1
|
van Maaren J, Alves LF, van Wely M, van Pelt AMM, Mulder CL. Favorable culture conditions for spermatogonial propagation in human and non-human primate primary testicular cell cultures: a systematic review and meta-analysis. Front Cell Dev Biol 2024; 11:1330830. [PMID: 38259514 PMCID: PMC10800969 DOI: 10.3389/fcell.2023.1330830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
Introduction: Autologous transplantation of spermatogonial stem cells (SSCs) isolated from cryopreserved testicular biopsies obtained before oncological treatment could restore fertility in male childhood cancer survivors. There is a clear necessity for in vitro propagation of the limited SSCs from the testicular biopsy prior to transplantation due to limited numbers of spermatogonia in a cryopreserved testicular biopsy. Still, there is no consensus regarding their optimal culture method. Methods: We performed a systematic review and meta-analysis of studies reporting primary testicular cell cultures of human and non-human primate origin through use of Pubmed, EMBASE, and Web of Science core collection databases. Of 760 records, we included 42 articles for qualitative and quantitative analysis. To quantify in vitro spermatogonial propagation, spermatogonial colony doubling time (CDT) was calculated, which measures the increase in the number of spermatogonial colonies over time. A generalized linear mixed model analysis was used to assess the statistical effect of various culture conditions on CDT. Results: Our analysis indicates decreased CDTs, indicating faster spermatogonial propagation in cultures with a low culture temperature (32°C); with use of non-cellular matrices; use of StemPro-34 medium instead of DMEM; use of Knockout Serum Replacement; and when omitting additional growth factors in the culture medium. Discussion: The use of various methods and markers to detect the presence of spermatogonia within the reported cultures could result in detection bias, thereby potentially influencing comparability between studies. However, through use of CDT in the quantitative analysis this bias was reduced. Our results provide insight into critical culture conditions to further optimize human spermatogonial propagation in vitro, and effectively propagate and utilize these cells in a future fertility restoration therapy and restore hope of biological fatherhood for childhood cancer survivors.
Collapse
Affiliation(s)
- Jillis van Maaren
- Reproductive Biology Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Luis F. Alves
- Reproductive Biology Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Madelon van Wely
- Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Centre for Reproductive Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Ans M. M. van Pelt
- Reproductive Biology Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Callista L. Mulder
- Reproductive Biology Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
2
|
Munyoki SK, Orwig KE. Perspectives: Methods for Evaluating Primate Spermatogonial Stem Cells. Methods Mol Biol 2023; 2656:341-364. [PMID: 37249880 DOI: 10.1007/978-1-0716-3139-3_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Mammalian spermatogenesis is a complex, highly productive process generating millions of sperm per day. Spermatogonial stem cells (SSCs) are at the foundation of spermatogenesis and can either self-renew, producing more SSCs, or differentiate to initiate spermatogenesis and produce sperm. The biological potential of SSCs to produce and maintain spermatogenesis makes them a promising tool for the treatment of male infertility. However, translating knowledge from rodents to higher primates (monkeys and humans) is challenged by different vocabularies that are used to describe stem cells and spermatogenic lineage development in those species. Furthermore, while rodent SSCs are defined by their biological potential to produce and maintain spermatogenesis in a transplant assay, there is no equivalent routine and accessible bioassay to test monkey and human SSCs or replicate their functions in vitro. This chapter describes progress characterizing, isolating, culturing, and transplanting SSCs in higher primates.
Collapse
Affiliation(s)
- Sarah K Munyoki
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Integrative Systems Biology Graduate Program, Magee-Women's Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kyle E Orwig
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Integrative Systems Biology Graduate Program, Magee-Women's Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
3
|
Yang F, Sun J, Wu X. Primary Cultures of Spermatogonia and Testis Cells. Methods Mol Biol 2023; 2656:127-143. [PMID: 37249869 DOI: 10.1007/978-1-0716-3139-3_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Spermatogonial stem cells (SSCs) maintain adult spermatogenesis in mammals by undergoing self-renewal and differentiation into spermatozoa. In order to study the biology of SSCs as related to spermatogenesis, an in vitro, long-term expansion system of SSCs constitutes an ideal tool. In this chapter, we describe a robust culture system for mouse and rat SSCs in vitro. In the presence of GDNF, GFRα1, and bFGF, SSCs maintained on STO feeder layers with serum-free medium continuously proliferate for over 6 months. Complete spermatogenesis in infertile recipient mice can be attained following transplantation of the cultured mouse and rat SSCs. Using the in vitro SSC culture systems, elucidation of stem cell biology can be advanced that significantly advances our understanding of spermatogenesis and male fertility.
Collapse
Affiliation(s)
- Fan Yang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jiachen Sun
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xin Wu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
4
|
Isolation of Female Germline Stem Cells from Mouse and Human Ovaries by Differential Adhesion. Int J Cell Biol 2022; 2022:5224659. [PMID: 36120418 PMCID: PMC9473869 DOI: 10.1155/2022/5224659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 08/05/2022] [Indexed: 11/18/2022] Open
Abstract
Spermatogonial stem cell (SSC) counterparts known as female germline stem cells (fGSCs) were found in the mammalian ovary in 2004. Although the existence of fGSCs in the mammalian postnatal ovary is still under controversy, fGSC discovery encourages investigators to better understand the various aspects of these cells. However, their existence is not accepted by all scientists in the field because isolation of fGSCs by fluorescent activated cell sorting (FACS) has not been reproducible. In this study, we used differential adhesion to isolate and enrich fGSCs from mouse and human ovaries and subsequently cultured them in vitro. fGSCs were able to proliferate in vitro and expressed germ cell-specific markers Vasa, Dazl, Blimp1, Fragilis, Stella, and Oct4, at the protein level. Moreover, mouse and human fGSCs were, respectively, cultured for more than four months and one month in culture. Both mouse and human fGSCs maintained the expression of germ cell-specific markers over these times. In vitro cultured fGSCs spontaneously produced oocyte-like cells (OLCs) which expressed oocyte-relevant markers. Our results demonstrated that differential adhesion allows reproducible isolation of fGSCs that are able to proliferate in vitro over time. This source of fGSCs can serve as a suitable material for studying mechanisms underlying female germ cell development and function.
Collapse
|
5
|
Tran KTD, Valli-Pulaski H, Colvin A, Orwig KE. Male fertility preservation and restoration strategies for patients undergoing gonadotoxic therapies†. Biol Reprod 2022; 107:382-405. [PMID: 35403667 PMCID: PMC9382377 DOI: 10.1093/biolre/ioac072] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 03/29/2022] [Accepted: 04/04/2022] [Indexed: 11/22/2022] Open
Abstract
Medical treatments for cancers or other conditions can lead to permanent infertility. Infertility is an insidious disease that impacts not only the ability to have a biological child but also the emotional well-being of the infertile individuals, relationships, finances, and overall health. Therefore, all patients should be educated about the effects of their medical treatments on future fertility and about fertility preservation options. The standard fertility preservation option for adolescent and adult men is sperm cryopreservation. Sperms can be frozen and stored for a long period, thawed at a later date, and used to achieve pregnancy with existing assisted reproductive technologies. However, sperm cryopreservation is not applicable for prepubertal patients who do not yet produce sperm. The only fertility preservation option available to prepubertal boys is testicular tissue cryopreservation. Next-generation technologies are being developed to mature those testicular cells or tissues to produce fertilization-competent sperms. When sperm and testicular tissues are not available for fertility preservation, inducing pluripotent stem cells derived from somatic cells, such as blood or skin, may provide an alternative path to produce sperms through a process call in vitro gametogenesis. This review describes standard and experimental options to preserve male fertility as well as the experimental options to produce functional spermatids or sperms from immature cryopreserved testicular tissues or somatic cells.
Collapse
Affiliation(s)
- Kien T D Tran
- Molecular Genetics and Developmental Biology Graduate Program, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA,Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA,Magee-Womens Research Institute, Pittsburgh, PA, USA
| | - Hanna Valli-Pulaski
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA,Magee-Womens Research Institute, Pittsburgh, PA, USA
| | - Amanda Colvin
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA,Magee-Womens Research Institute, Pittsburgh, PA, USA
| | - Kyle E Orwig
- Correspondence: Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Magee-Womens Research Institute, 204 Craft Avenue, Pittsburgh, PA 15213, USA. Tel: 412-641-2460; E-mail:
| |
Collapse
|
6
|
Yuan H, Sun J, Wang S, Xiang Z, Yang F, Yan Y, Duan Y, Li L, Wu X, Si W. Primary culture of germ cells that portray stem cell characteristics and recipient preparation for autologous transplantation in the rhesus monkey. J Cell Mol Med 2022; 26:1567-1578. [PMID: 35104031 PMCID: PMC8899175 DOI: 10.1111/jcmm.17197] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 12/14/2021] [Accepted: 12/19/2021] [Indexed: 12/20/2022] Open
Abstract
Fertility preservation for prepubertal cancer patients prior to oncologic treatment is an emerging issue, and non‐human primates are considered to constitute suitable models due to the limited availability of human testicular tissues. However, the feasibility of spermatogonial stem cell (SSC) propagation in vitro and autologous testicular germ cell transplantation in vivo requires further exploration in monkeys. Herein, we characterized germ cells in macaque testes at 6 months (M), 18 M and 60 M of age, and effectively isolated the spermatogenic cells (including the spermatogonia) from macaque testes with high purity (over 80%) using combined approaches of STA‐PUT separation, Percoll gradients and differential plating. We also generated recipient monkey testes with ablated endogenous spermatogenesis using the alkylating agent busulfan in six macaques, and successfully mimicked autologous cell transplantation in the testes under ultrasonographic guidance. The use of trypan blue led to successful intratubular injection in 4 of 4 testes. Although SSCs in culture showed no significant propagation, we were able to maintain monkey testicular germ cells with stem cell characteristics for up to 3 weeks. Collectively, these data provided meaningful information for future fertility preservation and SSC studies on both non‐human primates and humans.
Collapse
Affiliation(s)
- Huaqin Yuan
- Cancer Center of Nanjing GaoChun People's Hospital, Nanjing, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Jiachen Sun
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Shengnan Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Ziyi Xiang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Fan Yang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Yaping Yan
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yanchao Duan
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Lufan Li
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Xin Wu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Wei Si
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
| |
Collapse
|
7
|
Neonatal Porcine Germ Cells Dedifferentiate and Display Osteogenic and Pluripotency Properties. Cells 2021; 10:cells10112816. [PMID: 34831039 PMCID: PMC8616047 DOI: 10.3390/cells10112816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/13/2021] [Accepted: 10/15/2021] [Indexed: 11/17/2022] Open
Abstract
Gonocytes are progenitors of spermatogonial stem cells in the neonatal testis. We have previously shown that upon culturing, neonatal porcine gonocytes and their colonies express germ cell and pluripotency markers. The objectives of present study were to investigate in vitro trans-differentiation potential of porcine gonocytes and their colonies into cells from three germinal layers, and to assess pluripotency of cultured gonocytes/colonies in vivo. For osteogenic and tri-lineage differentiation, cells were incubated in regular culture media for 14 and 28 days, respectively. Cells were cultured for an additional 14 days for osteogenic differentiation or 7 days for differentiation into derivates of the three germinal layers. Osteogenic differentiation of cells and colonies was verified by Alizarin Red S staining and tri-lineage differentiation was confirmed using immunofluorescence and gene expression analyses. Furthermore, upon implantation into recipient mice, the cultured cells/colonies developed teratomas expressing markers of all three germinal layers. Successful osteogenic differentiation from porcine germ cells has important implications for bone regeneration and matrix formation studies. Hence, gonocytes emerge as a promising source of adult pluripotent stem cells due to the ability to differentiate into all germinal layers without typical biosafety risks associated with viral vectors or ethical implications.
