1
|
Li W, Zhang Q, Ni M, Li B, Chen Z, Shen Q, Lin Z, Cheng C, Yao D, Qi S, Ding X, Shen H, Liu X, Tang Z, Huang X, Zhao J, Liu Z. Upregulated YTHDC1 mediates trophoblastic dysfunction inducing preterm birth in ART conceptions through enhanced RPL37 translation. Cell Mol Life Sci 2024; 82:17. [PMID: 39725796 DOI: 10.1007/s00018-024-05467-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/01/2024] [Accepted: 10/01/2024] [Indexed: 12/28/2024]
Abstract
Assisted reproductive technology (ART) pregnancies present a higher risk of singleton preterm birth than natural pregnancies, but the underlying molecular mechanism remains largely unknown. RNA m6A modification is a key epigenetic mechanism regulating cellular function, but the role of m6A modification, especially its "reader" YTHDC1, in preterm delivery remains undefined. To delineate the role and epigenetic mechanism of m6A modification in ART preterm delivery, the effects of YTHDC1 on trophoblastic function were evaluated by CCK-8, EdU, Transwell, and flow cytometry analyses post its overexpression or knockdown. Downstream signaling pathways of YTHDC1 were investigated by RNA-seq, and targeted mRNAs were explored by RIP-seq and MeRIP-seq. Upstream transcriptional factors of YTHDC1 were determined by ChIP-seq and luciferase reporter assays. Elevated YTHDC1 was detected in human ART-conceived preterm placentas and in murine preterm placentas post estradiol (E2) exposure. In vitro experiments showed that YTHDC1 promoted trophoblastic cell proliferation and migration, but inhibited cell apoptosis. Mechanistically, E2 was proven to upregulate YTHDC1 expression via retinoid X receptor alpha (RXRA) in trophoblastic cells. Enhanced YTHDC1 expression augmented the translation of RPL37 in an m6A-dependent manner by binding to m6A-modified RPL37 mRNA and concomitantly promoted the overall translational output. Importantly, administration of siRNA targeting YTHDC1 effectively delayed the progression of preterm delivery. In conclusion, the identified E2/RXRA/YTHDC1/RPL37 axis provides new insights into the epigenetic mechanism underlying ART-associated preterm delivery. The findings offer a potential prognostic biomarker and therapeutic target for preterm delivery.
Collapse
Affiliation(s)
- Wei Li
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, 910# Hengshan Road, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Qianqian Zhang
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, 910# Hengshan Road, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Meng Ni
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, 910# Hengshan Road, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Baihe Li
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, 910# Hengshan Road, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Ze Chen
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, 910# Hengshan Road, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Qianwen Shen
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, 910# Hengshan Road, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Zhenying Lin
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, 910# Hengshan Road, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Chunyu Cheng
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, 910# Hengshan Road, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Dongting Yao
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, 910# Hengshan Road, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Sudong Qi
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, 910# Hengshan Road, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Xiya Ding
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, 910# Hengshan Road, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Haiqing Shen
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, 910# Hengshan Road, Shanghai, China
| | - Xiaorui Liu
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, 910# Hengshan Road, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Zheng Tang
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, 910# Hengshan Road, Shanghai, China
| | - Xiaoyi Huang
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, 910# Hengshan Road, Shanghai, China
| | - Jiuru Zhao
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, 910# Hengshan Road, Shanghai, China.
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China.
| | - Zhiwei Liu
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, 910# Hengshan Road, Shanghai, China.
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China.
| |
Collapse
|
2
|
Gajek G, Hansen SWK, Jarych D, Kufelnicka-Babout M, Świerzko AS, Kobiela P, Szala-Poździej A, Chojnacka K, Sobczuk K, Domżalska-Popadiuk I, Mazela J, Kalinka J, Thiel S, Cedzyński M. Clinical associations of complement-activating collectins, collectin-10, collectin-11 and mannose-binding lectin in preterm neonates. Front Immunol 2024; 15:1463651. [PMID: 39464884 PMCID: PMC11502412 DOI: 10.3389/fimmu.2024.1463651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/27/2024] [Indexed: 10/29/2024] Open
Abstract
Introduction Premature and low-birthweight infants are at especially high risk of perinatal complications, including impaired thermoregulation, infections and respiratory distress. Such adverse effects and the need for invasive procedures are associated with high mortality among preterms. This study focused on the influence of the innate immune system and tested the levels of collectins, collectin-10 (CL-10), collectin-11 (CL-11) and mannose-binding lectin (MBL) in preterm neonates. Methods Cord blood was collected from 535 preterms (born at gestational age ≤37 weeks). COLEC10 and COLEC11 polymorphisms were analyzed by real-time PCR and those of MBL2 by PCR/PCR-RFLP. The concentrations of collectins in sera from cord blood were determined with ELISA. Findings Low concentrations of CL-10 in cord sera (<462 ng/ml corresponding to the 10th percentile) were significantly associated with births at GA ≤32 weeks. Median levels of both CL-10 and CL-11 were significantly lower in preterms with very low birthweight (<1500 g), low Apgar 1' score and those who needed prolonged hospitalisation. Lower median CL-10 was also observed in fetal growth restriction cases. An important finding was the decreased concentrations of CL-10, CL-11 and MBL in respiratory distress syndrome (RDS). For CL-10 and CL-11, that relationship was confined to infants born at GA ≥33 weeks and/or with body mass at birth ≥1500 g. Only CL-10 was found to influence susceptibility to early-onset infections. COLEC11 heterozygosity for the activity-decreasing polymorphism (rs7567833, +39618 A>G, His219Arg) was more common in preterm premature rupture of membranes (pPROM) cases, compared with corresponding reference groups. Furthermore, C/T or T/T genotypes at COLEC11 at rs3820897 (-9570 C>T) as well as MBL deficiency-associated MBL2 gene variants were more common in preterms diagnosed with RDS than among unaffected newborns. Conclusion The complement-activating collectins investigated here could be important for maintaining homeostasis in preterm neonates. Despite similar structure and specificity, MBL, CL-10 and CL-11 manifest a different spectrum of clinical associations.
