecological disorder associated with pelvic pain symptoms and infertility. Ovarian cysts (endometriomas) are the most common localization of endometriosis in the pelvis. Considering non-invasive methods, transvaginal ultrasound has high sensitivity and specificity for endometrioma diagnosis. Laparoscopic removal of endometrioma is related to a damage to the ovarian reserve and should be limited to patients with suspicious cysts or unresponsive to medical treatment. The main goal of medical therapy of symptomatic endometrioma is the control of pain symptoms, while no benefits have been demonstrated in terms of improving fertility rates of women seeking pregnancy. The aim of medical treatment is the inhibition of ovulation, stop of menstruation and achievement of a stable hypo-hormonal milieu. Estroprogestins and progestins are indicated by guidelines as first line medications for symptomatic patients. Several hormonal treatments have been proposed for the treatment of symptomatic endometriomas. In particular, dienogest, a relatively new progestin, has shown promising results. Medical treatment should be conceived as a long-term treatment. Safety, tolerability, a low percentage of side effects and an easy route of administration are essential for patient acceptance and adherence to therapy.
Collapse
Affiliation(s)
- Michele Vignali
- Department of Biomedical Sciences for Health, M. Melloni Hospital, University of Milan, Milan, Italy -
| | - Eugenio Solima
- Department of Biomedical Sciences for Health, M. Melloni Hospital, University of Milan, Milan, Italy
| | - Valeria Barbera
- Department of Biomedical Sciences for Health, M. Melloni Hospital, University of Milan, Milan, Italy
| | - Chiara Becherini
- Department of Biomedical Sciences for Health, M. Melloni Hospital, University of Milan, Milan, Italy
| | - Gaia M Belloni
- Department of Biomedical Sciences for Health, M. Melloni Hospital, University of Milan, Milan, Italy
| |
Collapse
|
19
|
Zhang S, Zhuang L, Liu Q, Yu X, Min Q, Chen M, Chen Q. Rosiglitazone affects the progression of surgically‑induced endometriosis in a rat model. Mol Med Rep 2020; 23:35. [PMID: 33179107 PMCID: PMC7684857 DOI: 10.3892/mmr.2020.11673] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/30/2020] [Indexed: 12/16/2022] Open
Abstract
Endometriosis is closely associated with inflammatory reactions and angiogenesis. Whether PPARγ is a target for the treatment of endometriosis remains unknown. The present study was designed to investigate the impact of a PPARγ agonist (rosiglitazone, RSG) on endometriosis in a rat model and to identify the underlying mechanism. The endometriosis model was established in rats. The pathological state of the endometrium was examined using hematoxylin‑eosin staining. The microstructures of interest were visualized using electron microscopy. Western blot analysis and reverse transcription‑quantitative polymerase chain reaction were used to detect PPARγ and MAT2A expression. VEGF and caspase‑3 expression were investigated using immunohistochemistry. Pathological analysis revealed transparent and red nodules in the model group, and that vasoganglions were present all over the nodules. Endometrial epithelial hyperplasia was observed in the model group, and the shape was columnar. Increased interstitial cell numbers, with compact structure and abundant blood supply, were detected in the model group. Compared with the model group, incomplete epithelial structures with sparse interstitial cells and loose structure were observed in the pathological images from RSG treatment groups. Numerous inflammatory cells and poor blood supply were observed in the endometrial tissues, and the gland was filled mostly with vacuolar cells. Electron microscopy revealed that the tissue structure was integrated. Many vacuoles were formed within the endometrial tissue and the classical morphological changes of apoptotic cells were observed in RSG‑treated groups. Caspase‑3 and PPARγ expression increased and expression of VEGF and MAT2A decreased in RSG‑treated groups. Taken together, these results revealed that RSG impacts the development and progression of endometriosis likely by inhibiting angiogenesis and inducing apoptosis.
Collapse
Affiliation(s)
- Shun Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Lingling Zhuang
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Qian Liu
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xiaolin Yu
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Qinghua Min
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Minjie Chen
- Department of Clinical Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Qi Chen
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
20
|
Wagner N, Wagner KD. PPARs and Angiogenesis-Implications in Pathology. Int J Mol Sci 2020; 21:ijms21165723. [PMID: 32785018 PMCID: PMC7461101 DOI: 10.3390/ijms21165723] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/03/2020] [Accepted: 08/06/2020] [Indexed: 12/22/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) belong to the family of ligand-activated nuclear receptors. The PPAR family consists of three subtypes encoded by three separate genes: PPARα (NR1C1), PPARβ/δ (NR1C2), and PPARγ (NR1C3). PPARs are critical regulators of metabolism and exhibit tissue and cell type-specific expression patterns and functions. Specific PPAR ligands have been proposed as potential therapies for a variety of diseases such as metabolic syndrome, cancer, neurogenerative disorders, diabetes, cardiovascular diseases, endometriosis, and retinopathies. In this review, we focus on the knowledge of PPAR function in angiogenesis, a complex process that plays important roles in numerous pathological conditions for which therapeutic use of PPAR modulation has been suggested.