Collapse
|
8
|
Martin-Inaraja M, Ferreira M, Taelman J, Eguizabal C, Chuva De Sousa Lopes SM. Improving In Vitro Culture of Human Male Fetal Germ Cells. Cells 2021; 10:cells10082033. [PMID: 34440801 PMCID: PMC8393746 DOI: 10.3390/cells10082033] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/29/2021] [Accepted: 08/05/2021] [Indexed: 12/14/2022] Open
Abstract
Male human fetal germ cells (hFGCs) give rise to spermatogonial stem cells (SSCs), which are the adult precursors of the male gametes. Human SSCs are a promising (autologous) source of cells for male fertility preservation; however, in contrast to mouse SSCs, we are still unable to culture them in the long term. Here, we investigated the effect of two different culture media and four substrates (laminin, gelatin, vitronectin and matrigel) in the culture of dissociated second trimester testes, enriched for hFGCs. After 6 days in culture, we quantified the presence of POU5F1 and DDX4 expressing hFGCs. We observed a pronounced difference in hFGC number in different substrates. The combination of gelatin-coated substrate and medium containing GDNF, LIF, FGF2 and EGF resulted in the highest percentage of hFGCs (10% of the total gonadal cells) after 6 days of culture. However, the vitronectin-coated substrate resulted in a comparable percentage of hFGCs regardless of the media used (3.3% of total cells in Zhou-medium and 4.8% of total cells in Shinohara-medium). We provide evidence that not only the choices of culture medium but also choices of the adequate substrate are crucial for optimizing culture protocols for male hFGCs. Optimizing culture conditions in order to improve the expansion of hFGCs will benefit the development of gametogenesis assays in vitro.
Collapse
Affiliation(s)
- Myriam Martin-Inaraja
- Cell Therapy, Stem Cells and Tissues Group, Basque Centre for Blood Transfusion and Human Tissues, 48960 Galdakao, Spain; (M.M.-I.); (C.E.)
- Biocruces Bizkaia Health Research Institute, Cell Therapy, Stem Cells and Tissues Group, 48903 Barakaldo, Spain
| | - Monica Ferreira
- Department of Anatomy and Embryology, Leiden University Medical Centre, Einthovenweg 20, 2333 ZC Leiden, The Netherlands; (M.F.); (J.T.)
| | - Jasin Taelman
- Department of Anatomy and Embryology, Leiden University Medical Centre, Einthovenweg 20, 2333 ZC Leiden, The Netherlands; (M.F.); (J.T.)
| | - Cristina Eguizabal
- Cell Therapy, Stem Cells and Tissues Group, Basque Centre for Blood Transfusion and Human Tissues, 48960 Galdakao, Spain; (M.M.-I.); (C.E.)
- Biocruces Bizkaia Health Research Institute, Cell Therapy, Stem Cells and Tissues Group, 48903 Barakaldo, Spain
| | - Susana M. Chuva De Sousa Lopes
- Department of Anatomy and Embryology, Leiden University Medical Centre, Einthovenweg 20, 2333 ZC Leiden, The Netherlands; (M.F.); (J.T.)
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
- Correspondence: ; Tel.: +31-71-526-9350
| |
Collapse
|
9
|
Heckmann L, Langenstroth-Röwer D, Wistuba J, Portela JMD, van Pelt AMM, Redmann K, Stukenborg JB, Schlatt S, Neuhaus N. The initial maturation status of marmoset testicular tissues has an impact on germ cell maintenance and somatic cell response in tissue fragment culture. Mol Hum Reprod 2021; 26:374-388. [PMID: 32236422 DOI: 10.1093/molehr/gaaa024] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 03/13/2020] [Indexed: 11/13/2022] Open
Abstract
Successful in vitro spermatogenesis was reported using immature mouse testicular tissues in a fragment culture approach, raising hopes that this method could also be applied for fertility preservation in humans. Although maintaining immature human testicular tissue fragments in culture is feasible for an extended period, it remains unknown whether germ cell survival and the somatic cell response depend on the differentiation status of tissue. Employing the marmoset monkey (Callithrix jacchus), we aimed to assess whether the maturation status of prepubertal and peri-/pubertal testicular tissues influence the outcome of testis fragment culture. Testicular tissue fragments from 4- and 8-month-old (n = 3, each) marmosets were cultured and evaluated after 0, 7, 14, 28 and 42 days. Immunohistochemistry was performed for identification and quantification of germ cells (melanoma-associated antigen 4) and Sertoli cell maturation status (anti-Müllerian hormone: AMH). During testis fragment culture, spermatogonial numbers were significantly reduced (P < 0.05) in the 4- but not 8-month-old monkeys, at Day 0 versus Day 42 of culture. Moreover, while Sertoli cells from 4-month-old monkeys maintained an immature phenotype (i.e. AMH expression) during culture, AMH expression was regained in two of the 8-month-old monkeys. Interestingly, progression of differentiation to later meiotic stage was solely observed in one 8-month-old marmoset, which was at an intermediate state regarding germ cell content, with gonocytes as well as spermatocytes present, as well as Sertoli cell maturation status. Although species-specific differences might influence the outcome of testis fragment experiments in vitro, our study demonstrated that the developmental status of the testicular tissues needs to be considered as it seems to be decisive for germ cell maintenance, somatic cell response and possibly the differentiation potential.
Collapse
Affiliation(s)
- L Heckmann
- Centre of Reproductive Medicine and Andrology, Institute of Reproductive and Regenerative Biology, Albert-Schweitzer-Campus 1, Building D11, 48149 Münster, Germany
| | - D Langenstroth-Röwer
- Centre of Reproductive Medicine and Andrology, Institute of Reproductive and Regenerative Biology, Albert-Schweitzer-Campus 1, Building D11, 48149 Münster, Germany
| | - J Wistuba
- Centre of Reproductive Medicine and Andrology, Institute of Reproductive and Regenerative Biology, Albert-Schweitzer-Campus 1, Building D11, 48149 Münster, Germany
| | - J M D Portela
- Center for Reproductive Medicine, Research Institute Reproduction and Development, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - A M M van Pelt
- Center for Reproductive Medicine, Research Institute Reproduction and Development, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - K Redmann
- Centre of Reproductive Medicine and Andrology, Institute of Reproductive and Regenerative Biology, Albert-Schweitzer-Campus 1, Building D11, 48149 Münster, Germany
| | - J B Stukenborg
- NORDFERTIL Research Lab Stockholm, Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet and Karolinska University Hospital, 17164 Solna, Sweden
| | - S Schlatt
- Centre of Reproductive Medicine and Andrology, Institute of Reproductive and Regenerative Biology, Albert-Schweitzer-Campus 1, Building D11, 48149 Münster, Germany
| | - N Neuhaus
- Centre of Reproductive Medicine and Andrology, Institute of Reproductive and Regenerative Biology, Albert-Schweitzer-Campus 1, Building D11, 48149 Münster, Germany
| |
Collapse
|
10
|
Doungkamchan C, Orwig KE. Recent advances: fertility preservation and fertility restoration options for males and females. Fac Rev 2021; 10:55. [PMID: 34195694 PMCID: PMC8204761 DOI: 10.12703/r/10-55] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Fertility preservation is the process of saving gametes, embryos, gonadal tissues and/or gonadal cells for individuals who are at risk of infertility due to disease, medical treatments, age, genetics, or other circumstances. Adult patients have the options to preserve eggs, sperm, or embryos that can be used in the future to produce biologically related offspring with assisted reproductive technologies. These options are not available to all adults or to children who are not yet producing mature eggs or sperm. Gonadal cells/tissues have been frozen for several thousands of those patients worldwide with anticipation that new reproductive technologies will be available in the future. Therefore, the fertility preservation medical and research communities are obligated to responsibly develop next-generation reproductive technologies and translate them into clinical practice. We briefly describe standard options to preserve and restore fertility, but the emphasis of this review is on experimental options, including an assessment of readiness for translation to the human fertility clinic.
Collapse
Affiliation(s)
- Chatchanan Doungkamchan
- Molecular Genetics and Developmental Biology Graduate Program, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Kyle E Orwig
- Molecular Genetics and Developmental Biology Graduate Program, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
11
|
Stöckl JB, Schmid N, Flenkenthaler F, Drummer C, Behr R, Mayerhofer A, Arnold GJ, Fröhlich T. Age-Related Alterations in the Testicular Proteome of a Non-Human Primate. Cells 2021; 10:cells10061306. [PMID: 34074003 PMCID: PMC8225046 DOI: 10.3390/cells10061306] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/17/2021] [Accepted: 05/22/2021] [Indexed: 02/06/2023] Open
Abstract
Aging of human testis and associated cellular changes is difficult to assess. Therefore, we used a translational, non-human primate model to get insights into underlying cellular and biochemical processes. Using proteomics and immunohistochemistry, we analyzed testicular tissue of young (age 2 to 3) and old (age 10 to 12) common marmosets (Callithrix jacchus). Using a mass spectrometry-based proteomics approach, we identified 63,124 peptides, which could be assigned to 5924 proteins. Among them, we found proteins specific for germ cells and somatic cells, such as Leydig and Sertoli cells. Quantitative analysis showed 31 differentially abundant proteins, of which 29 proteins were more abundant in older animals. An increased abundance of anti-proliferative proteins, among them CDKN2A, indicate reduced cell proliferation in old testes. Additionally, an increased abundance of several small leucine rich repeat proteoglycans and other extracellular matrix proteins was observed, which may be related to impaired cell migration and fibrotic events. Furthermore, an increased abundance of proteins with inhibitory roles in smooth muscle cell contraction like CNN1 indicates functional alterations in testicular peritubular cells and may mirror a reduced capacity of these cells to contract in old testes.