Collapse
Affiliation(s)
- Gabriela Gajek
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Łódź, Poland
| | - Soren W. K. Hansen
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Dariusz Jarych
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Łódź, Poland
| | - Maja Kufelnicka-Babout
- Department of Perinatology, First Chair of Gynecology and Obstetrics, Medical University of Łódź, Łódź, Poland
| | - Anna S. Świerzko
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Łódź, Poland
| | - Paulina Kobiela
- Department of Neonatology, Medical University of Gdańsk, Gdańsk, Poland
| | - Agnieszka Szala-Poździej
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Łódź, Poland
| | - Karolina Chojnacka
- II Department of Neonatology, Poznań University of Medical Sciences, Poznań, Poland
| | - Katarzyna Sobczuk
- Department of Perinatology, First Chair of Gynecology and Obstetrics, Medical University of Łódź, Łódź, Poland
| | | | - Jan Mazela
- Department of Neonatology, Poznań University of Medical Sciences, Poznań, Poland
| | - Jarosław Kalinka
- Department of Perinatology, First Chair of Gynecology and Obstetrics, Medical University of Łódź, Łódź, Poland
| | - Steffen Thiel
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Maciej Cedzyński
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Łódź, Poland
| |
Collapse
|
3
|
Machado LS, Borges CM, de Lima MA, Sangalli JR, Therrien J, Pessôa LVDF, Fantinato Neto P, Perecin F, Smith LC, Meirelles FV, Bressan FF. Exogenous OCT4 and SOX2 Contribution to In Vitro Reprogramming in Cattle. Biomedicines 2023; 11:2577. [PMID: 37761017 PMCID: PMC10526180 DOI: 10.3390/biomedicines11092577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Mechanisms of cell reprogramming by pluripotency-related transcription factors or nuclear transfer seem to be mediated by similar pathways, and the study of the contribution of OCT4 and SOX2 in both processes may help elucidate the mechanisms responsible for pluripotency. Bovine fibroblasts expressing exogenous OCT4 or SOX2, or both, were analyzed regarding the expression of pluripotency factors and imprinted genes H19 and IGF2R, and used for in vitro reprogramming. The expression of the H19 gene was increased in the control sorted group, and putative iPSC-like cells were obtained when cells were not submitted to cell sorting. When sorted cells expressing OCT4, SOX2, or none (control) were used as donor cells for somatic cell nuclear transfer, fusion rates were 60.0% vs. 64.95% and 70.53% vs. 67.24% for SOX2 vs. control and OCT4 vs. control groups, respectively; cleavage rates were 66.66% vs. 81.68% and 86.47% vs. 85.18%, respectively; blastocyst rates were 33.05% vs. 44.15% and 52.06% vs. 44.78%, respectively. These results show that the production of embryos by NT resulted in similar rates of in vitro developmental competence compared to control cells regardless of different profiles of pluripotency-related gene expression presented by donor cells; however, induced reprogramming was compromised after cell sorting.
Collapse
Affiliation(s)
- Lucas Simões Machado
- Post-Graduate Program of Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo 05508-270, SP, Brazil; (L.S.M.); (C.M.B.); (M.A.d.L.); (L.C.S.); (F.V.M.)
| | - Camila Martins Borges
- Post-Graduate Program of Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo 05508-270, SP, Brazil; (L.S.M.); (C.M.B.); (M.A.d.L.); (L.C.S.); (F.V.M.)
| | - Marina Amaro de Lima
- Post-Graduate Program of Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo 05508-270, SP, Brazil; (L.S.M.); (C.M.B.); (M.A.d.L.); (L.C.S.); (F.V.M.)
| | - Juliano Rodrigues Sangalli
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga 13635-900, SP, Brazil; (J.R.S.); (L.V.d.F.P.); (P.F.N.); (F.P.)
| | - Jacinthe Therrien
- Centre de Recherche en Reproduction et Fertilité, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 7C6, Canada;
| | - Laís Vicari de Figueiredo Pessôa
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga 13635-900, SP, Brazil; (J.R.S.); (L.V.d.F.P.); (P.F.N.); (F.P.)
| | - Paulo Fantinato Neto
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga 13635-900, SP, Brazil; (J.R.S.); (L.V.d.F.P.); (P.F.N.); (F.P.)
| | - Felipe Perecin
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga 13635-900, SP, Brazil; (J.R.S.); (L.V.d.F.P.); (P.F.N.); (F.P.)
| | - Lawrence Charles Smith
- Post-Graduate Program of Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo 05508-270, SP, Brazil; (L.S.M.); (C.M.B.); (M.A.d.L.); (L.C.S.); (F.V.M.)
- Centre de Recherche en Reproduction et Fertilité, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 7C6, Canada;
| | - Flavio Vieira Meirelles
- Post-Graduate Program of Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo 05508-270, SP, Brazil; (L.S.M.); (C.M.B.); (M.A.d.L.); (L.C.S.); (F.V.M.)
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga 13635-900, SP, Brazil; (J.R.S.); (L.V.d.F.P.); (P.F.N.); (F.P.)
| | - Fabiana Fernandes Bressan
- Post-Graduate Program of Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo 05508-270, SP, Brazil; (L.S.M.); (C.M.B.); (M.A.d.L.); (L.C.S.); (F.V.M.)