Collapse
|
21
|
Rudzitis-Auth J, Fuß SA, Becker V, Menger MD, Laschke MW. Inhibition of erythropoietin-producing hepatoma receptor B4 (EphB4) signalling suppresses the vascularisation and growth of endometriotic lesions. Br J Pharmacol 2020; 177:3225-3239. [PMID: 32144768 DOI: 10.1111/bph.15044] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 02/27/2020] [Accepted: 02/27/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND PURPOSE The development of endometriotic lesions is crucially dependent on the formation of new blood vessels. In the present study, we analysed whether this process is regulated by erythropoietin-producing hepatoma receptor B4 (EphB4) signalling. EXPERIMENTAL APPROACH We first assessed the anti-angiogenic action of the EphB4 inhibitor NVP-BHG712 in different in vitro angiogenesis assays. Then, endometriotic lesions were surgically induced in the dorsal skinfold chamber and peritoneal cavity of NVP-BHG712- or vehicle-treated BALB/c mice. This allowed to study the effect of EphB4 inhibition on their vascularisation and growth by means of intravital fluorescence microscopy, high-resolution ultrasound imaging, histology and immunohistochemistry. KEY RESULTS Non-cytotoxic doses of NVP-BHG712 suppressed the migration, tube formation and sprouting activity of both human dermal microvascular endothelial cells (HDMEC) and mouse aortic rings. Accordingly, we also detected a lower blood vessel density in NVP-BHG712-treated endometriotic lesions. This was associated with a reduced lesion growth due to a significantly lower number of proliferating stromal cells when compared to vehicle-treated controls. CONCLUSIONS AND IMPLICATIONS Inhibition of EphB4 signalling suppresses the vascularisation and growth of endometriotic lesions. Hence, EphB4 represents a promising pharmacological target for the treatment of endometriosis.
Collapse
Affiliation(s)
| | - Sophia A Fuß
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Vivien Becker
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Michael D Menger
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Matthias W Laschke
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg/Saar, Germany
| |
Collapse
|
22
|
Kiani K, Rudzitis-Auth J, Scheuer C, Movahedin M, Sadati Lamardi SN, Malekafzali Ardakani H, Becker V, Moini A, Aflatoonian R, Ostad SN, Menger MD, Laschke MW. Calligonum comosum (Escanbil) extract exerts anti-angiogenic, anti-proliferative and anti-inflammatory effects on endometriotic lesions. JOURNAL OF ETHNOPHARMACOLOGY 2019; 239:111918. [PMID: 31034955 DOI: 10.1016/j.jep.2019.111918] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 04/10/2019] [Accepted: 04/23/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Calligonum comosum is a desert plant that is applied in traditional folkloric medicine for the treatment of abnormally heavy or prolonged menstruation and menstrual cramps. Moreover, it has been suggested for the treatment of infertility-causing conditions. Its bioactive chemical constituents inhibit multiple processes, such as angiogenesis, inflammation and invasive tissue growth, which may be beneficial in the therapy of endometriosis. AIM OF THE STUDY We investigated the effects of Calligonum comosum on the development of endometriotic lesions. MATERIALS AND METHODS We evaluated the anti-angiogenic activity of Calligonum comosum ethyl acetate fraction (CCEAF) in different in vitro angiogenesis assays. Moreover, we surgically induced endometriotic lesions in BALB/c mice, which received 50 mg/kg Calligonum comosum total extract (CCTE) or vehicle (control) over 4 weeks. The growth, cyst formation, vascularization and immune cell infiltration of the lesions were assessed with high-resolution ultrasound imaging, caliper measurements, histology and immunohistochemistry. RESULTS CCEAF doses of up to 10 μg/mL did not impair the viability of human dermal microvascular endothelial cells (HDMEC), but dose-dependently suppressed their migration, tube formation and sprouting, indicating a substantial anti-angiogenic effect of CCEAF. Furthermore, CCTE significantly inhibited the growth and cyst formation of developing murine endometriotic lesions when compared to vehicle-treated controls. This was associated with a reduced vascularization, cell proliferation and immune cell infiltration. CONCLUSIONS Our findings show that Calligonum comosum targets multiple, fundamental processes in the pathogenesis of endometriosis, which may be beneficial for the treatment of this common gynecological disorder.