Collapse
Affiliation(s)
- Jan B. Stöckl
- Laboratory for Functional Genome Analysis LAFUGA, Gene Center, LMU München, 81377 München, Germany; (J.B.S.); (F.F.)
| | - Nina Schmid
- Biomedical Center (BMC), Anatomy III–Cell Biology, Medical Faculty, LMU München, 82152 Martinsried, Germany; (N.S.); (A.M.)
| | - Florian Flenkenthaler
- Laboratory for Functional Genome Analysis LAFUGA, Gene Center, LMU München, 81377 München, Germany; (J.B.S.); (F.F.)
| | - Charis Drummer
- Platform Degenerative Diseases, German Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany; (C.D.); (R.B.)
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, 37077 Göttingen, Germany
| | - Rüdiger Behr
- Platform Degenerative Diseases, German Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany; (C.D.); (R.B.)
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, 37077 Göttingen, Germany
| | - Artur Mayerhofer
- Biomedical Center (BMC), Anatomy III–Cell Biology, Medical Faculty, LMU München, 82152 Martinsried, Germany; (N.S.); (A.M.)
| | - Georg J. Arnold
- Laboratory for Functional Genome Analysis LAFUGA, Gene Center, LMU München, 81377 München, Germany; (J.B.S.); (F.F.)
- Correspondence: (G.J.A.); (T.F.)
| | - Thomas Fröhlich
- Laboratory for Functional Genome Analysis LAFUGA, Gene Center, LMU München, 81377 München, Germany; (J.B.S.); (F.F.)
- Correspondence: (G.J.A.); (T.F.)
| |
Collapse
|
12
|
Voigt AL, Thiageswaran S, de Lima e Martins Lara N, Dobrinski I. Metabolic Requirements for Spermatogonial Stem Cell Establishment and Maintenance In Vivo and In Vitro. Int J Mol Sci 2021; 22:1998. [PMID: 33670439 PMCID: PMC7922219 DOI: 10.3390/ijms22041998] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 12/11/2022] Open
Abstract
The spermatogonial stem cell (SSC) is a unique adult stem cell that requires tight physiological regulation during development and adulthood. As the foundation of spermatogenesis, SSCs are a potential tool for the treatment of infertility. Understanding the factors that are necessary for lifelong maintenance of a SSC pool in vivo is essential for successful in vitro expansion and safe downstream clinical usage. This review focused on the current knowledge of prepubertal testicular development and germ cell metabolism in different species, and implications for translational medicine. The significance of metabolism for cell biology, stem cell integrity, and fate decisions is discussed in general and in the context of SSC in vivo maintenance, differentiation, and in vitro expansion.
Collapse
Affiliation(s)
| | | | | | - Ina Dobrinski
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (A.L.V.); (S.T.); (N.d.L.e.M.L.)
| |
Collapse
|
13
|
Application of platelet-rich plasma (PRP) improves self-renewal of human spermatogonial stem cells in two-dimensional and three-dimensional culture systems. Acta Histochem 2020; 122:151627. [PMID: 33002788 DOI: 10.1016/j.acthis.2020.151627] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 08/17/2020] [Accepted: 09/14/2020] [Indexed: 12/20/2022]
Abstract
Spermatogonial stem cells (SSCs) are very sensitive to chemotherapy and radiotherapy, so male infertility is a great challenge for prepubertal cancer survivors. Cryoconservation of testicular cells before cancer treatment can preserve SSCs from treatment side effects. Different two-dimensional (2D) and three-dimensional (3D) culture systems of SSCs have been used in many species as a useful technique to in vitro spermatogenesis. We evaluated the proliferation of SSCs in 2D and 3D culture systems of platelet-rich plasma (PRP). testicular cells of four brain-dead patients cultivated in 2D pre-culture system, characterization of SSCs performed by RT-PCR, flow cytometry, immunocytochemistry and their functionality assessed by xenotransplantation to azoospermia mice. PRP prepared and dosimetry carried out to determine the optimized dose of PRP. After preparation of PRP scaffold, cytotoxic and histological evaluation performed and SSCs cultivated into three groups: control, 2D culture by optimized dose of PRP and PRP scaffold. The diameter and number of colonies measured and relative expression of GFRa1 and c-KIT evaluated by real-time PCR. Results indicated the expression of PLZF, VASA, OCT4, GFRa1 and vimentin in colonies after 2D pre-culture, xenotransplantation demonstrated proliferated SSCs have proper functionality to homing in mouse testes. The relative expression of c-KIT showed a significant increase as compared to the control group (*: p < 0.05) in PRP- 2D group, expression of GFRa1 and c-KIT in PRP scaffold group revealed a significant increase as compared to other groups (***: p < 0.001). The number and diameter of colonies in the PRP-2D group showed a considerable increase (p < 0.01) as compared to the control group. In PRP- scaffold group, a significant increase (p < 0.01) was seen only in the number of colonies related to the control group. Our results suggested that PRP scaffold can reconstruct a suitable structure to the in vitro proliferation of SSCs.
Collapse
|
14
|
Struijk RB, Mulder CL, van Daalen SKM, de Winter-Korver CM, Jongejan A, Repping S, van Pelt AMM. ITGA6+ Human Testicular Cell Populations Acquire a Mesenchymal Rather than Germ Cell Transcriptional Signature during Long-Term Culture. Int J Mol Sci 2020; 21:ijms21218269. [PMID: 33158248 PMCID: PMC7672582 DOI: 10.3390/ijms21218269] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 12/22/2022] Open
Abstract
Autologous spermatogonial stem cell transplantation is an experimental technique aimed at restoring fertility in infertile men. Although effective in animal models, in vitro propagation of human spermatogonia prior to transplantation has proven to be difficult. A major limiting factor is endogenous somatic testicular cell overgrowth during long-term culture. This makes the culture both inefficient and necessitates highly specific cell sorting strategies in order to enrich cultured germ cell fractions prior to transplantation. Here, we employed RNA-Seq to determine cell type composition in sorted integrin alpha-6 (ITGA6+) primary human testicular cells (n = 4 donors) cultured for up to two months, using differential gene expression and cell deconvolution analyses. Our data and analyses reveal that long-term cultured ITGA6+ testicular cells are composed mainly of cells expressing markers of peritubular myoid cells, (progenitor) Leydig cells, fibroblasts and mesenchymal stromal cells and only a limited percentage of spermatogonial cells as compared to their uncultured counterparts. These findings provide valuable insights into the cell type composition of cultured human ITGA6+ testicular cells during in vitro propagation and may serve as a basis for optimizing future cell sorting strategies as well as optimizing the current human testicular cell culture system for clinical use.
Collapse
Affiliation(s)
- Robert B. Struijk
- Reproductive Biology Laboratory, Center for Reproductive Medicine, Amsterdam UMC, Amsterdam Reproduction & Development Research Institute, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (R.B.S.); (C.L.M.); (S.K.M.v.D.); (C.M.d.W.-K.)
| | - Callista L. Mulder
- Reproductive Biology Laboratory, Center for Reproductive Medicine, Amsterdam UMC, Amsterdam Reproduction & Development Research Institute, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (R.B.S.); (C.L.M.); (S.K.M.v.D.); (C.M.d.W.-K.)
| | - Saskia K. M. van Daalen
- Reproductive Biology Laboratory, Center for Reproductive Medicine, Amsterdam UMC, Amsterdam Reproduction & Development Research Institute, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (R.B.S.); (C.L.M.); (S.K.M.v.D.); (C.M.d.W.-K.)
| | - Cindy M. de Winter-Korver
- Reproductive Biology Laboratory, Center for Reproductive Medicine, Amsterdam UMC, Amsterdam Reproduction & Development Research Institute, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (R.B.S.); (C.L.M.); (S.K.M.v.D.); (C.M.d.W.-K.)
| | - Aldo Jongejan
- Department of Epidemiology & Data Science, Amsterdam UMC, Amsterdam Public Health Research Institute, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| | - Sjoerd Repping
- Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| | - Ans M. M. van Pelt
- Reproductive Biology Laboratory, Center for Reproductive Medicine, Amsterdam UMC, Amsterdam Reproduction & Development Research Institute, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (R.B.S.); (C.L.M.); (S.K.M.v.D.); (C.M.d.W.-K.)
- Correspondence: ; Tel.: +31-20-56-67837
| |
Collapse
|
15
|
Goossens E, Jahnukainen K, Mitchell RT, van Pelt A, Pennings G, Rives N, Poels J, Wyns C, Lane S, Rodriguez-Wallberg KA, Rives A, Valli-Pulaski H, Steimer S, Kliesch S, Braye A, Andres MM, Medrano J, Ramos L, Kristensen SG, Andersen CY, Bjarnason R, Orwig KE, Neuhaus N, Stukenborg JB. Fertility preservation in boys: recent developments and new insights †. Hum Reprod Open 2020; 2020:hoaa016. [PMID: 32529047 PMCID: PMC7275639 DOI: 10.1093/hropen/hoaa016] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 01/22/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Infertility is an important side effect of treatments used for cancer and other non-malignant conditions in males. This may be due to the loss of spermatogonial stem cells (SSCs) and/or altered functionality of testicular somatic cells (e.g. Sertoli cells, Leydig cells). Whereas sperm cryopreservation is the first-line procedure to preserve fertility in post-pubertal males, this option does not exist for prepubertal boys. For patients unable to produce sperm and at high risk of losing their fertility, testicular tissue freezing is now proposed as an alternative experimental option to safeguard their fertility. OBJECTIVE AND RATIONALE With this review, we aim to provide an update on clinical practices and experimental methods, as well as to describe patient management inclusion strategies used to preserve and restore the fertility of prepubertal boys at high risk of fertility loss. SEARCH METHODS Based on the expertise of the participating centres and a literature search of the progress in clinical practices, patient management strategies and experimental methods used to preserve and restore the fertility of prepubertal boys at high risk of fertility loss were identified. In addition, a survey was conducted amongst European and North American centres/networks that have published papers on their testicular tissue banking activity. OUTCOMES Since the first publication on murine SSC transplantation in 1994, remarkable progress has been made towards clinical application: cryopreservation protocols for testicular tissue have been developed in animal models and are now offered to patients in clinics as a still experimental procedure. Transplantation methods have been adapted for human testis, and the efficiency and safety of the technique are being evaluated in mouse and primate models. However, important practical, medical and ethical issues must be resolved before fertility restoration can be applied in the clinic.Since the previous survey conducted in 2012, the implementation of testicular tissue cryopreservation as a means to preserve the fertility of prepubertal boys has increased. Data have been collected from 24 co-ordinating centres worldwide, which are actively offering testis tissue cryobanking to safeguard the future fertility of boys. More than 1033 young patients (age range 3 months to 18 years) have already undergone testicular tissue retrieval and storage for fertility preservation. LIMITATIONS REASONS FOR CAUTION The review does not include the data of all reproductive centres worldwide. Other centres might be offering testicular tissue cryopreservation. Therefore, the numbers might be not representative for the entire field in reproductive medicine and biology worldwide. The key ethical issue regarding fertility preservation in prepubertal boys remains the experimental nature of the intervention. WIDER IMPLICATIONS The revised procedures can be implemented by the multi-disciplinary teams offering and/or developing treatment strategies to preserve the fertility of prepubertal boys who have a high risk of fertility loss. STUDY FUNDING/COMPETING INTERESTS The work was funded by ESHRE. None of the authors has a conflict of interest.