| |
Collapse
|
4
|
Mitochondrial DNA Deficiency and Supplementation in Sus scrofa Oocytes Influence Transcriptome Profiles in Oocytes and Blastocysts. Int J Mol Sci 2023; 24:ijms24043783. [PMID: 36835193 PMCID: PMC9963854 DOI: 10.3390/ijms24043783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Mitochondrial DNA (mtDNA) deficiency correlates with poor oocyte quality and fertilisation failure. However, the supplementation of mtDNA deficient oocytes with extra copies of mtDNA improves fertilisation rates and embryo development. The molecular mechanisms associated with oocyte developmental incompetence, and the effects of mtDNA supplementation on embryo development are largely unknown. We investigated the association between the developmental competence of Sus scrofa oocytes, assessed with Brilliant Cresyl Blue, and transcriptome profiles. We also analysed the effects of mtDNA supplementation on the developmental transition from the oocyte to the blastocyst by longitudinal transcriptome analysis. mtDNA deficient oocytes revealed downregulation of genes associated with RNA metabolism and oxidative phosphorylation, including 56 small nucleolar RNA genes and 13 mtDNA protein coding genes. We also identified the downregulation of a large subset of genes for meiotic and mitotic cell cycle process, suggesting that developmental competence affects the completion of meiosis II and first embryonic cell division. The supplementation of oocytes with mtDNA in combination with fertilisation improves the maintenance of the expression of several key developmental genes and the patterns of parental allele-specific imprinting gene expression in blastocysts. These results suggest associations between mtDNA deficiency and meiotic cell cycle and the developmental effects of mtDNA supplementation on Sus scrofa blastocysts.
Collapse
|
5
|
Juchniewicz P, Kloska A, Portalska K, Jakóbkiewicz-Banecka J, Węgrzyn G, Liss J, Głodek P, Tukaj S, Piotrowska E. X-chromosome inactivation patterns depend on age and tissue but not conception method in humans. Chromosome Res 2023; 31:4. [PMID: 36695960 PMCID: PMC9877087 DOI: 10.1007/s10577-023-09717-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/27/2022] [Accepted: 12/06/2022] [Indexed: 01/26/2023]
Abstract
Female somatic X-chromosome inactivation (XCI) balances the X-linked transcriptional dosages between the sexes, randomly silencing the maternal or paternal X chromosome in each cell of 46,XX females. Skewed XCI toward one parental X has been observed in association with ageing and in some female carriers of X-linked diseases. To address the problem of non-random XCI, we quantified the XCI skew in different biological samples of naturally conceived females of different age groups and girls conceived after in vitro fertilization (IVF). Generally, XCI skew differed between saliva, blood, and buccal swabs, while saliva and blood had the most similar XCI patterns in individual females. XCI skew increased with age in saliva, but not in other tissues. We showed no significant differences in the XCI patterns in tissues of naturally conceived and IVF females. The gene expression profile of the placenta and umbilical cord blood was determined depending on the XCI pattern. The increased XCI skewing in the placental tissue was associated with the differential expression of several genes out of 40 considered herein. Notably, skewed XCI patterns (> 80:20) were identified with significantly increased expression levels of four genes: CD44, KDM6A, PHLDA2, and ZRSR2. The differences in gene expression patterns between samples with random and non-random XCI may shed new light on factors contributing to the XCI pattern outcome and indicate new paths in future research on the phenomenon of XCI skewing.
Collapse
Affiliation(s)
- Patrycja Juchniewicz
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Anna Kloska
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Karolina Portalska
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Joanna Jakóbkiewicz-Banecka
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Joanna Liss
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland ,Research and Development Center, INVICTA, Sopot, Poland
| | - Piotr Głodek
- Research and Development Center, INVICTA, Sopot, Poland
| | - Stefan Tukaj
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Ewa Piotrowska
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| |
Collapse
|
6
|
Belak U, Pinter B, Ban Frangež H, Velikonja M, Korošec S. Pathology of the Placenta in Singletons after Assisted Reproductive Technology Compared to Singletons after Spontaneous Conception: A Systematic Review. Fetal Pediatr Pathol 2022; 42:438-449. [PMID: 36580043 DOI: 10.1080/15513815.2022.2157228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Background: We reviewed the literature comparing the pathological characteristics of singleton births conceived after assisted reproductive technology (ART) with those after spontaneous conception. Methods: We reviewed PubMed, EMBASE, Ovid MEDLINE, Google Scopus, Scholar, Cochrane Central Register of Controlled Trials and the Web of Science for the previous 10 years, up to November 2022. Results: Four eligible studies included 3445 placentas, 806 after ART (IVF/ICSI). Placentas after ART differed in frequency of retroplacental and marginal hematomas (p = 0.04), increased thickness (p = 0.02), higher overall occurrences of vascular and anatomical pathology (p < 0.001) and more frequent marginal (p = 0.001) and membranous (p = 0.02) umbilical cord insertion than placentas from non-ART pregnancies. Conclusion: Further research is needed to determine the extent to which these placental changes in ART pregnancies alter its function and pregnancy outcome.
Collapse
Affiliation(s)
- Urška Belak
- Department of Gyneacology and Obstetrics, General Hospital Celje, Celje, Slovenia.,Faculty of medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Bojana Pinter
- Faculty of medicine, University of Ljubljana, Ljubljana, Slovenia.,Department of Human Reproduction, Division of Obstetrics and Gyneacology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Helena Ban Frangež
- Faculty of medicine, University of Ljubljana, Ljubljana, Slovenia.,Department of Human Reproduction, Division of Obstetrics and Gyneacology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Mojca Velikonja
- Department of Pathology, Faculty of medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Sara Korošec
- Faculty of medicine, University of Ljubljana, Ljubljana, Slovenia.,Department of Human Reproduction, Division of Obstetrics and Gyneacology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
7
|
DNA Methylation in Offspring Conceived after Assisted Reproductive Techniques: A Systematic Review and Meta-Analysis. J Clin Med 2022; 11:jcm11175056. [PMID: 36078985 PMCID: PMC9457481 DOI: 10.3390/jcm11175056] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/09/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
Background: In the last 40 years, assisted reproductive techniques (ARTs) have emerged as potentially resolving procedures for couple infertility. This study aims to evaluate whether ART is associated with epigenetic dysregulation in the offspring. Methods. To accomplish this, we collected all available data on methylation patterns in offspring conceived after ART and in spontaneously conceived (SC) offspring. Results. We extracted 949 records. Of these, 50 were considered eligible; 12 were included in the quantitative synthesis. Methylation levels of H19 CCCTC-binding factor 3 (CTCF3) were significantly lower in the ART group compared to controls (SMD −0.81 (−1.53; −0.09), I2 = 89%, p = 0.03). In contrast, H19 CCCTC-binding factor 6 (CTCF6), Potassium Voltage-Gated Channel Subfamily Q Member 1 (KCNQ1OT1), Paternally-expressed gene 3 (PEG3), and Small Nuclear Ribonucleoprotein Polypeptide N (SNRPN) were not differently methylated in ART vs. SC offspring. Conclusion: The methylation pattern of the offspring conceived after ART may be different compared to spontaneous conception. Due to the lack of studies and the heterogeneity of the data, further prospective and well-sized population studies are needed to evaluate the impact of ART on the epigenome of the offspring.