Collapse
Affiliation(s)
- Kiandokht Kiani
- Vali-e-Asr Reproductive Health Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Endocrinology and Female Infertility, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran; Institute for Clinical & Experimental Surgery, Saarland University, 66421, Homburg/Saar, Germany
| | - Jeannette Rudzitis-Auth
- Institute for Clinical & Experimental Surgery, Saarland University, 66421, Homburg/Saar, Germany
| | - Claudia Scheuer
- Institute for Clinical & Experimental Surgery, Saarland University, 66421, Homburg/Saar, Germany
| | - Mansoureh Movahedin
- Anatomical Sciences Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | | | - Hossein Malekafzali Ardakani
- Epidemiology and Biostatistics Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Vivien Becker
- Institute for Clinical & Experimental Surgery, Saarland University, 66421, Homburg/Saar, Germany
| | - Ashraf Moini
- Department of Endocrinology and Female Infertility, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran; Department of Gynecology and Obstetrics, Arash Women's Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Aflatoonian
- Department of Endocrinology and Female Infertility, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Seyed Nasser Ostad
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Michael D Menger
- Institute for Clinical & Experimental Surgery, Saarland University, 66421, Homburg/Saar, Germany
| | - Matthias W Laschke
- Institute for Clinical & Experimental Surgery, Saarland University, 66421, Homburg/Saar, Germany.
| |
Collapse
|
23
|
From pathogenesis to clinical practice: Emerging medical treatments for endometriosis. Best Pract Res Clin Obstet Gynaecol 2018; 51:92-101. [DOI: 10.1016/j.bpobgyn.2018.01.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 01/23/2018] [Indexed: 12/12/2022]
|
24
|
Ferrero S, Evangelisti G, Barra F. Current and emerging treatment options for endometriosis. Expert Opin Pharmacother 2018; 19:1109-1125. [DOI: 10.1080/14656566.2018.1494154] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Simone Ferrero
- Academic Unit of Obstetrics and Gynecology, Ospedale Policlinico San Martino, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy
| | - Giulio Evangelisti
- Academic Unit of Obstetrics and Gynecology, Ospedale Policlinico San Martino, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy
| | - Fabio Barra
- Academic Unit of Obstetrics and Gynecology, Ospedale Policlinico San Martino, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy
| |
Collapse
|
25
|
Casalechi M, Dela Cruz C, Lima LC, Maciel LP, Pereira VM, Reis FM. Angiotensin peptides in the non-gravid uterus: Paracrine actions beyond circulation. Peptides 2018; 101:145-149. [PMID: 29367076 DOI: 10.1016/j.peptides.2018.01.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 01/16/2018] [Accepted: 01/16/2018] [Indexed: 12/13/2022]
Abstract
The renin-angiotensin system (RAS) involves a complex network of precursors, peptides, enzymes and receptors comprising a systemic (endocrine) and a local (paracrine/autocrine) system. The local RAS plays important roles in tissue modulation and may operate independently of or in close interaction with the circulatory RAS, acting in a complementary fashion. Angiotensin (Ang) II, its receptor AT1 and Ang-(1-7) expression in the endometrium vary with menstrual cycle, and stromal cell decidualization in vitro is accompanied by local synthesis of angiotensinogen and prorenin. Mas receptor is unlikely to undergo marked changes accompanying the cyclic ovarian steroid hormone fluctuations. Studies investigating the functional relevance of the RAS in the non-gravid uterus show a number of paracrine effects beyond circulation and suggest that RAS peptides may be involved in the pathophysiology of proliferative and fibrotic diseases. Endometrial cancer is associated with increased expression of Ang II, Ang-converting enzyme 1 and AT1 in the tumoral tissue compared to neighboring non-neoplastic endometrium, and also with a gene polymorphism that enhances AT1 signal. Ang II induces human endometrial cells to transdifferentiate into cells with myofibroblast phenotype and to synthetize extracellular matrix components that might contribute to endometrial fibrosis. Altogether, these findings point to a fully operating RAS within the uterus, but since many concepts rely on preliminary evidence further studies are needed to clarify the role of the local RAS in uterine physiology and pathophysiology.