Collapse
Affiliation(s)
- E Goossens
- Biology of the Testis, Research Laboratory for Reproduction, Genetics and Regenerative Medicine, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium
| | - K Jahnukainen
- NORDFERTIL Research Lab Stockholm, Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet and Karolinska University Hospital, Solna, Sweden.,Division of Haematology-Oncology and Stem Cell Transplantation, New Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - R T Mitchell
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh; and the Edinburgh Royal Hospital for Sick Children, Edinburgh, UK
| | - Amm van Pelt
- Center for Reproductive Medicine, Amsterdam UMC, Amsterdam Reproduction and Development Research Institute, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - G Pennings
- Bioethics Institute Ghent, Ghent University, 9000 Ghent, Belgium
| | - N Rives
- Normandie Univ, UNIROUEN, EA 4308 "Gametogenesis and Gamete Quality", Rouen University Hospital, Biology of Reproduction-CECOS Laboratory, F 76000, Rouen, France
| | - J Poels
- Department of Gynecology and Andrology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| | - C Wyns
- Department of Gynecology and Andrology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| | - S Lane
- Department of Paediatric Oncology and Haematology, Children's Hospital Oxford, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - K A Rodriguez-Wallberg
- Department of Oncology Pathology, Karolinska Institutet, Solna, Sweden.,Section of Reproductive Medicine, Division of Gynecology and Reproduction, Karolinska University Hospital, Stockholm, Sweden
| | - A Rives
- Normandie Univ, UNIROUEN, EA 4308 "Gametogenesis and Gamete Quality", Rouen University Hospital, Biology of Reproduction-CECOS Laboratory, F 76000, Rouen, France
| | - H Valli-Pulaski
- Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - S Steimer
- Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - S Kliesch
- Centre of Reproductive Medicine and Andrology, Institute of Reproductive and Regenerative Biology, University of Münster, Münster, Germany
| | - A Braye
- Biology of the Testis, Research Laboratory for Reproduction, Genetics and Regenerative Medicine, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium
| | - M M Andres
- Reproductive Medicine Unit, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - J Medrano
- Reproductive Medicine Unit, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - L Ramos
- Departement of Obstetrics and Gynacology, Division Reproductive Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - S G Kristensen
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children and Reproduction, University Hospital of Copenhagen, Denmark
| | - C Y Andersen
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children and Reproduction, University Hospital of Copenhagen, Denmark
| | - R Bjarnason
- Children's Medical Center, Landspítali University Hospital, Reykjavik, Iceland and Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - K E Orwig
- Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - N Neuhaus
- Centre of Reproductive Medicine and Andrology, Institute of Reproductive and Regenerative Biology, University of Münster, Münster, Germany
| | - J B Stukenborg
- NORDFERTIL Research Lab Stockholm, Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet and Karolinska University Hospital, Solna, Sweden
| |
Collapse
|
16
|
The study and manipulation of spermatogonial stem cells using animal models. Cell Tissue Res 2020; 380:393-414. [PMID: 32337615 DOI: 10.1007/s00441-020-03212-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 03/30/2020] [Indexed: 02/08/2023]
Abstract
Spermatogonial stem cells (SSCs) are a rare group of cells in the testis that undergo self-renewal and complex sequences of differentiation to initiate and sustain spermatogenesis, to ensure the continuity of sperm production throughout adulthood. The difficulty of unequivocal identification of SSCs and complexity of replicating their differentiation properties in vitro have prompted the introduction of novel in vivo models such as germ cell transplantation (GCT), testis tissue xenografting (TTX), and testis cell aggregate implantation (TCAI). Owing to these unique animal models, our ability to study and manipulate SSCs has dramatically increased, which complements the availability of other advanced assisted reproductive technologies and various genome editing tools. These animal models can advance our knowledge of SSCs, testis tissue morphogenesis and development, germ-somatic cell interactions, and mechanisms that control spermatogenesis. Equally important, these animal models can have a wide range of experimental and potential clinical applications in fertility preservation of prepubertal cancer patients, and genetic conservation of endangered species. Moreover, these models allow experimentations that are otherwise difficult or impossible to be performed directly in the target species. Examples include proof-of-principle manipulation of germ cells for correction of genetic disorders or investigation of potential toxicants or new drugs on human testis formation or function. The primary focus of this review is to highlight the importance, methodology, current and potential future applications, as well as limitations of using these novel animal models in the study and manipulation of male germline stem cells.
Collapse
|
17
|
Bashawat M, Braun BC, Müller K. Cell survival after cryopreservation of dissociated testicular cells from feline species. Cryobiology 2020; 97:191-197. [PMID: 32194031 DOI: 10.1016/j.cryobiol.2020.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 02/10/2020] [Accepted: 03/02/2020] [Indexed: 11/24/2022]
Abstract
Testicular cell suspension (TCS) can be cryopreserved for male germ-line preservation and fertility restoration. We aimed to validate a cryopreservation protocol for TCS of domestic cat to be applied in endangered felids species. Testis tissue from adult domestic cats was enzymatically dissociated and spermatogenic cells were enriched. The resulting TCS was diluted in 7.5% or 15% Me2SO based medium. Slow and fast freezing methods were tested. We examined the effects of freezing approaches using two combinations of fluorescent dyes: Calcein-AM with Propidium iodide (C/PI) and SYBR14 with Propidium iodide (S/PI). Ploidy analysis of domestic cat fresh TCS revealed that the majority of testicular cells were haploid cells. Based on microscopic observation, two size populations (12.3 ± 2.3 μm and 20.5 ± 4 μm in diameter) were identified and presumed to be mainly spermatids and spermatocytes, respectively. Both evaluation methods proved higher viability of aggregated cells before and after cryopreservation compared with single cells, and superiority of low concentration of Me2SO (7.5%) in association with slow freezing to preserve viability of testicular cells. However, S/PI resulted in a more precise evaluation compared with the C/PI method. The combination of 7.5% Me2SO-based medium with slow freezing yielded post thaw viability of S/PI labeled aggregated (49.8 ± 20%) and single cells (31.5 ± 8.1%). Comparable results were achieved using testes of a Cheetah and an Asiatic golden cat. In conclusion, TCS from domestic cat can be successfully cryopreserved and has the potential to support fertility restoration of endangered felids species.
Collapse
Affiliation(s)
- M Bashawat
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, D-10315, Berlin, Germany.
| | - B C Braun
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, D-10315, Berlin, Germany
| | - K Müller
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, D-10315, Berlin, Germany
| |
Collapse
|
18
|
Ibtisham F, Honaramooz A. Spermatogonial Stem Cells for In Vitro Spermatogenesis and In Vivo Restoration of Fertility. Cells 2020; 9:E745. [PMID: 32197440 PMCID: PMC7140722 DOI: 10.3390/cells9030745] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 03/15/2020] [Accepted: 03/16/2020] [Indexed: 12/14/2022] Open
Abstract
Spermatogonial stem cells (SSCs) are the only adult stem cells capable of passing genes onto the next generation. SSCs also have the potential to provide important knowledge about stem cells in general and to offer critical in vitro and in vivo applications in assisted reproductive technologies. After century-long research, proof-of-principle culture systems have been introduced to support the in vitro differentiation of SSCs from rodent models into haploid male germ cells. Despite recent progress in organotypic testicular tissue culture and two-dimensional or three-dimensional cell culture systems, to achieve complete in vitro spermatogenesis (IVS) using non-rodent species remains challenging. Successful in vitro production of human haploid male germ cells will foster hopes of preserving the fertility potential of prepubertal cancer patients who frequently face infertility due to the gonadotoxic side-effects of cancer treatment. Moreover, the development of optimal systems for IVS would allow designing experiments that are otherwise difficult or impossible to be performed directly in vivo, such as genetic manipulation of germ cells or correction of genetic disorders. This review outlines the recent progress in the use of SSCs for IVS and potential in vivo applications for the restoration of fertility.
Collapse
Affiliation(s)
| | - Ali Honaramooz
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada;
| |
Collapse
|
19
|
Pelzman DL, Orwig KE, Hwang K. Progress in translational reproductive science: testicular tissue transplantation and in vitro spermatogenesis. Fertil Steril 2020; 113:500-509. [PMID: 32111477 DOI: 10.1016/j.fertnstert.2020.01.038] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 01/30/2020] [Indexed: 02/07/2023]
Abstract
Since the birth of the first child conceived via in vitro fertilization 40 years ago, fertility treatments and assisted reproductive technology have allowed many couples to reach their reproductive goals. As of yet, no fertility options are available for men who cannot produce functional sperm, but many experimental therapies have demonstrated promising results in animal models. Both autologous (stem cell transplantation, de novo morphogenesis, and testicular tissue grafting) and outside-the-body (xenografting and in vitro spermatogenesis) approaches exist for restoring sperm production in infertile animals with varying degrees of success. Once safety profiles are established and an ideal patient population is chosen, some of these techniques may be ready for human experimentation in the near future, with likely clinical implementation within the next decade.
Collapse
Affiliation(s)
- Daniel L Pelzman
- Department of Urology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Kyle E Orwig
- Department of Obstetrics, Gynecology, and Reproductive Sciences and Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Kathleen Hwang
- Department of Urology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Obstetrics, Gynecology, and Reproductive Sciences and Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| |
Collapse
|
20
|
Murdock MH, David S, Swinehart IT, Reing JE, Tran K, Gassei K, Orwig KE, Badylak SF. Human Testis Extracellular Matrix Enhances Human Spermatogonial Stem Cell Survival In Vitro. Tissue Eng Part A 2019; 25:663-676. [PMID: 30311859 DOI: 10.1089/ten.tea.2018.0147] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
IMPACT STATEMENT This study developed and characterized human testis extracellular matrix (htECM) and porcine testis ECM (ptECM) for testing in human spermatogonial stem cell (hSSC) culture. Results confirmed the hypothesis that ECM from the homologous species (human) and homologous tissue (testis) is optimal for maintaining hSSCs. We describe a simplified feeder-free, serum-free condition for future iterative testing to achieve the long-term goal of stable hSSC cultures. To facilitate analysis and understand the fate of hSSCs in culture, we describe a multiparameter, high-throughput, quantitative flow cytometry approach to rapidly count undifferentiated spermatogonia, differentiated spermatogonia, apoptotic spermatogonia, and proliferative spermatogonia in hSSC cultures.