Collapse
|
8
|
Pei J, Zhao S, Yin M, Wu F, Li J, Zhang G, Wu X, Bao P, Xiong L, Song W, Ba Y, Yan P, Song R, Guo X. Differential proteomics of placentas reveals metabolic disturbance and oxidative damage participate yak spontaneous miscarriage during late pregnancy. BMC Vet Res 2022; 18:248. [PMID: 35761325 PMCID: PMC9235108 DOI: 10.1186/s12917-022-03354-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 06/20/2022] [Indexed: 12/03/2022] Open
Abstract
Background High spontaneous miscarriage rate in yak, especially during late pregnancy, have caused a great economic loss to herdsmen living in the Qinghai-Tibet plateau. However, the mechanism underlying spontaneous miscarriage is still poorly understood. In the present study, placenta protein markers were identified to elucidate the pathological reasons for yak spontaneous miscarriage through isobaric tags for relative and absolute quantification (iTRAQ) proteomic technology and bioinformatic approaches. Results Subsequently, a total of 415 differentially expressed proteins (DEPs) were identified between aborted and normal placentas. The up-regulated DEPs in the aborted placentas were significantly associated with “spinocerebellar ataxia”, “sphingolipid signalling”, “relaxin signalling”, “protein export”, “protein digestion and absorption” and “aldosterone synthesis and secretion” pathway. While the down-regulated DEPs in the aborted placentas mainly participated in “valine, leucine and isoleucine degradation”, “PPAR signalling”, “peroxisome”, “oxidative phosphorylation”, “galactose metabolism”, “fatty acid degradation”, “cysteine and methionine metabolism” and “citrate cycle” pathway. Conclusions The results implied that the identified DEPs could be considered as placental protein markers for yak miscarriage during late pregnancy, and biomacromolecule metabolic abnormality and oxidative damage might be responsible for the high spontaneous miscarriage rate in yak. These findings provide an important theoretical basis for deciphering the pathologic mechanism of late spontaneous miscarriage in yak. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-022-03354-w.
Collapse
|
9
|
Schroeder M, Badini G, Sferruzzi-Perri AN, Albrecht C. The Consequences of Assisted Reproduction Technologies on the Offspring Health Throughout Life: A Placental Contribution. Front Cell Dev Biol 2022; 10:906240. [PMID: 35747691 PMCID: PMC9210138 DOI: 10.3389/fcell.2022.906240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/05/2022] [Indexed: 11/13/2022] Open
Abstract
The use of assisted reproductive technologies (ART) worldwide has led to the conception and birth of over eight million babies since being implemented in 1978. ART use is currently on the rise, given growing infertility and the increase in conception age among men and women in industrialized countries. Though obstetric and perinatal outcomes have improved over the years, pregnancies achieved by ART still bear increased risks for the mother and the unborn child. Moreover, given that the first generation of ART offspring is now only reaching their forties, the long-term effects of ART are currently unknown. This is important, as there is a wealth of data showing that life-long health can be predetermined by poor conditions during intrauterine development, including irregularities in the structure and functioning of the placenta. In the current review, we aim to summarize the latest available findings examining the effects of ART on the cardiometabolic, cognitive/neurodevelopmental, and behavioral outcomes in the perinatal period, childhood and adolescence/adulthood; and to examine placental intrinsic factors that may contribute to the developmental outcomes of ART offspring. Altogether, the latest knowledge about life outcomes beyond adolescence for those conceived by ART appears to suggest a better long-term outcome than previously predicted. There are also changes in placenta structure and functional capacity with ART. However, more work in this area is critically required, since the potential consequences of ART may still emerge as the offspring gets older. In addition, knowledge of the placenta may help to foresee and mitigate any adverse outcomes in the offspring.