Collapse
Affiliation(s)
- Maíra Casalechi
- Division of Human Reproduction, Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Cynthia Dela Cruz
- Division of Human Reproduction, Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Luiza C Lima
- Division of Human Reproduction, Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Luciana P Maciel
- Division of Human Reproduction, Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Virgínia M Pereira
- Department of Veterinary Medicine, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, Brazil
| | - Fernando M Reis
- Division of Human Reproduction, Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
26
|
Rudzitis-Auth J, Nickels RM, Menger MD, Laschke MW. Inhibition of Cyclooxygenase-2 Suppresses the Recruitment of Endothelial Progenitor Cells in the Microvasculature of Endometriotic Lesions. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:450-460. [DOI: 10.1016/j.ajpath.2017.10.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 09/04/2017] [Accepted: 10/03/2017] [Indexed: 11/16/2022]
|
27
|
Laschke MW, Menger MD. Basic mechanisms of vascularization in endometriosis and their clinical implications. Hum Reprod Update 2018; 24:207-224. [PMID: 29377994 DOI: 10.1093/humupd/dmy001] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 12/19/2017] [Accepted: 01/01/2018] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Vascularization is a major hallmark in the pathogenesis of endometriosis. An increasing number of studies suggests that multiple mechanisms contribute to the vascularization of endometriotic lesions, including angiogenesis, vasculogenesis and inosculation. OBJECTIVE AND RATIONALE In this review, we provide an overview of the basic mechanisms of vascularization in endometriosis and give special emphasis on their future clinical implications in the diagnosis and therapy of the disease. SEARCH METHODS Literature searches were performed in PubMed for English articles with the key words 'endometriosis', 'endometriotic lesions', 'angiogenesis', 'vascularization', 'vasculogenesis', 'endothelial progenitor cells' and 'inosculation'. The searches included both animal and human studies. No restriction was set for the publication date. OUTCOMES The engraftment of endometriotic lesions is typically associated with angiogenesis, i.e. the formation of new blood vessels from pre-existing ones. This angiogenic process underlies the complex regulation by angiogenic growth factors and hormones, which activate intracellular pathways and associated signaling molecules. In addition, circulating endothelial progenitor cells (EPCs) are mobilized from the bone marrow and recruited into endometriotic lesions, where they are incorporated into the endothelium of newly developing microvessels, referred to as vasculogenesis. Finally, preformed microvessels in shed endometrial fragments inosculate with the surrounding host microvasculature, resulting in a rapid blood supply to the ectopic tissue. These vascularization modes offer different possibilities for the establishment of novel diagnostic and therapeutic approaches. Angiogenic growth factors and EPCs may serve as biomarkers for the diagnosis and classification of endometriosis. Blood vessel formation and mature microvessels in endometriotic lesions may be targeted by means of anti-angiogenic compounds and vascular-disrupting agents. WIDER IMPLICATIONS The establishment of vascularization-based approaches in the management of endometriosis still represents a major challenge. For diagnostic purposes, reliable angiogenic and vasculogenic biomarker panels exhibiting a high sensitivity and specificity must be identified. For therapeutic purposes, novel compounds selectively targeting the vascularization of endometriotic lesions without inducing severe side effects are required. Recent progress in the field of endometriosis research indicates that these goals may be achieved in the near future.
Collapse
Affiliation(s)
- Matthias W Laschke
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg/Saar, Germany
| | - Michael D Menger
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg/Saar, Germany
| |
Collapse
|
28
|
Notch signaling controls sprouting angiogenesis of endometriotic lesions. Angiogenesis 2017; 21:37-46. [PMID: 28993956 DOI: 10.1007/s10456-017-9580-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 10/05/2017] [Indexed: 10/18/2022]
Abstract
Angiogenesis is essential for the engraftment and growth of endometriotic lesions. In this study, we analyzed whether this process is regulated by Notch signaling. Endometriotic lesions were induced by endometrial tissue transplantation into dorsal skinfold chambers of C57BL/6 mice, which were treated with the γ-secretase inhibitor DAPT or vehicle. Vascularization, morphology, and proliferation of the newly developing lesions were analyzed using intravital fluorescence microscopy, histology, and immunohistochemistry over 14 days. Inhibition of Notch signaling by DAPT significantly increased the number of angiogenic sprouts within the endometrial grafts during the first days after transplantation when compared to vehicle-treated controls. This was associated with an accelerated vascularization, as indicated by a higher functional microvessel density of DAPT-treated lesions on day 6. However, inhibition of Notch signaling did not affect the morphology and proliferating activity of the lesions, as previously described for tumors. Both DAPT- and vehicle-treated lesions finally consisted of cyst-like dilated glands, which were surrounded by a well-vascularized stroma and contained comparable numbers of proliferating cell nuclear antigen-positive cells. These findings demonstrate that sprouting angiogenesis in endometriotic lesions is controlled by Notch signaling. However, inhibition of Notch signaling does not have beneficial therapeutic effects on lesion development.