Collapse
Affiliation(s)
- Mark H Murdock
- 1 McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Sherin David
- 2 Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Women's Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Ilea T Swinehart
- 1 McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Janet E Reing
- 1 McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Kien Tran
- 2 Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Women's Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Kathrin Gassei
- 2 Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Women's Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Kyle E Orwig
- 2 Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Women's Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Stephen F Badylak
- 1 McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- 3 Department of Surgery, and University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- 4 Bioengineering, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
21
|
Dong L, Gul M, Hildorf S, Pors SE, Kristensen SG, Hoffmann ER, Cortes D, Thorup J, Andersen CY. Xeno-Free Propagation of Spermatogonial Stem Cells from Infant Boys. Int J Mol Sci 2019; 20:ijms20215390. [PMID: 31671863 PMCID: PMC6862004 DOI: 10.3390/ijms20215390] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/03/2019] [Accepted: 10/28/2019] [Indexed: 12/13/2022] Open
Abstract
Spermatogonial stem cell (SSC) transplantation therapy is a promising strategy to renew spermatogenesis for prepubertal boys whose fertility is compromised. However, propagation of SSCs is required due to a limited number of SSCs in cryopreserved testicular tissue. This propagation must be done under xeno-free conditions for clinical application. SSCs were propagated from infant testicular tissue (7 mg and 10 mg) from two boys under xeno-free conditions using human platelet lysate and nutrient source. We verified SSC-like cell clusters (SSCLCs) by quantitative real-time polymerase chain reaction (PCR) and immune-reaction assay using the SSC markers undifferentiated embryonic cell transcription factor 1 (UTF1), ubiquitin carboxyl-terminal hydrolase isozyme L1 (UCHL1), GDNF receptor alpha-1 (GFRα-1) Fα and promyelocytic leukaemia zinc finger protein (PLZF). The functionality of the propagated SSCs was investigated by pre-labelling using green fluorescent Cell Linker PKH67 and xeno-transplantation of the SSCLCs into busulfan-treated, therefore sterile, immunodeficient mice. SSC-like cell clusters (SSCLCs) appeared after 2 weeks in primary passage. The SSCLCs were SSC-like as the UTF1, UCHL1, GFRα1 and PLZF were all positive. After 2.5 months’ culture period, a total of 13 million cells from one sample were harvested for xenotransplantation. Labelled human propagated SSCs were identified and verified in mouse seminiferous tubules at 3–6 weeks, confirming that the transplanted cells contain SSCLCs. The present xeno-free clinical culture protocol allows propagation of SSCs from infant boys.
Collapse
Affiliation(s)
- Lihua Dong
- Laboratory of Reproductive Biology, Rigshospitalet, University Hospital of Copenhagen, 2100 Copenhagen, Denmark.
| | - Murat Gul
- Laboratory of Reproductive Biology, Rigshospitalet, University Hospital of Copenhagen, 2100 Copenhagen, Denmark.
- Department of Urology, Aksaray University School of Medicine, Aksaray 68100, Turkey.
| | - Simone Hildorf
- Department of Pediatric Surgery, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark.
| | - Susanne Elisabeth Pors
- Laboratory of Reproductive Biology, Rigshospitalet, University Hospital of Copenhagen, 2100 Copenhagen, Denmark.
| | - Stine Gry Kristensen
- Laboratory of Reproductive Biology, Rigshospitalet, University Hospital of Copenhagen, 2100 Copenhagen, Denmark.
| | - Eva R Hoffmann
- Center for Chromosome Stability, Institute of Molecular and Cellular Medicine, 2200 Copenhagen, Denmark.
- Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.
| | - Dina Cortes
- Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.
- Department of Pediatrics, Hvidovre, Copenhagen University Hospital, 2650 Copenhagen, Denmark.
| | - Jorgen Thorup
- Department of Pediatric Surgery, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark.
- Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.
| | - Claus Yding Andersen
- Laboratory of Reproductive Biology, Rigshospitalet, University Hospital of Copenhagen, 2100 Copenhagen, Denmark.
- Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.
| |
Collapse
|
22
|
Dong L, Kristensen SG, Hildorf S, Gul M, Clasen-Linde E, Fedder J, Hoffmann ER, Cortes D, Thorup J, Andersen CY. Propagation of Spermatogonial Stem Cell-Like Cells From Infant Boys. Front Physiol 2019; 10:1155. [PMID: 31607938 PMCID: PMC6761273 DOI: 10.3389/fphys.2019.01155] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 08/28/2019] [Indexed: 12/22/2022] Open
Abstract
Background Gonadotoxic treatment of malignant diseases as well as some non-malignant conditions such as cryptorchidism in young boys may result in infertility and failure to father children later in life. As a fertility preserving strategy, several centers collect testicular biopsies to cryopreserve spermatogonial stem cells (SSCs) world-wide. One of the most promising therapeutic strategies is to transplant SSCs back into the seminiferous tubules to initiate endogenous spermatogenesis. However, to obtain sufficient numbers of SSC to warrant transplantation, in vitro propagation of cells is needed together with proper validation of their stem cell identity. Materials and Methods A minute amount of testicular biopsies (between 5 mg and 10 mg) were processed by mechanical and enzymatic digestion. SSCs were enriched by differential plating method in StemPro-34 medium supplemented with several growth factors. SSC-like cell clusters (SSCLCs) were passaged five times. SSCLCs were identified by immunohistochemical and immunofluorescence staining, using protein expression patterns in testis biopsies as reference. Quantitative polymerase chain reaction analysis of SSC markers LIN-28 homolog A (LIN28A), G antigen 1 (GAGE1), promyelocytic leukemia zinc finger protein (PLZF), integrin alpha 6 (ITGA6), ubiquitin carboxy-terminal hydrolase L1 (UCHL1) and integrin beta 1 (ITGB1) were also used to validate the SSC-like cell identity. Results Proliferation of SSCLCs was achieved. The presence of SSCs in SSCLCs was confirmed by positive immunostaining of LIN28, UCHL1 and quantitative polymerase chain reaction for LIN28A, UCHL1, PLZF, ITGA6, and ITGB1, respectively. Conclusion This study has demonstrated that SSCs from infant boys possess the capacity for in vitro proliferation and advance a fertility preservation strategy for pre-pubertal boys who may otherwise lose their fertility.
Collapse
Affiliation(s)
- Lihua Dong
- Laboratory of Reproductive Biology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Stine Gry Kristensen
- Laboratory of Reproductive Biology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Simone Hildorf
- Department of Pediatric Surgery, Copenhagen University Hospital, Copenhagen, Denmark
| | - Murat Gul
- Laboratory of Reproductive Biology, Copenhagen University Hospital, Copenhagen, Denmark.,Department of Urology, Aksaray University School of Medicine, Aksaray, Turkey
| | - Erik Clasen-Linde
- Department of Pathology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Jens Fedder
- Centre of Andrology and Fertility Clinic, Department D, Odense University Hospital, Odense C, Denmark.,Research Unit of Human Reproduction, Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Eva R Hoffmann
- Center for Chromosome Stability, Department of Molecular and Cellular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Dina Cortes
- Department of Pediatrics, Copenhagen University Hospital Hvidovre, Copenhagen, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jorgen Thorup
- Department of Pediatric Surgery, Copenhagen University Hospital, Copenhagen, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Claus Yding Andersen
- Laboratory of Reproductive Biology, Copenhagen University Hospital, Copenhagen, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
23
|
Kubota H, Brinster RL. Spermatogonial stem cells. Biol Reprod 2019; 99:52-74. [PMID: 29617903 DOI: 10.1093/biolre/ioy077] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/29/2018] [Indexed: 12/19/2022] Open
Abstract
Spermatogonial stem cells (SSCs) are the most primitive spermatogonia in the testis and have an essential role to maintain highly productive spermatogenesis by self-renewal and continuous generation of daughter spermatogonia that differentiate into spermatozoa, transmitting genetic information to the next generation. Since the 1950s, many experimental methods, including histology, immunostaining, whole-mount analyses, and pulse-chase labeling, had been used in attempts to identify SSCs, but without success. In 1994, a spermatogonial transplantation method was reported that established a quantitative functional assay to identify SSCs by evaluating their ability to both self-renew and differentiate to spermatozoa. The system was originally developed using mice and subsequently extended to nonrodents, including domestic animals and humans. Availability of the functional assay for SSCs has made it possible to develop culture systems for their ex vivo expansion, which dramatically advanced germ cell biology and allowed medical and agricultural applications. In coming years, SSCs will be increasingly used to understand their regulation, as well as in germline modification, including gene correction, enhancement of male fertility, and conversion of somatic cells to biologically competent male germline cells.
Collapse
Affiliation(s)
- Hiroshi Kubota
- Laboratory of Cell and Molecular Biology, Department of Animal Science, School of Veterinary Medicine, Kitasato University, Towada, Aomori, Japan
| | - Ralph L Brinster
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
24
|
Chiu YL, Shikina S, Chang CF. Testicular somatic cells in the stony coral Euphyllia ancora express an endogenous green fluorescent protein. Mol Reprod Dev 2019; 86:798-811. [PMID: 31056825 DOI: 10.1002/mrd.23157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/30/2019] [Accepted: 04/08/2019] [Indexed: 01/11/2023]
Abstract
In a variety of organisms, adult gonads contain several specialized somatic cells that regulate and support the development of germline cells. In stony corals, the characteristics and functions of gonadal somatic cells remain largely unknown. No molecular markers are currently available that allow for the identification and enrichment of gonadal somatic cells in corals. Here, we showed that the testicular somatic cells of a stony coral, Euphyllia ancora, express an endogenous green fluorescent protein (GFP). Fluorescence microscopy showed that, in contrast to the endogenous expression of the red fluorescent protein of E. ancora ovaries that we have previously reported, the testes displayed a distinct green fluorescence. Molecular identification and spectrum characterization demonstrated that E. ancora testes expressed a GFP (named EaGFP) that is a homolog of the GFP from the jellyfish Aequorea victoria and that possesses an excitation maximum of 506 nm and an emission maximum of 514 nm. Immunohistochemical analyses revealed that the testicular somatic cells, but not the germ cells, expressed EaGFP. EaGFP was enclosed within one or a few granules in the cytoplasm of testicular somatic cells, and the granule number decreased as spermatogenesis proceeded. We also showed that testicular somatic cells could be enriched by using endogenous GFP as an indicator. The present study not only revealed one of the unique cellular characteristics of coral testicular cells but also established a technical basis for more in-depth investigations of the function of testicular somatic cells in spermatogenesis in future studies.