Collapse
Affiliation(s)
- Mariana Schroeder
- Faculty of Medicine, Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - Gina Badini
- Faculty of Medicine, Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - Amanda N. Sferruzzi-Perri
- Centre for Trophoblast Research, Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Christiane Albrecht
- Faculty of Medicine, Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
10
|
Milazzotto MP, Noonan MJ, de Almeida Monteiro Melo Ferraz M. Mining RNAseq data reveals dynamic metaboloepigenetic profiles in human, mouse and bovine pre-implantation embryos. iScience 2022; 25:103904. [PMID: 35252810 PMCID: PMC8889150 DOI: 10.1016/j.isci.2022.103904] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/20/2021] [Accepted: 02/07/2022] [Indexed: 12/01/2022] Open
Abstract
Metaboloepigenetic regulation has been reported in stem cells, germ cells, and tumor cells. Embryonic metaboloepigenetics, however, have just begun to be described. Here we analyzed RNAseq data to characterize the metaboloepigenetic profiles of human, mouse, and bovine pre-implantation embryos. In embryos, metaboloepigenetic reprogramming was species-specific, varied with the developmental stage and was disrupted with in vitro culture. Metabolic pathways and gene expressions were strongly correlated with early embryo DNA methylation and were changed with in vitro culture. Although the idea that the in vitro environment may influence development is not new, there has been little progress on improving pregnancy rates after decades using in vitro fertilization. Hence, the present data will contribute to understanding how the in vitro manipulation affects the metaboloepigenetic status of early embryos, which can be used to establish culture strategies aimed at improving the in vitro environment and, consequently, pregnancy rates and offspring health. Embryonic metaboloepigenetic reprogramming is stage- and species-specific In vitro culture disrupts the in vivo embryonic metaboloepigenetic reprogramming Metabolic genes and pathways are highly correlated with embryo methylome
Collapse
Affiliation(s)
- Marcella Pecora Milazzotto
- Center of Natural and Human Sciences, Federal University of ABC, São Paulo, 09210-580 Santo André, Brazil
| | - Michael James Noonan
- The Irving K. Barber School of Sciences, The University of British Columbia, Okanagan Campus, Kelowna, BC V1V 1V7, Canada
| | - Marcia de Almeida Monteiro Melo Ferraz
- Gene Center Munich, Ludwig-Maximilians University of Munich, 80539 Munich, Germany
- Clinic of Ruminants, Faculty of Veterinary Medicine Ludwig-Maximilians University of Munich, 80539 Munich, Germany
- Corresponding author
| |
Collapse
|
11
|
Sacha CR, Mortimer RM, James K, Harris AL, Yeh J, Toth TL, Souter I, Roberts DJ. Placental pathology of term singleton live births conceived with fresh embryo transfer compared with those conceived without assisted reproductive technology. Fertil Steril 2022; 117:758-768. [PMID: 35105450 DOI: 10.1016/j.fertnstert.2021.12.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 12/17/2021] [Accepted: 12/17/2021] [Indexed: 02/08/2023]
Abstract
OBJECTIVE To compare placental pathology from term singleton live births conceived with fresh embryo transfer vs. those conceived without assisted reproductive technology (ART). DESIGN Retrospective cohort study. SETTING Academic fertility center. PATIENT(S) Women with a term singleton live birth who conceived after fresh autologous in vitro fertilization (IVF)/intracytoplasmic sperm injection (ICSI) cycles (ART group) and those who conceived without ART. INTERVENTION(S) An experienced placental pathologist categorized placental pathology as anatomic, inflammatory, or vascular. Patient characteristics were compared by chi-squared tests, Student's t-test, or nonparametric tests. Multivariate logistic regression models were used to compare placental pathology between pregnancies conceived with and without ART. MAIN OUTCOME MEASURE(S) Incidence of anatomic, inflammatory, and vascular placental pathology. RESULT(S) There was a higher incidence of placental pathology in the ART group (n = 511) than in the non-ART group (n = 121), specifically anatomic (adjusted odds ratio [aOR] 2.50, 95% confidence interval [CI] 1.42-4.40) and vascular (aOR 2.00, 95% CI 1.13-3.53) pathology. These findings were driven primarily by the significantly higher odds of anatomic (aOR 2.97, 95% CI 1.55-5.66) and vascular (aOR 1.98, 95% CI 1.04-3.75) pathology observed in ICSI pregnancies. Single blastocyst transfers remained associated with increased anatomic pathology (ART: aOR 4.89, 95% CI 2.28-10.49; ICSI: aOR 3.38, 95% CI 1.49-7.71). CONCLUSION(S) Fresh embryo transfer is associated with increased anatomic and vascular placental pathology in term singleton live births compared with conception without ART. This finding should be investigated prospectively in a larger cohort of patients.
Collapse
Affiliation(s)
- Caitlin R Sacha
- Massachusetts General Hospital Fertility Center and Harvard Medical School, Boston, Massachusetts.
| | - Roisin M Mortimer
- Department of Obstetrics and Gynecology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Kaitlyn James
- Center for Outcomes Research, Department of Obstetrics and Gynecology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Amy L Harris
- Department of Women's Health, Wright Patterson Air Force Base, Ohio; Department of Obstetrics and Gynecology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio
| | - John Yeh
- Division of Reproductive Endocrinology and Infertility, University of Massachusetts Medical Center, Worcester, Massachusetts
| | - Thomas L Toth
- Boston In Vitro Fertilization, Department of Obstetrics and Gynecology, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Irene Souter
- Massachusetts General Hospital Fertility Center and Harvard Medical School, Boston, Massachusetts
| | - Drucilla J Roberts
- Department of Pathology, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
12
|
Liu Z, Chen W, Zhang Z, Wang J, Yang YK, Hai L, Wei Y, Qiao J, Sun Y. Whole-Genome Methylation Analysis Revealed ART-Specific DNA Methylation Pattern of Neuro- and Immune-System Pathways in Chinese Human Neonates. Front Genet 2021; 12:696840. [PMID: 34589113 PMCID: PMC8473827 DOI: 10.3389/fgene.2021.696840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 07/08/2021] [Indexed: 12/16/2022] Open
Abstract
The DNA methylation of human offspring can change due to the use of assisted reproductive technology (ART). In order to find the differentially methylated regions (DMRs) in ART newborns, cord blood maternal cell contamination and parent DNA methylation background, which will add noise to the real difference, must be removed. We analyzed newborns’ heel blood from six families to identify the DMRs between ART and natural pregnancy newborns, and the genetic model of methylation was explored, meanwhile we analyzed 32 samples of umbilical cord blood of infants born with ART and those of normal pregnancy to confirm which differences are consistent with cord blood data. The DNA methylation level was lower in ART-assisted offspring at the whole genome-wide level. Differentially methylated sites, DMRs, and cord blood differentially expressed genes were enriched in the important pathways of the immune system and nervous system, the genetic patterns of DNA methylation could be changed in the ART group. A total of three imprinted genes and 28 housekeeping genes which were involved in the nervous and immune systems were significant different between the two groups, six of them were detected both in heel blood and cord blood. We concluded that there is an ART-specific DNA methylation pattern involved in neuro- and immune-system pathways of human ART neonates, providing an epigenetic basis for the potential long-term health risks in ART-conceived neonates.