Collapse
|
29
|
Nenicu A, Gu Y, Körbel C, Menger MD, Laschke MW. Combination therapy with telmisartan and parecoxib induces regression of endometriotic lesions. Br J Pharmacol 2017; 174:2623-2635. [PMID: 28548231 DOI: 10.1111/bph.13874] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 04/24/2017] [Accepted: 05/18/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND AND PURPOSE Telmisartan suppresses the development of endometriotic lesions. However, the drug also up-regulates the expression of COX-2, which has been suggested to promote the progression of endometriosis. Accordingly, in the present study we analysed whether a combination therapy with telmisartan and a COX-2 inhibitor may be more effective in the treatment of endometriotic lesions than the application of telmisartan alone. EXPERIMENTAL APPROACH Endometriotic lesions were induced in the peritoneal cavity of C57BL/6 mice, which were treated daily with an i.p. injection of telmisartan (10 mg·kg-1 ), parecoxib (5 mg·kg-1 ), a combination of telmisartan and parecoxib or vehicle. Therapeutic effects on lesion survival, growth, vascularization, innervation and protein expression were studied over 4 weeks by high-resolution ultrasound imaging as well as immunohistochemical and Western blot analyses. KEY RESULTS Telmisartan-treated lesions exhibited a significantly reduced lesion volume when compared with vehicle-treated controls and parecoxib-treated lesions. This inhibitory effect of telmisartan was even more pronounced when it was used in combination with parecoxib. The combination therapy resulted in a reduced microvessel density as well as lower numbers of proliferating Ki67-positive cells and higher numbers of apoptotic cleaved caspase-3-positive stromal cells within the lesions. This was associated with a lower expression of COX-2, MMP-9 and p-Akt/Akt when compared with controls. The application of the two drugs further inhibited the ingrowth of nerve fibres into the lesions. CONCLUSIONS AND IMPLICATIONS Combination therapy with telmisartan and a COX-2 inhibitor represents a novel, effective pharmacological strategy for the treatment of endometriosis.
Collapse
Affiliation(s)
- Anca Nenicu
- Institute for Clinical & Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Yuan Gu
- Institute for Clinical & Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Christina Körbel
- Institute for Clinical & Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Michael D Menger
- Institute for Clinical & Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Matthias W Laschke
- Institute for Clinical & Experimental Surgery, Saarland University, Homburg/Saar, Germany
| |
Collapse
|
30
|
Progestin-only pills may be a better first-line treatment for endometriosis than combined estrogen-progestin contraceptive pills. Fertil Steril 2017; 107:533-536. [DOI: 10.1016/j.fertnstert.2017.01.003] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 01/01/2017] [Accepted: 01/06/2017] [Indexed: 11/23/2022]
|
31
|
Tubeimoside-1 suppresses tumor angiogenesis by stimulation of proteasomal VEGFR2 and Tie2 degradation in a non-small cell lung cancer xenograft model. Oncotarget 2017; 7:5258-72. [PMID: 26701724 PMCID: PMC4868684 DOI: 10.18632/oncotarget.6676] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 12/07/2015] [Indexed: 12/29/2022] Open
Abstract
Tubeimoside-1 (TBMS1) is a potent anti-tumor phytochemical. Its functional and molecular mode of action, however, remains elusive so far. Since angiogenesis is essential for tumor progression and metastasis, we herein investigated the anti-angiogenic effects of the compound. In a non-small cell lung cancer (NSCLC) xenograft model we found that treatment of CD1 nu/nu mice with TBMS1 (5 mg/kg) significantly suppressed the growth and vascularization of NCI-H460 flank tumors. Moreover, TBMS1 dose-dependently reduced vascular sprouting in a rat aortic ring assay. In vitro, TBMS1 induced endothelial cell apoptosis without decreasing the viability of NSCLC tumor cells and inhibited the migration of endothelial cells by disturbing their actin filament organization. TBMS1 further stimulated the proteasomal degradation of vascular endothelial growth factor receptor-2 (VEGFR2) and Tie2 in endothelial cells, which down-regulated AKT/mTOR signaling. These findings indicate that TBMS1 represents a novel phytochemical for anti-angiogenic treatment of cancer and other angiogenesis-related diseases.
Collapse
|
32
|
Estrogen Stimulates Homing of Endothelial Progenitor Cells to Endometriotic Lesions. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:2129-2142. [PMID: 27315780 DOI: 10.1016/j.ajpath.2016.04.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 02/29/2016] [Accepted: 04/12/2016] [Indexed: 01/19/2023]
Abstract
The incorporation of endothelial progenitor cells (EPCs) into microvessels contributes to the vascularization of endometriotic lesions. Herein, we analyzed whether this vasculogenic process is regulated by estrogen. Estrogen- and vehicle-treated human EPCs were analyzed for migration and tube formation. Endometriotic lesions were induced in irradiated FVB/N mice, which were reconstituted with bone marrow from FVB/N-TgN (Tie2/green fluorescent protein) 287 Sato mice. The animals were treated with 100 μg/kg β-estradiol 17-valerate or vehicle (control) over 7 and 28 days. Lesion growth, cyst formation, homing of green fluorescent protein(+)/Tie2(+) EPCs, vascularization, cell proliferation, and apoptosis were analyzed by high-resolution ultrasonography, caliper measurements, histology, and immunohistochemistry. Numbers of blood circulating EPCs were assessed by flow cytometry. In vitro, estrogen-treated EPCs exhibited a higher migratory and tube-forming capacity when compared with controls. In vivo, numbers of circulating EPCs were not affected by estrogen. However, estrogen significantly increased the number of EPCs incorporated into the lesions' microvasculature, resulting in an improved early vascularization. Estrogen further stimulated the growth of lesions, which exhibited massively dilated glands with a flattened layer of stroma. This was mainly because of an increased glandular secretory activity, whereas cell proliferation and apoptosis were not markedly affected. These findings indicate that vasculogenesis in endometriotic lesions is dependent on estrogen, which adds a novel hormonally regulated mechanism to the complex pathophysiology of endometriosis.