Collapse
Affiliation(s)
- Yi-Ling Chiu
- Doctoral Degree Program in Marine Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
- Doctoral Degree Program in Marine Biotechnology, Academia Sinica, Taipei, Taiwan
| | - Shinya Shikina
- Institute of Marine Environment and Ecology, National Taiwan Ocean University, Keelung, Taiwan
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
| | - Ching-Fong Chang
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
| |
Collapse
|
25
|
Sharma S, Schlatt S, Van Pelt A, Neuhaus N. Characterization and population dynamics of germ cells in adult macaque testicular cultures. PLoS One 2019; 14:e0218194. [PMID: 31226129 PMCID: PMC6588212 DOI: 10.1371/journal.pone.0218194] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/28/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND From a biological and clinical perspective, it is imperative to establish primate spermatogonial cultures. Due to limited availability of human testicular tissues, the macaque (Macaca fascicularis) was employed as non-human primate model. The aim of this study was to characterize the expression of somatic as well as germ cell markers in testicular tissues and to establish macaque testicular primary cell cultures. MATERIALS AND METHODS Characterization of macaque testicular cell population was performed by immunohistochemical analyses for somatic cell markers (SOX9, VIM, SMA) as well as for germ cell markers (UTF1, MAGEA4, VASA). Testicular cells from adult macaque testes (n = 4) were isolated and cultured for 21 days using three stem cell culture media (SSC, PS and SM). An extended marker gene panel (SOX9, VIM, ACTA2; UTF1, FGFR3, MAGEA4, BOLL, DDX4) was then employed to assess the changes in gene expression levels and throughout the in vitro culture period. Dynamics of the spermatogonial population was further investigated by quantitative analysis of immunofluorescence-labeled MAGEA4-positive cells (n = 3). RESULTS RNA expression analyses of cell cultures revealed that parallel to decreasing SOX9-expressing Sertoli cells, maintenance of VIM and ACTA2-expressing somatic cells was observed. Expression levels of germ cell marker genes UTF1, FGFR3 and MAGEA4 were maintained until day 14 in SSC and SM media. Findings from MAGEA4 immunofluorescence staining corroborate mRNA expression profiling and substantiate the overall maintenance of MAGEA4-positive pre- and early meiotic germ cells until day 14. CONCLUSIONS Our findings demonstrate maintenance of macaque germ cell subpopulations in vitro. This study provides novel perspective and proof that macaques could be used as a research model for establishing in vitro germ cell-somatic cell cultures, to identify ideal culture conditions for long-term maintenance of primate germ cell subpopulation in vitro.
Collapse
Affiliation(s)
- Swati Sharma
- Center of Reproductive Medicine and Andrology, Institute of Reproductive and Regenerative Biology, Münster, North Rhine-Westphalia, Germany
| | - Stefan Schlatt
- Center of Reproductive Medicine and Andrology, Institute of Reproductive and Regenerative Biology, Münster, North Rhine-Westphalia, Germany
| | - Ans Van Pelt
- Center for Reproductive Medicine, Amsterdam UMC Location AMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Nina Neuhaus
- Center of Reproductive Medicine and Andrology, Institute of Reproductive and Regenerative Biology, Münster, North Rhine-Westphalia, Germany
| |
Collapse
|
26
|
Sharma S, Wistuba J, Pock T, Schlatt S, Neuhaus N. Spermatogonial stem cells: updates from specification to clinical relevance. Hum Reprod Update 2019; 25:275-297. [DOI: 10.1093/humupd/dmz006] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 11/23/2018] [Accepted: 02/22/2019] [Indexed: 12/20/2022] Open
Affiliation(s)
- Swati Sharma
- Centre of Reproductive Medicine and Andrology, Institute of Reproductive and Regenerative Biology, Albert-Schweitzer Campus 1, Building D11, Münster, Germany
| | - Joachim Wistuba
- Centre of Reproductive Medicine and Andrology, Institute of Reproductive and Regenerative Biology, Albert-Schweitzer Campus 1, Building D11, Münster, Germany
| | - Tim Pock
- Centre of Reproductive Medicine and Andrology, Institute of Reproductive and Regenerative Biology, Albert-Schweitzer Campus 1, Building D11, Münster, Germany
| | - Stefan Schlatt
- Centre of Reproductive Medicine and Andrology, Institute of Reproductive and Regenerative Biology, Albert-Schweitzer Campus 1, Building D11, Münster, Germany
| | - Nina Neuhaus
- Centre of Reproductive Medicine and Andrology, Institute of Reproductive and Regenerative Biology, Albert-Schweitzer Campus 1, Building D11, Münster, Germany
| |
Collapse
|
27
|
Efficiency of colony formation and differentiation of human spermatogenic cells in two different culture systems. Reprod Biol 2018; 18:397-403. [DOI: 10.1016/j.repbio.2018.09.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/08/2018] [Accepted: 09/22/2018] [Indexed: 01/15/2023]
|
28
|
Heckmann L, Pock T, Tröndle I, Neuhaus N. The C-X-C signalling system in the rodent vs primate testis: impact on germ cell niche interaction. Reproduction 2018; 155:R211-R219. [DOI: 10.1530/rep-17-0617] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 02/01/2018] [Indexed: 12/20/2022]
Abstract
In zebrafish, action of the chemokine Cxcl12 is mediated through its G-protein-coupled seven-transmembrane domain receptor Cxcr4 and the atypical receptor Cxcr7. Employing this animal model, it was revealed that this Cxcl12 signalling system plays a crucial role for directed migration of primordial germ cells (PGC) during early testicular development. Importantly, subsequent studies indicated that this regulatory mechanism is evolutionarily conserved also in mice. What is more, the functional role of the CXCL12 system does not seem to be limited to early phases of testicular development. Data from mouse studies rather demonstrate that CXCL12 and its receptors are also involved in the homing process of gonocytes into their niches at the basal membrane of the seminiferous tubules. Intriguingly, even the spermatogonial stem cells (SSCs) present in the adult mouse testis appear to maintain the ability to migrate towards a CXCL12 gradient as demonstrated by functional in vitro migration assays and in vivo germ cell transplantation assays. These findings not only indicate a role of the CXCL12 system throughout male germ cell development in mice but also suggest that this system may be evolutionarily conserved. In this review, we take into account the available literature focusing on the localization patterns of the CXCL12 system not only in rodents but also in primates, including the human. Based on these data, we discuss whether the CXCL12 system is also conserved between rodents and primates and discuss the known and potential functional consequences.
Collapse
|
29
|
Gat I, Maghen L, Filice M, Kenigsberg S, Wyse B, Zohni K, Saraz P, Fisher AG, Librach C. Initial germ cell to somatic cell ratio impacts the efficiency of SSC expansion in vitro. Syst Biol Reprod Med 2018; 64:39-50. [PMID: 29193985 DOI: 10.1080/19396368.2017.1406013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 10/12/2017] [Indexed: 12/23/2022]
Abstract
Spermatogonial Stem Cell (SSC) expansion in vitro remains a major challenge in efforts to preserve fertility among pubertal cancer survivor boys. The current study focused on innovative approaches to optimize SSC expansion. Six- to eight-week-old CD-1 murine testicular samples were harvested by mechanical and enzymatic digestion. Cell suspensions were incubated for differential plating (DP). After DP, we established two experiments comparing single vs. repetitive DP (S-DP and R-DP, respectively) until passage 2 (P2) completion. Each experiment included a set of cultures consisting of 5 floating-to-attached cell ratios (5, 10, 15, 20, and 25) and control cultures containing floating cells only. We found similar cell and colony count drops during P0 in both S- and R-DP. During P2, counts increased in S-DP in middle ratios (10, 15, and especially 20) relative to low and high ratios (5 and 25, respectively). Counts dropped extensively in R-DP after passage 2. The superiority of intermediate ratios was demonstrated by enrichment of GFRα1 by qPCR. The optimal ratio of 20 in S-DP contained significantly increased proportions of GFRα1-positive cells (25.8±5.8%) as measured by flow cytometry compared to after DP (1.9±0.7%, p<0.0001), as well as positive immunostaining for GFRα1 and UTF1, with rare Sox9-positive cells. This is the first report of the impact of initial floating-to-attached cell ratios on SSC proliferation in vitro. ABBREVIATIONS SSC: spermatogonial stem cells; DP: differential plating; NOA: non-obstructive azoospermia; MACS: magnetic-activated cells sorting; FACS: fluorescence-activated cells sorting.
Collapse
Affiliation(s)
- Itai Gat
- a CReATe Fertility Centre , Toronto , Ontario , Canada
- b Pinchas Borenstein Talpiot Medical Leadership Program , Sheba Medical Center, Tel HaShomer , Ramat Gan , Israel
- c Sackler Medical School, University of Tel Aviv , Israel
| | - Leila Maghen
- a CReATe Fertility Centre , Toronto , Ontario , Canada
| | | | | | - Brandon Wyse
- a CReATe Fertility Centre , Toronto , Ontario , Canada
| | - Khaled Zohni
- a CReATe Fertility Centre , Toronto , Ontario , Canada
| | - Peter Saraz
- a CReATe Fertility Centre , Toronto , Ontario , Canada
| | | | - Clifford Librach
- a CReATe Fertility Centre , Toronto , Ontario , Canada
- d Department of Obstetrics & Gynecology , University of Toronto , Toronto , Ontario , Canada
- e Department of Gynecology , Women's College Hospital , Toronto , Ontario , Canada
| |
Collapse
|
30
|
Mincheva M, Sandhowe-Klaverkamp R, Wistuba J, Redmann K, Stukenborg JB, Kliesch S, Schlatt S. Reassembly of adult human testicular cells: can testis cord-like structures be created in vitro? Mol Hum Reprod 2017; 24:55-63. [DOI: 10.1093/molehr/gax063] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 12/11/2017] [Indexed: 02/06/2023] Open
Affiliation(s)
- M Mincheva
- Centre of Reproductive Medicine and Andrology, University Hospital of Münster, Albert-Schweitzer Campus 1, 48149 Münster, Germany
| | - R Sandhowe-Klaverkamp
- Centre of Reproductive Medicine and Andrology, University Hospital of Münster, Albert-Schweitzer Campus 1, 48149 Münster, Germany
| | - J Wistuba
- Centre of Reproductive Medicine and Andrology, University Hospital of Münster, Albert-Schweitzer Campus 1, 48149 Münster, Germany
| | - K Redmann
- Centre of Reproductive Medicine and Andrology, University Hospital of Münster, Albert-Schweitzer Campus 1, 48149 Münster, Germany
| | - J -B Stukenborg
- Department of Women’s and Children’s Health, NORDFERTIL research lab Stockholm, Pediatric Endocrinology Unit, Q2:08, Karolinska Institutet and University Hospital, SE-17176 Stockholm, Sweden
| | - S Kliesch
- Centre of Reproductive Medicine and Andrology, University Hospital of Münster, Albert-Schweitzer Campus 1, 48149 Münster, Germany
| | - S Schlatt
- Centre of Reproductive Medicine and Andrology, University Hospital of Münster, Albert-Schweitzer Campus 1, 48149 Münster, Germany
| |
Collapse
|
31
|
Gat I, Maghen L, Filice M, Wyse B, Zohni K, Jarvi K, Lo KC, Gauthier Fisher A, Librach C. Optimal culture conditions are critical for efficient expansion of human testicular somatic and germ cells in vitro. Fertil Steril 2017; 107:595-605.e7. [PMID: 28259258 DOI: 10.1016/j.fertnstert.2016.12.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 12/16/2016] [Accepted: 12/19/2016] [Indexed: 12/25/2022]
Abstract
OBJECTIVE To optimize culture conditions for human testicular somatic cells (TSCs) and spermatogonial stem cells. DESIGN Basic science study. SETTING Urology clinic and stem cell research laboratory. PATIENT(S) Eight human testicular samples. INTERVENTIONS(S) Testicular tissues were processed by mechanical and enzymatic digestion. Cell suspensions were subjected to differential plating (DP) after which floating cells (representing germ cells) were removed and attached cells (representing TSCs) were cultured for 2 passages (P0-P1) in StemPro-34- or DMEM-F12-based medium. Germ cell cultures were established in both media for 12 days. MAIN OUTCOME MEASURE(S) TSC cultures: proliferation doubling time (PDT), fluorescence-activated cell sorting for CD90, next-generation sequencing for 89 RNA transcripts, immunocytochemistry for TSC and germ cell markers, and conditioned media analysis; germ cell cultures: number of aggregates. RESULT(S) TSCs had significantly prolonged PDT in DMEM-F12 versus StemPro-34 (319.6 ± 275.8 h and 110.5 ± 68.3 h, respectively). The proportion of CD90-positive cells increased after P1 in StemPro-34 and DMEM-F12 (90.1 ± 10.8% and 76.5 ± 17.4%, respectively) versus after DP (66.3 ± 7%). Samples from both media after P1 clustered closely in the principle components analysis map whereas those after DP did not. After P1 in either medium, CD90-positive cells expressed TSC markers only, and fibroblast growth factor 2 and bone morphogenetic protein 4 were detected in conditioned medium. A higher number of germ cell aggregates formed in DMEM-F12 (59 ± 39 vs. 28 ± 17, respectively). CONCLUSION(S) Use of DMEM-F12 reduces TSC proliferation while preserving their unique characteristics, leading to improved germ cell aggregates formation compared with StemPro-34, the standard basal medium used in the majority of previous reports.