Collapse
Affiliation(s)
- Zongzhi Liu
- Central Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academic of Medical Sciences and Peking Union Medical College, Shenzhen, China.,University of Chinese Academy of Sciences, Beijing, China.,CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, China
| | - Wei Chen
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Zilong Zhang
- University of Chinese Academy of Sciences, Beijing, China.,CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, China.,Tianjin Novogene Bioinformatic Technology Co., Ltd.,, Tianjin, China
| | - Junyun Wang
- University of Chinese Academy of Sciences, Beijing, China.,CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, China
| | - Yi-Kun Yang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Luo Hai
- Central Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academic of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Yuan Wei
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing, China
| | - Jie Qiao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Yingli Sun
- Central Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academic of Medical Sciences and Peking Union Medical College, Shenzhen, China.,University of Chinese Academy of Sciences, Beijing, China.,CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, China
| |
Collapse
|
13
|
Periconceptional maternal and paternal homocysteine levels and early utero-placental (vascular) growth trajectories: The Rotterdam periconception cohort. Placenta 2021; 115:45-52. [PMID: 34560327 DOI: 10.1016/j.placenta.2021.09.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Maternal elevated plasma total homocysteine (tHcy) is involved in the origin of several placenta-related pregnancy complications. The first trimester is the most sensitive period for placentation influenced by maternal and paternal health. The aim is to study associations between periconceptional parental tHcy levels and utero-placental growth trajectories in the first trimester of pregnancy. METHODS Pregnant women and their partners were enrolled before 10 weeks of gestation in the Virtual Placenta study as subcohort of the Rotterdam periconception cohort (Predict study). A total of 190 women with a singleton pregnancy, of which 109 conceived naturally and 81 after IVF/ICSI treatment, were included. We measured serial utero-placental vascular volumes (uPVV) and placental volumes (PV) at 7, 9 and 11 weeks of gestation. First-trimester trajectories of PV were also measured in 662 pregnancies from the total Predict study. RESULTS Comparing all participants of the virtual placenta study, no association between maternal tHcy and uPVV was observed. However, in IVF/ICSI pregnancies sub-analyses showed significantly negative associations between maternal tHcy in the 3rd and 4th quartile and uPVV trajectories (beta: -0.38 (95%CI -0.74 to -0.02) and beta: -0.42 (95% CI -0.78 to -0.05), respectively) with the 1st quartile as reference. Analysis in the total Predict cohort showed similar negative associations for the total study population. DISCUSSION Periconceptional high maternal tHcy levels are associated with smaller placental growth trajectories depicted as PV and uPVV in the first trimester of pregnancy. The stronger negative associations with uPVV in IVF/ICSI pregnancies underline the need for further investigation.
Collapse
|
14
|
Tao P, Zhou W, Yan X, Wu R, Cheng L, Ye Y, Wang Z, Li Y. Effect of sequential versus single-step culture medium on IVF treatments, including embryo and clinical outcomes: a prospective randomized study. Arch Gynecol Obstet 2021; 305:757-765. [PMID: 34510243 DOI: 10.1007/s00404-021-06219-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 08/25/2021] [Indexed: 11/28/2022]
Abstract
PURPOSE Sequential media G5 series (Vitrolife) and single-step medium Continuous Single Culture Complete (CSC-C) (Irvine Scientific) are two different culture media. We want to examine difference between culturing effects of the two media. METHODS To compare the fertilization and early embryo development, a prospective randomized controlled trial with sibling oocytes in infertile patients, aged ≤ 45 years with ≥ 8 oocytes (226 cycles) was conducted. Each half of the retrieved oocytes from the same patient were randomly allocated to two culture media separately. The remaining fresh cycles were randomly assigned to two culture media during the same period (179 cycles). We compared the clinical outcomes based on the total fresh ET cycles in this periods, in which the transferred embryos were only from one culture medium. RESULTS Embryo outcomes: 226 cycles, included 176 IVF and 50 ICSI cycles, were analyzed, which correspond to 3518 inseminated or micro-injected oocytes. Clinical outcomes: 71 (CSC-C) and 71 (G5 series) fresh ET cycles were compared. There were no significant differences in clinical outcomes and general fertilization rate. However, the fertilization rate was superior in the CSC-C when compared with G5 in ICSI cycles (76.51% vs. 67.25%, P = 0.008). In addition, the compacted embryo development rate was significantly higher in CSC-C on day 3. The cycles that had compacted embryos on day 3 demonstrated better outcomes both in embryos as well as clinically. CONCLUSIONS CSC-C had higher fertilization rates than G5 series in ICSI cycles. In addition, the compaction rates of day 3 embryos were significantly higher in CSC-C.
Collapse
Affiliation(s)
- Ping Tao
- Reproductive Medicine Centre, First Affiliated Hospital of Xiamen University, 55# Zhenhai Road, Xiamen, 361000, Fujian, People's Republic of China
| | - Weidong Zhou
- Reproductive Medicine Centre, First Affiliated Hospital of Xiamen University, 55# Zhenhai Road, Xiamen, 361000, Fujian, People's Republic of China
| | - Xiaohong Yan
- Reproductive Medicine Centre, First Affiliated Hospital of Xiamen University, 55# Zhenhai Road, Xiamen, 361000, Fujian, People's Republic of China
| | - Rongfeng Wu
- Reproductive Medicine Centre, First Affiliated Hospital of Xiamen University, 55# Zhenhai Road, Xiamen, 361000, Fujian, People's Republic of China
| | - Ling Cheng
- Reproductive Medicine Centre, First Affiliated Hospital of Xiamen University, 55# Zhenhai Road, Xiamen, 361000, Fujian, People's Republic of China
| | - Yuanyuan Ye
- Reproductive Medicine Centre, First Affiliated Hospital of Xiamen University, 55# Zhenhai Road, Xiamen, 361000, Fujian, People's Republic of China
| | - Zhanxiang Wang
- Department of Neurosurgery, First Affiliated Hospital of Xiamen University, 55# Zhenhai Road, Xiamen, 361000, Fujian, People's Republic of China.
| | - Youzhu Li
- Reproductive Medicine Centre, First Affiliated Hospital of Xiamen University, 55# Zhenhai Road, Xiamen, 361000, Fujian, People's Republic of China.