Collapse
|
33
|
Michel MC, Brunner HR, Foster C, Huo Y. Angiotensin II type 1 receptor antagonists in animal models of vascular, cardiac, metabolic and renal disease. Pharmacol Ther 2016; 164:1-81. [PMID: 27130806 DOI: 10.1016/j.pharmthera.2016.03.019] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 03/30/2016] [Indexed: 02/07/2023]
Abstract
We have reviewed the effects of angiotensin II type 1 receptor antagonists (ARBs) in various animal models of hypertension, atherosclerosis, cardiac function, hypertrophy and fibrosis, glucose and lipid metabolism, and renal function and morphology. Those of azilsartan and telmisartan have been included comprehensively whereas those of other ARBs have been included systematically but without intention of completeness. ARBs as a class lower blood pressure in established hypertension and prevent hypertension development in all applicable animal models except those with a markedly suppressed renin-angiotensin system; blood pressure lowering even persists for a considerable time after discontinuation of treatment. This translates into a reduced mortality, particularly in models exhibiting marked hypertension. The retrieved data on vascular, cardiac and renal function and morphology as well as on glucose and lipid metabolism are discussed to address three main questions: 1. Can ARB effects on blood vessels, heart, kidney and metabolic function be explained by blood pressure lowering alone or are they additionally directly related to blockade of the renin-angiotensin system? 2. Are they shared by other inhibitors of the renin-angiotensin system, e.g. angiotensin converting enzyme inhibitors? 3. Are some effects specific for one or more compounds within the ARB class? Taken together these data profile ARBs as a drug class with unique properties that have beneficial effects far beyond those on blood pressure reduction and, in some cases distinct from those of angiotensin converting enzyme inhibitors. The clinical relevance of angiotensin receptor-independent effects of some ARBs remains to be determined.
Collapse
Affiliation(s)
- Martin C Michel
- Dept. Pharmacology, Johannes Gutenberg University, Mainz, Germany; Dept. Translational Medicine & Clinical Pharmacology, Boehringer Ingelheim, Ingelheim, Germany.
| | | | - Carolyn Foster
- Retiree from Dept. of Research Networking, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT, USA
| | - Yong Huo
- Dept. Cardiology & Heart Center, Peking University First Hospital, Beijing, PR China
| |
Collapse
|
34
|
Olivares CN, Alaniz LD, Menger MD, Barañao RI, Laschke MW, Meresman GF. Inhibition of Hyaluronic Acid Synthesis Suppresses Angiogenesis in Developing Endometriotic Lesions. PLoS One 2016; 11:e0152302. [PMID: 27018976 PMCID: PMC4809563 DOI: 10.1371/journal.pone.0152302] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 03/12/2016] [Indexed: 01/11/2023] Open
Abstract
Background The development and long-term survival of endometriotic lesions is crucially dependent on an adequate vascularization. Hyaluronic acid (HA) through its receptor CD44 has been described to be involved in the process of angiogenesis. Objective To study the effect of HA synthesis inhibition using non-toxic doses of 4-methylumbelliferone (4-MU) on endometriosis-related angiogenesis. Materials and Methods The cytotoxicity of different in vitro doses of 4-MU on endothelial cells was firstly tested by means of a lactate dehydrogenase assay. The anti-angiogenic action of non-cytotoxic doses of 4-MU was then assessed by a rat aortic ring assay. In addition, endometriotic lesions were induced in dorsal skinfold chambers of female BALB/c mice, which were daily treated with an intraperitoneal injection of 0.9% NaCl (vehicle group; n = 6), 20mg/kg 4-MU (n = 8) or 80mg/kg 4-MU (n = 7) throughout an observation period of 14 days. The effect of 4-MU on their vascularization, survival and growth were studied by intravital fluorescence microscopy, histology and immunohistochemistry. Main Results Non-cytotoxic doses of 4-MU effectively inhibited vascular sprout formation in the rat aortic ring assay. Endometriotic lesions in dorsal skinfold chambers of 4-MU-treated mice dose-dependently exhibited a significantly smaller vascularized area and lower functional microvessel density when compared to vehicle-treated controls. Histological analyses revealed a downregulation of HA expression in 4-MU-treated lesions. This was associated with a reduced density of CD31-positive microvessels within the lesions. In contrast, numbers of PCNA-positive proliferating and cleaved caspase-3-positive apoptotic cells did not differ between 4-MU-treated and control lesions. Conclusions The present study demonstrates for the first time that targeting the synthesis of HA suppresses angiogenesis in developing endometriotic lesions. Further studies have to clarify now whether in the future this anti-angiogenic effect can be used beneficially for the treatment of endometriosis.