Collapse
Affiliation(s)
- Itai Gat
- Create Fertility Centre, Toronto, Ontario, Canada; Pinchas Borenstein Talpiot Medical Leadership Program, Sheba Medical Center, Ramat Gan, Israel; Sackler school of medicine, Tel Aviv university, Tel Aviv, Israel
| | - Leila Maghen
- Create Fertility Centre, Toronto, Ontario, Canada
| | | | - Brandon Wyse
- Create Fertility Centre, Toronto, Ontario, Canada
| | - Khaled Zohni
- Create Fertility Centre, Toronto, Ontario, Canada; Department of Reproductive Health and Family Planning, National Research Center, Cairo, Egypt
| | - Keith Jarvi
- Division of Urology, Department of Surgery, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Kirk C Lo
- Division of Urology, Department of Surgery, Mount Sinai Hospital, Toronto, Ontario, Canada
| | | | - Clifford Librach
- Create Fertility Centre, Toronto, Ontario, Canada; Department of Obstetrics and Gynecology, University of Toronto, Toronto, Ontario, Canada; Department of Obstetrics and Gynecology, Women's College Hospital, Toronto, Ontario, Canada.
| |
Collapse
|
32
|
A Report on the Internal Retreat Meeting of the Stem Cell Network North Rhine Westphalia. Mol Biotechnol 2016; 58:861-864. [PMID: 27798764 DOI: 10.1007/s12033-016-9985-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
33
|
Langenstroth-Röwer D, Gromoll J, Wistuba J, Tröndle I, Laurentino S, Schlatt S, Neuhaus N. De novo methylation in male germ cells of the common marmoset monkey occurs during postnatal development and is maintained in vitro. Epigenetics 2016; 12:527-539. [PMID: 27786608 DOI: 10.1080/15592294.2016.1248007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
The timing of de novo DNA methylation in male germ cells during human testicular development is yet unsolved. Apart from that, the stability of established imprinting patterns in vitro is controversially discussed. This study aimed at determining the timing of DNA de novo methylation and at assessing the stability of the methylation status in vitro. We employed the marmoset monkey (Callithrix jacchus) as it is considered the best non-human primate model for human testicular development. We selected neonatal, pre-pubertal, pubertal, and adult animals (n = 3, each) and assessed germ cell global DNA methylation levels by 5-methyl cytosine staining, and Alu elements and gene-specific methylation (H19, LIT1, SNRPN, MEST, OCT4, MAGE-A4, and DDX-4) by pyrosequencing. De novo methylation is progressively established during postnatal primate development and continues until adulthood, a process that is different in most other species. Importantly, once established, methylation patterns remained stable, as demonstrated using in vitro cultures. Thus, the marmoset monkey is a unique model for the study of postnatal DNA methylation mechanisms in germ cells and for the identification of epimutations and their causes.
Collapse
Affiliation(s)
| | - Jörg Gromoll
- a Centre of Reproductive Medicine and Andrology , Albert-Schweitzer-Campus 1, Münster , Germany
| | - Joachim Wistuba
- a Centre of Reproductive Medicine and Andrology , Albert-Schweitzer-Campus 1, Münster , Germany
| | - Ina Tröndle
- a Centre of Reproductive Medicine and Andrology , Albert-Schweitzer-Campus 1, Münster , Germany
| | - Sandra Laurentino
- a Centre of Reproductive Medicine and Andrology , Albert-Schweitzer-Campus 1, Münster , Germany
| | - Stefan Schlatt
- a Centre of Reproductive Medicine and Andrology , Albert-Schweitzer-Campus 1, Münster , Germany
| | - Nina Neuhaus
- a Centre of Reproductive Medicine and Andrology , Albert-Schweitzer-Campus 1, Münster , Germany
| |
Collapse
|
34
|
Gadella BM, Ferraz MA. A Review of New Technologies that may Become Useful for in vitro Production of Boar Sperm. Reprod Domest Anim 2016; 50 Suppl 2:61-70. [PMID: 26174921 DOI: 10.1111/rda.12571] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 05/20/2015] [Indexed: 01/07/2023]
Abstract
Making sperm cells outside the original testicular environment in a culture dish has been considered for a long time as impossible due to the very complicated process of spermatogenesis and sperm maturation, which altogether, encompasses a 2-month period. However, new approaches in complex three-dimensional co-cell cultures, micro-perfusion and micro-fluidics technologies, new knowledge in the functioning, culturing and differentiation of spermatogonial stem cells (SSC) and their precursor cells have revolutionized this field. Furthermore, the use of better molecular markers as well as stimulatory factors has led to successful in vitro culture of stem cells either derived from germ line stem cells, from induced pluripotent stem cells (iPSC) or from embryonic stem cells (ESC). These stem cells when placed into small seminiferous tubule fragments are able to become SSC. The SSC beyond self-renewal can also be induced into haploid sperm-like cells under in vitro conditions. In mouse, this in vitro produced sperm can be injected into a mature oocyte and allow post-fertilization development into an early embryo in vitro. After transferring such obtained embryos into the uterus of a recipient mouse, they can further develop into healthy offspring. Recently, a similar approach has been performed with combining selected cells from testicular cell suspensions followed by a complete in vitro culture of seminiferous cords producing sperm-like cells. However, most of the techniques developed are laborious, time-consuming and have low efficiency, placing questionable that it will become useful used for setting up an efficient in vitro sperm production system for the boar. The benefits and drawbacks as well as the likeliness of in vitro pig sperm production to become applied in assisted technologies for swine reproduction are critically discussed. In this contribution, also the process of sperm production in the testis and sperm maturation is reviewed.
Collapse
Affiliation(s)
- B M Gadella
- Department of Farm Animal Health, Faculty of Veterinary Sciences, Utrecht University, Utrecht, The Netherlands.,Department of Biochemistry and Cell Biology, Faculty of Veterinary Sciences, Utrecht University, Utrecht, The Netherlands
| | - M A Ferraz
- Department of Farm Animal Health, Faculty of Veterinary Sciences, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
35
|
von Kopylow K, Schulze W, Salzbrunn A, Spiess AN. Isolation and gene expression analysis of single potential human spermatogonial stem cells. Mol Hum Reprod 2016; 22:229-39. [PMID: 26792870 DOI: 10.1093/molehr/gaw006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 01/15/2016] [Indexed: 12/18/2022] Open
Abstract
STUDY HYPOTHESIS It is possible to isolate pure populations of single potential human spermatogonial stem cells without somatic contamination for down-stream applications, for example cell culture and gene expression analysis. STUDY FINDING We isolated pure populations of single potential human spermatogonial stem cells (hSSC) without contaminating somatic cells and analyzed gene expression of these cells via single-cell real-time RT-PCR. WHAT IS KNOWN ALREADY The isolation of a pure hSSC fraction could enable clinical applications such as fertility preservation for prepubertal boys and in vitro-spermatogenesis. By utilizing largely nonspecific markers for the isolation of spermatogonia (SPG) and hSSC, previously published cell selection methods are not able to deliver pure target cell populations without contamination by testicular somatic cells. However, uniform cell populations free of somatic cells are necessary to guarantee defined growth conditions in cell culture experiments and to prevent unintended stem cell differentiation. Fibroblast growth factor receptor 3 (FGFR3) is a cell surface protein of human undifferentiated A-type SPG and a promising candidate marker for hSSC. It is exclusively expressed in small, non-proliferating subgroups of this spermatogonial cell type together with the pluripotency-associated protein and spermatogonial nuclear marker undifferentiated embryonic cell transcription factor 1 (UTF1). STUDY DESIGN, SAMPLES/MATERIALS, METHODS We specifically selected the FGFR3-positive spermatogonial subpopulation from two 30 mg biopsies per patient from a total of 37 patients with full spermatogenesis and three patients with meiotic arrest. We then employed cell selection with magnetic beads in combination with a fluorescence-activated cell sorter antibody directed against human FGFR3 to tag and visually identify human FGFR3-positive spermatogonia. Positively selected and bead-labeled cells were subsequently picked with a micromanipulator. Analysis of the isolated cells was carried out by single-cell real-time RT-PCR, real-time RT-PCR, immunocytochemistry and live/dead staining. MAIN RESULTS AND THE ROLE OF CHANCE Single-cell real-time RT-PCR and real-time RT-PCR of pooled cells indicate that bead-labeled single cells express FGFR3 with high heterogeneity at the mRNA level, while bead-unlabeled cells lack FGFR3 mRNA. Furthermore, isolated cells exhibit strong immunocytochemical staining for the stem cell factor UTF1 and are viable. LIMITATIONS, REASONS FOR CAUTION The cell population isolated in this study has to be tested for their potential stem cell characteristics via xenotransplantation. Due to the small amount of the isolated cells, propagation by cell culture will be essential. Other potential hSSC without FGFR3 surface expression will not be captured with the provided experimental design. WIDER IMPLICATIONS OF THE FINDINGS The technical approach as developed in this work could encourage the scientific community to test other established or novel hSSC markers on single SPG that present with potential stem cell-like features. STUDY FUNDING AND COMPETING INTERESTS The project was funded by the DFG Research Unit FOR1041 Germ cell potential (SCH 587/3-2) and DFG grants to K.v.K. (KO 4769/2-1) and A.-N.S. (SP 721/4-1). The authors declare no competing interests.