| |
Collapse
|
15
|
Fineman DC, Keller RL, Maltepe E, Rinaudo PF, Steurer MA. Outcomes of Very Preterm Infants Conceived with Assisted Reproductive Technologies. J Pediatr 2021; 236:47-53.e1. [PMID: 34023343 DOI: 10.1016/j.jpeds.2021.05.044] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 05/07/2021] [Accepted: 05/17/2021] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To compare mortality and early respiratory outcomes of very preterm infants conceived via assisted reproductive technology (ART) vs spontaneously. STUDY DESIGN We identified inborn infants (July 2014-July 2019) with gestational age <32 weeks (n = 439); 54 cases were ART conceived. Spontaneously conceived controls (n = 103) were matched by multiple gestation status and gestational age. Primary outcome was 1-year mortality. Secondary outcomes were receipt of respiratory support and supplemental oxygen at 7 and 28 days and 36 weeks of postmenstrual age. We evaluated the association between conception method and outcomes by logistic regression, with adjustment for sociodemographic status. RESULTS Women who conceived via ART had increased rates of prepregnancy and gestational diabetes, and no differences in rates of hypertensive disorders. Infant 1-year mortality was not different by mode of conception (ART 11.8% vs spontaneous 7.1%, P = .49). Infants conceived by ART were less likely to receive respiratory support or supplemental oxygen at all time points, but this relationship only reached significance for receipt of oxygen at 28 days (ART 20.8% vs spontaneous 39.0%, P = .03); this remained true after adjustment for race/ethnicity and socioeconomic index. CONCLUSIONS When controlling for gestational age and multiple gestation status, very preterm infants conceived following ART had similar outcomes as those conceived spontaneously.
Collapse
Affiliation(s)
| | - Roberta L Keller
- Department of Pediatrics, University of California San Francisco, San Francisco, CA
| | - Emin Maltepe
- Department of Pediatrics, University of California San Francisco, San Francisco, CA
| | - Paolo F Rinaudo
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Francisco, San Francisco, CA
| | - Martina A Steurer
- Department of Pediatrics, University of California San Francisco, San Francisco, CA; Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA.
| |
Collapse
|
16
|
Dong J, Guo X, Qian C, Wang J, Lei H, Chen S, Wang X. In vitro fertilization causes excessive glycogen accumulation in mouse placenta. Placenta 2021; 114:29-38. [PMID: 34418752 DOI: 10.1016/j.placenta.2021.08.050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/17/2021] [Accepted: 08/12/2021] [Indexed: 01/02/2023]
Abstract
INTRODUCTION Children conceived by assisted reproductive technologies have a high risk of suffering from obstetrical complications and long-term health problems, but the related mechanisms are not fully understood. Normal placental function is closely linked with foetal growth and future health. Given the significance of glycogen metabolism in placentas, we investigated the effect of in vitro fertilization (IVF) on glycogen storage in placentas using a mouse model. METHODS Mouse placentas were collected at E18.5 after natural mating or IVF, and the placental and foetal weights were recorded. The quantitative assay kit and histological staining were used to measure the glycogen content. Additionally, we detected the expression of multiple genes associated with glycogen synthesis/decomposition, glucose transporters, and the phosphorylation of Akt and Gsk3β. RESULTS Our findings showed that IVF resulted in a significantly increased mouse placental weight and enlarged junctional area. We found, compared to the control, excessive glycogen was accumulated in IVF placentas. However, we observed that multiple genes involved in glycogen generation (Gsk3b, Phka1, Phkb, Phkg1, and Phkg2) and glycogenolysis (Agl and Pygm) had lower mRNA levels in IVF placentas. Moreover, the expression levels of glycogen synthase, phosphorylase, Glut1, and Glut3 were significantly decreased in IVF placentas. The phosphorylation activities of Akt Ser473 and Gsk3β Ser9 were inhibited in IVF placentas. DISCUSSION IVF leads to enlarged mouse placentas with excessive glycogen storage in late pregnancy, and these abnormal changes may be associated with the activation of the Akt-Gsk3β pathway.
Collapse
Affiliation(s)
- Jie Dong
- Department of Obstetrics and Gynaecology, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, Shaanxi, China
| | - Xiangyu Guo
- Department of Obstetrics and Gynaecology, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, Shaanxi, China; Department of Obstetrics and Gynaecology, General Hospital of Tibet Military Region, Lhasa, 850007, Tibet, China
| | - Chenxi Qian
- Department of Obstetrics and Gynaecology, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, Shaanxi, China
| | - Jingjing Wang
- Department of Obstetrics and Gynaecology, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, Shaanxi, China
| | - Hui Lei
- Department of Obstetrics and Gynaecology, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, Shaanxi, China
| | - Shuqiang Chen
- Department of Obstetrics and Gynaecology, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, Shaanxi, China.
| | - Xiaohong Wang
- Department of Obstetrics and Gynaecology, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, Shaanxi, China.
| |
Collapse
|
17
|
Hypothesis: human trophectoderm biopsy downregulates the expression of the placental growth factor gene. J Assist Reprod Genet 2021; 38:2575-2578. [PMID: 34363571 DOI: 10.1007/s10815-021-02283-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 07/15/2021] [Indexed: 10/20/2022] Open
Abstract
Preeclampsia (PE) and intrauterine growth retardation (IUGR) are the results of defective placentation associated with the downregulation of different genes in the human trophoblast including the Placental Growth Factor (PGF). TrophEctoderm (TE) biopsy is increasingly performed for Pre-implantation Genetic Testing of Aneuploidies and it involves the traumatical removal of an unpredictable number of mural TE cells from the human blastocyst. We observed strikingly similar obstetrical and neonatal complications in pregnancies where the placenta bears PGF downmodulation or a TE biopsy has been done. In both groups, the risk of PE, IUGR, congenital cardiac ventricular septal defects, caesarean section, sex ratio in favour of males and preterm birth is significantly increased compared to controls. Given the high degree of correlation, the observation may not be a casual one. We postulate herein that the TE biopsy may induce persistent dysregulation of different genes in the placenta including PGF. The mechanism proposed is the disruption of tight junctions caused by the TE biopsy.