Collapse
Affiliation(s)
- Carla N. Olivares
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
- * E-mail:
| | - Laura D. Alaniz
- CIT NOBA, Universidad Nacional del Noroeste de la Provincia de Buenos Aires (CONICET-UNNOBA), Junín, Buenos Aires, Argentina
| | - Michael D. Menger
- Institute for Clinical & Experimental Surgery, University of Saarland, Homburg/Saar, Germany
| | - Rosa I. Barañao
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Matthias W. Laschke
- Institute for Clinical & Experimental Surgery, University of Saarland, Homburg/Saar, Germany
| | - Gabriela F. Meresman
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
35
|
Ploutarchou P, Melo P, Day AJ, Milner CM, Williams SA. Molecular analysis of the cumulus matrix: insights from mice with O-glycan-deficient oocytes. Reproduction 2016; 149:533-43. [PMID: 25855670 PMCID: PMC4397614 DOI: 10.1530/rep-14-0503] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
During follicle development, oocytes secrete factors that influence the development of granulosa and cumulus cells (CCs). In response to oocyte and somatic cell signals, CCs produce extracellular matrix (ECM) molecules resulting in cumulus expansion, which is essential for ovulation, fertilisation, and is predictive of oocyte quality. The cumulus ECM is largely made up of hyaluronan (HA), TNF-stimulated gene-6 (TSG-6, also known as TNFAIP6), pentraxin-3 (PTX3), and the heavy chains (HCs) of serum-derived inter-α-inhibitor proteins. In contrast to other in vivo models where modified expansion impairs fertility, the cumulus mass of C1galt1 Mutants, which have oocyte-specific deletion of core 1-derived O-glycans, is modified without impairing fertility. In this report, we used C1galt1 Mutant (C1galt1FF:ZP3Cre) and Control (C1galt1FF) mice to investigate how cumulus expansion is affected by oocyte-specific deletion of core 1-derived O-glycans without adversely affecting oocyte quality. Mutant cumulus–oocyte complexes (COCs) are smaller than Controls, with fewer CCs. Interestingly, the CCs in Mutant mice are functionally normal as each cell produced normal levels of the ECM molecules HA, TSG-6, and PTX3. However, HC levels were elevated in Mutant COCs. These data reveal that oocyte glycoproteins carrying core 1-derived O-glycans have a regulatory role in COC development. In addition, our study of Controls indicates that a functional COC can form provided all essential components are present above a minimum threshold level, and thus some variation in ECM composition does not adversely affect oocyte development, ovulation or fertilisation. These data have important implications for IVF and the use of cumulus expansion as a criterion for oocyte assessment.
Collapse
Affiliation(s)
- Panayiota Ploutarchou
- Nuffield Department of Obstetrics and GynaecologyWomen's Centre, Level 3, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UKFaculty of Life SciencesUniversity of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UKWellcome Trust Centre for Cell-Matrix ResearchFaculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Pedro Melo
- Nuffield Department of Obstetrics and GynaecologyWomen's Centre, Level 3, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UKFaculty of Life SciencesUniversity of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UKWellcome Trust Centre for Cell-Matrix ResearchFaculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Anthony J Day
- Nuffield Department of Obstetrics and GynaecologyWomen's Centre, Level 3, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UKFaculty of Life SciencesUniversity of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UKWellcome Trust Centre for Cell-Matrix ResearchFaculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK Nuffield Department of Obstetrics and GynaecologyWomen's Centre, Level 3, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UKFaculty of Life SciencesUniversity of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UKWellcome Trust Centre for Cell-Matrix ResearchFaculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Caroline M Milner
- Nuffield Department of Obstetrics and GynaecologyWomen's Centre, Level 3, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UKFaculty of Life SciencesUniversity of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UKWellcome Trust Centre for Cell-Matrix ResearchFaculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Suzannah A Williams
- Nuffield Department of Obstetrics and GynaecologyWomen's Centre, Level 3, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UKFaculty of Life SciencesUniversity of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UKWellcome Trust Centre for Cell-Matrix ResearchFaculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
36
|
Geraniol Suppresses Angiogenesis by Downregulating Vascular Endothelial Growth Factor (VEGF)/VEGFR-2 Signaling. PLoS One 2015; 10:e0131946. [PMID: 26154255 PMCID: PMC4496091 DOI: 10.1371/journal.pone.0131946] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 06/08/2015] [Indexed: 11/19/2022] Open
Abstract
Geraniol exerts several direct pharmacological effects on tumor cells and, thus, has been suggested as a promising anti-cancer compound. Because vascularization is a major precondition for tumor growth, we analyzed in this study the anti-angiogenic action of geraniol. In vitro, geraniol reduced the migratory activity of endothelial-like eEND2 cells. Western blot analyses further revealed that geraniol downregulates proliferating cell nuclear antigen (PCNA) and upregulates cleaved caspase-3 (Casp-3) expression in eEND2 cells. Moreover, geraniol blocked vascular endothelial growth factor (VEGF)/VEGFR-2 signal transduction, resulting in a suppression of downstream AKT and ERK signaling pathways. In addition, geraniol significantly reduced vascular sprout formation in a rat aortic ring assay. In vivo, geraniol inhibited the vascularization of CT26 tumors in dorsal skinfold chambers of BALB/c mice, which was associated with a smaller tumor size when compared to vehicle-treated controls. Immunohistochemical analyses confirmed a decreased number of Ki67-positive cells and CD31-positive microvessels with reduced VEGFR-2 expression within geraniol-treated tumors. Taken together, these findings indicate that geraniol targets multiple angiogenic mechanisms and, therefore, is an attractive candidate for the anti-angiogenic treatment of tumors.