Collapse
Affiliation(s)
- K von Kopylow
- Department of Andrology, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - W Schulze
- Department of Andrology, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany MVZ Fertility Center Hamburg GmbH, amedes-group, 20095 Hamburg, Germany
| | - A Salzbrunn
- Department of Andrology, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - A-N Spiess
- Department of Andrology, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany
| |
Collapse
|
36
|
Gassei K, Orwig KE. Experimental methods to preserve male fertility and treat male factor infertility. Fertil Steril 2015; 105:256-66. [PMID: 26746133 DOI: 10.1016/j.fertnstert.2015.12.020] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 12/17/2015] [Accepted: 12/17/2015] [Indexed: 12/25/2022]
Abstract
Infertility is a prevalent condition that has insidious impacts on the infertile individuals, their families, and society, which extend far beyond the inability to have a biological child. Lifestyle changes, fertility treatments, and assisted reproductive technology (ART) are available to help many infertile couples achieve their reproductive goals. All of these technologies require that the infertile individual is able to produce at least a small number of functional gametes (eggs or sperm). It is not possible for a person who does not produce gametes to have a biological child. This review focuses on the infertile man and describes several stem cell-based methods and gene therapy approaches that are in the research pipeline and may lead to new fertility treatment options for men with azoospermia.
Collapse
Affiliation(s)
- Kathrin Gassei
- Department of Obstetrics, Gynecology and Reproductive Sciences and Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Kyle E Orwig
- Department of Obstetrics, Gynecology and Reproductive Sciences and Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| |
Collapse
|
37
|
Lin ZYC, Hikabe O, Suzuki S, Hirano T, Siomi H, Sasaki E, Imamura M, Okano H. Sphere-formation culture of testicular germ cells in the common marmoset, a small New World monkey. Primates 2015; 57:129-35. [PMID: 26530217 DOI: 10.1007/s10329-015-0500-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 10/21/2015] [Indexed: 01/15/2023]
Abstract
Spermatogonia are specialized cells responsible for continuous spermatogenesis and the production of offspring. Because of this biological property, in vitro culture of spermatogonia provides a powerful methodology to advance reproductive biology and engineering. However, methods for culturing primate spermatogonia are poorly established. We have designed a novel method for culturing spermatogonia in the common marmoset (Callithrix jacchus), a small primate. By using our method with a suite of growth factors, adult marmoset testis-derived germ cells could be cultured in the form of a floating sphere for several weeks. Notably, this method could be applied not only to freshly isolated cells but also to cryopreserved cell stocks. The spheres enriched spermatogonia and early spermatocytes, and could be assembled from a C-KIT(+) spermatogonial population. Techniques for culturing spermatogonia could facilitate increased understanding of primate reproduction as well as the preservation of valuable biomaterials from nonhuman primates.
Collapse
Affiliation(s)
- Zachary Yu-Ching Lin
- Department of Physiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Orie Hikabe
- Department of Physiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Sadafumi Suzuki
- Department of Physiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Takamasa Hirano
- Department of Molecular Biology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Haruhiko Siomi
- Department of Molecular Biology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Erika Sasaki
- Department of Physiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.,Department of Applied Developmental Biology, Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki, 210-0821, Japan.,PRESTO Japan Science and Technology Agency, Tokyo, Japan
| | - Masanori Imamura
- Department of Physiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan. .,Molecular Biology Section, Department of Cellular and Molecular Biology, Primate Research Institute, Kyoto University, Inuyama, Aichi, 484-8506, Japan.
| | - Hideyuki Okano
- Department of Physiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| |
Collapse
|
38
|
Martínez-Arroyo AM, Míguez-Forján JM, Remohí J, Pellicer A, Medrano JV. Understanding Mammalian Germ Line Development with In Vitro Models. Stem Cells Dev 2015; 24:2101-13. [DOI: 10.1089/scd.2015.0060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Ana M. Martínez-Arroyo
- Fundación Instituto Valenciano de Infertilidad (FIVI), Valencia University, INCLIVA, Valencia, Spain
| | - Jose M. Míguez-Forján
- Fundación Instituto Valenciano de Infertilidad (FIVI), Valencia University, INCLIVA, Valencia, Spain
| | - Jose Remohí
- Fundación Instituto Valenciano de Infertilidad (FIVI), Valencia University, INCLIVA, Valencia, Spain
| | - Antonio Pellicer
- Fundación Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Jose V. Medrano
- Fundación Instituto Valenciano de Infertilidad (FIVI), Valencia University, INCLIVA, Valencia, Spain
- Fundación Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| |
Collapse
|
39
|
Baert Y, Braye A, Struijk RB, van Pelt AMM, Goossens E. Cryopreservation of testicular tissue before long-term testicular cell culture does not alter in vitro cell dynamics. Fertil Steril 2015; 104:1244-52.e1-4. [PMID: 26260199 DOI: 10.1016/j.fertnstert.2015.07.1134] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 07/15/2015] [Accepted: 07/16/2015] [Indexed: 12/28/2022]
Abstract
OBJECTIVE To assess whether testicular cell dynamics are altered during long-term culture after testicular tissue cryopreservation. DESIGN Experimental basic science study. SETTING Reproductive biology laboratory. PATIENT(S) Testicular tissue with normal spermatogenesis was obtained from six donors. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) Detection and comparison of testicular cells from fresh and frozen tissues during long-term culture. RESULT(S) Human testicular cells derived from fresh (n = 3) and cryopreserved (n = 3) tissues were cultured for 2 months and analyzed with quantitative reverse-transcription polymerase chain reaction and immunofluorescence. Spermatogonia including spermatogonial stem cells (SSCs) were reliably detected by combining VASA, a germ cell marker, with UCHL1, a marker expressed by spermatogonia. The established markers STAR, ACTA2, and SOX9 were used to analyze the presence of Leydig cells, peritubular myoid cells, and Sertoli cells, respectively. No obvious differences were found between the cultures initiated from fresh or cryopreserved tissues. Single or small groups of SSCs (VASA(+)/UCHL1(+)) were detected in considerable amounts up to 1 month of culture, but infrequently after 2 months. SSCs were found attached to the feeder monolayer, which expressed markers for Sertoli cells, Leydig cells, and peritubular myoid cells. In addition, VASA(-)/UCHL1(+) cells, most likely originating from the interstitium, also contributed to this monolayer. Apart from Sertoli cells, all somatic cell types could be detected throughout the culture period. CONCLUSION(S) Testicular tissue can be cryopreserved before long-term culture without modifying its outcome, which encourages implementation of testicular tissue banking for fertility preservation. However, because of the limited numbers of SSCs available after 2 months, further exploration and optimization of the culture system is needed.
Collapse
Affiliation(s)
- Yoni Baert
- Biology of the Testis, Research Laboratory for Reproduction, Genetics and Regenerative Medicine, Vrije Universiteit Brussel (VUB), Brussels, Belgium.
| | - Aude Braye
- Biology of the Testis, Research Laboratory for Reproduction, Genetics and Regenerative Medicine, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Robin B Struijk
- Center for Reproductive Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Ans M M van Pelt
- Center for Reproductive Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Ellen Goossens
- Biology of the Testis, Research Laboratory for Reproduction, Genetics and Regenerative Medicine, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| |
Collapse
|
40
|
Schneider F, Redmann K, Wistuba J, Schlatt S, Kliesch S, Neuhaus N. Comparison of enzymatic digestion and mechanical dissociation of human testicular tissues. Fertil Steril 2015; 104:302-11.e3. [PMID: 26056924 DOI: 10.1016/j.fertnstert.2015.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 04/10/2015] [Accepted: 05/01/2015] [Indexed: 12/28/2022]
Abstract
OBJECTIVE To compare mechanical dissociation, employing the Medimachine system, and enzymatic digestion of human testicular tissues with respect to the proportion of spermatogonia and somatic cells, with the long-term objective of establishing human spermatogonial cultures. DESIGN Experimental basic science study. SETTING Reproductive biology laboratory. PATIENT(S) Testicular tissues were obtained from patients with gender dysphoria on the day of sex reassignment surgery. On the basis of the histological evaluation, tissue samples with complete spermatogenesis (fresh, n = 6; cryopreserved, n = 7) and with meiotic arrest (cryopreserved, n = 4) were selected. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) The composition of testicular cell suspensions was assessed performing quantitative real-time polymerase chain reaction (qPCR) analyses for germ cell-specific (FGFR3, SALL4, UTF1, MAGE-A4) and somatic marker genes (ACTA2 and VIM). Additionally, flow-cytometric analyses were used to evaluate the percentage of SALL4-and vimentin-positive cells. RESULT(S) While Medimachine dissociation yielded higher cell numbers in all patient groups, viability of cells was highly variable and correlated with the histological status of the tissue. Interestingly, qPCR analysis revealed a significantly decreased expression of the somatic marker genes ACTA2 and VIM and an increased expression of the spermatogonial marker genes FGFR3 and SALL4 after Medimachine dissociation. These findings were corroborated by flow-cytometric analyses that demonstrated that the proportion of SALL4-positive cells was up to 4 times higher after mechanical dissociation. CONCLUSION(S) Medimachine dissociation of human testicular tissues is comparably fast and leads to an enrichment of SALL4-positive spermatogonia. The use of this method may therefore constitute an advantage for the establishment of human spermatogonial cell cultures.
Collapse
Affiliation(s)
- Florian Schneider
- Institute for Reproductive and Regenerative Biology, Centre of Reproductive Medicine and Andrology, University Hospital Münster, Albert-Schweitzer-Campus, Münster, Germany; Department of Clinical Andrology, Centre of Reproductive Medicine and Andrology, University Hospital Münster, Albert-Schweitzer-Campus, Münster, Germany
| | - Klaus Redmann
- Institute for Reproductive and Regenerative Biology, Centre of Reproductive Medicine and Andrology, University Hospital Münster, Albert-Schweitzer-Campus, Münster, Germany
| | - Joachim Wistuba
- Institute for Reproductive and Regenerative Biology, Centre of Reproductive Medicine and Andrology, University Hospital Münster, Albert-Schweitzer-Campus, Münster, Germany
| | - Stefan Schlatt
- Institute for Reproductive and Regenerative Biology, Centre of Reproductive Medicine and Andrology, University Hospital Münster, Albert-Schweitzer-Campus, Münster, Germany
| | - Sabine Kliesch
- Department of Clinical Andrology, Centre of Reproductive Medicine and Andrology, University Hospital Münster, Albert-Schweitzer-Campus, Münster, Germany
| | - Nina Neuhaus
- Institute for Reproductive and Regenerative Biology, Centre of Reproductive Medicine and Andrology, University Hospital Münster, Albert-Schweitzer-Campus, Münster, Germany.
| |
Collapse
|