Collapse
|
37
|
Taylor RN, Kane MA, Sidell N. Pathogenesis of Endometriosis: Roles of Retinoids and Inflammatory Pathways. Semin Reprod Med 2015; 33:246-56. [PMID: 26132929 DOI: 10.1055/s-0035-1554920] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Endometriosis is a nonmalignant, but potentially metastatic, gynecological condition manifested by the extrauterine growth of inflammatory endometrial implants. Ten percent of reproductive-age women are affected and commonly suffer pelvic pain and/or infertility. The theories of endometriosis histogenesis remain controversial, but retrograde menstruation and metaplasia each infer mechanisms that explain the immune cell responses observed around the ectopic lesions. Recent findings from our laboratories and others suggest that retinoic acid metabolism and action are fundamentally flawed in endometriotic tissues and even generically in women with endometriosis. The focus of our ongoing research is to develop medical therapies as adjuvants or alternatives to the surgical excision of these lesions. On the basis of concepts put forward in this review, we predict that the pharmacological actions and anticipated low side-effect profiles of retinoid supplementation might provide a new treatment option for the long-term management of this chronic and debilitating gynecological disease.
Collapse
Affiliation(s)
- Robert N Taylor
- Department of Obstetrics and Gynecology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Maureen A Kane
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland
| | - Neil Sidell
- Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
38
|
Additional B-cell deficiency does not affect growth and angiogenesis of ectopic human endometrium in T-cell-deficient endometriosis mouse models during long-term culture. J Reprod Immunol 2014; 106:50-7. [DOI: 10.1016/j.jri.2014.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 07/07/2014] [Accepted: 08/11/2014] [Indexed: 01/23/2023]
|
39
|
Cakmak B, Cavusoglu T, Ates U, Meral A, Nacar MC, Erbaş O. Regression of experimental endometriotic implants in a rat model with the angiotensin II receptor blocker losartan. J Obstet Gynaecol Res 2014; 41:601-7. [PMID: 25302540 DOI: 10.1111/jog.12558] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 07/31/2014] [Indexed: 01/01/2023]
Abstract
AIM Endometriosis is a common disease in women of reproductive age, and many different treatments have been developed, although none has provided a cure. In this study, the efficacy of losartan, an angiotensin II type 1 receptor blocker and an antiangiogenic and anti-inflammatory agent, on regression of experimental endometriotic implants in a rat model was investigated. METHODS Peritoneal endometriosis was surgically induced in 16 mature female Sprague-Dawley rats. The peritoneal endometriotic implant was confirmed after 28 days, and the animals were divided randomly into two groups. The control group (n = 8) was given 4 mL/day tap water by oral gavage, and the losartan group (n = 8) was given 20 mg/kg per day losartan p.o. We compared endometriotic implant size, extent and severity of adhesion, as well as plasma and peritoneal lavage fluid cytokine levels including vascular endothelial growth factor (VEGF) and tumor necrosis factor (TNF)-α, plasma inflammatory factor pentraxin-3 (PTX-3) and C-reactive protein (CRP) between the treatment groups. RESULTS Mean surface endometriotic area, histological score of implants, adhesion formation, plasma VEGF, TNF, PTX-3 and CRP levels were significantly lower in the losartan group compared with control (P < 0.05). Furthermore, the peritoneal VEGF level was lower in the losartan group than in the control group (P < 0.001), but peritoneal TNF-α was similar in both groups (P > 0.05). CONCLUSION Losartan suppressed the implant surface area of experimental endometriosis in rats and reduced the levels of plasma VEGF, TNF-α, PTX-3 and CRP.
Collapse
Affiliation(s)
- Bulent Cakmak
- Department of Obstetrics and Gynecology, School of Medicine, Gaziosmanpasa University, Tokat
| | | | | | | | | | | |
Collapse
|