Collapse
|
18
|
Yong HEJ, Chan SY. Current approaches and developments in transcript profiling of the human placenta. Hum Reprod Update 2021; 26:799-840. [PMID: 33043357 PMCID: PMC7600289 DOI: 10.1093/humupd/dmaa028] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 06/05/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The placenta is the active interface between mother and foetus, bearing the molecular marks of rapid development and exposures in utero. The placenta is routinely discarded at delivery, providing a valuable resource to explore maternal-offspring health and disease in pregnancy. Genome-wide profiling of the human placental transcriptome provides an unbiased approach to study normal maternal–placental–foetal physiology and pathologies. OBJECTIVE AND RATIONALE To date, many studies have examined the human placental transcriptome, but often within a narrow focus. This review aims to provide a comprehensive overview of human placental transcriptome studies, encompassing those from the cellular to tissue levels and contextualize current findings from a broader perspective. We have consolidated studies into overarching themes, summarized key research findings and addressed important considerations in study design, as a means to promote wider data sharing and support larger meta-analysis of already available data and greater collaboration between researchers in order to fully capitalize on the potential of transcript profiling in future studies. SEARCH METHODS The PubMed database, National Center for Biotechnology Information and European Bioinformatics Institute dataset repositories were searched, to identify all relevant human studies using ‘placenta’, ‘decidua’, ‘trophoblast’, ‘transcriptome’, ‘microarray’ and ‘RNA sequencing’ as search terms until May 2019. Additional studies were found from bibliographies of identified studies. OUTCOMES The 179 identified studies were classifiable into four broad themes: healthy placental development, pregnancy complications, exposures during pregnancy and in vitro placental cultures. The median sample size was 13 (interquartile range 8–29). Transcriptome studies prior to 2015 were predominantly performed using microarrays, while RNA sequencing became the preferred choice in more recent studies. Development of fluidics technology, combined with RNA sequencing, has enabled transcript profiles to be generated of single cells throughout pregnancy, in contrast to previous studies relying on isolated cells. There are several key study aspects, such as sample selection criteria, sample processing and data analysis methods that may represent pitfalls and limitations, which need to be carefully considered as they influence interpretation of findings and conclusions. Furthermore, several areas of growing importance, such as maternal mental health and maternal obesity are understudied and the profiling of placentas from these conditions should be prioritized. WIDER IMPLICATIONS Integrative analysis of placental transcriptomics with other ‘omics’ (methylome, proteome and metabolome) and linkage with future outcomes from longitudinal studies is crucial in enhancing knowledge of healthy placental development and function, and in enabling the underlying causal mechanisms of pregnancy complications to be identified. Such understanding could help in predicting risk of future adversity and in designing interventions that can improve the health outcomes of both mothers and their offspring. Wider collaboration and sharing of placental transcriptome data, overcoming the challenges in obtaining sufficient numbers of quality samples with well-defined clinical characteristics, and dedication of resources to understudied areas of pregnancy will undoubtedly help drive the field forward.
Collapse
Affiliation(s)
- Hannah E J Yong
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore, Singapore
| | - Shiao-Yng Chan
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore, Singapore.,Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
19
|
Mulder CL, Wattimury TM, Jongejan A, de Winter-Korver CM, van Daalen SKM, Struijk RB, Borgman SCM, Wurth Y, Consten D, van Echten-Arends J, Mastenbroek S, Dumoulin JCM, Repping S, van Pelt AMM, van Montfoort APA. Comparison of DNA methylation patterns of parentally imprinted genes in placenta derived from IVF conceptions in two different culture media. Hum Reprod 2021; 35:516-528. [PMID: 32222762 PMCID: PMC7105329 DOI: 10.1093/humrep/deaa004] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/18/2019] [Indexed: 12/15/2022] Open
Abstract
Study question Is there a difference in DNA methylation status of imprinted genes in placentas derived from IVF conceptions where embryo culture was performed in human tubal fluid (HTF) versus G5 culture medium? Summary answer We found no statistically significant differences in the mean DNA methylation status of differentially methylated regions (DMRs) associated with parentally imprinted genes in placentas derived from IVF conceptions cultured in HTF versus G5 culture medium. What is known already Animal studies indicate that the embryo culture environment affects the DNA methylation status of the embryo. In humans, birthweight is known to be affected by the type of embryo culture medium used. The effect of embryo culture media on pregnancy, birth and child development may thus be mediated by differential methylation of parentally imprinted genes in the placenta. Study design, size, duration To identify differential DNA methylation of imprinted genes in human placenta derived from IVF conceptions exposed to HTF or G5 embryo culture medium, placenta samples (n = 43 for HTF, n = 54 for G5) were collected between 2010 and 2012 s as part of a multi-center randomized controlled trial in the Netherlands comparing these embryo culture media. Placenta samples from 69 naturally conceived (NC) live births were collected during 2008–2013 in the Netherlands as reference material. Participants/materials, setting, methods To identify differential DNA methylation of imprinted genes, we opted for an amplicon-based sequencing strategy on an Illumina MiSeq sequencing platform. DNA was isolated and 34 DMRs associated with well-defined parentally imprinted genes were amplified in a two-step PCR before sequencing using MiSeq technology. Sequencing data were analyzed in a multivariate fashion to eliminate possible confounding effects. Main results and the role of chance We found no statistically significant differences in the mean DNA methylation status of any of the imprinted DMRs in placentas derived from IVF conceptions cultured in HTF or G5 culture medium. We also did not observe any differences in the mean methylation status per amplicon nor in the variance in methylation per amplicon between the two culture medium groups. A separate surrogate variable analysis also demonstrated that the IVF culture medium was not associated with the DNA methylation status of these DMRs. The mean methylation level and variance per CpG was equal between HTF and G5 placenta. Additional comparison of DNA methylation status of NC placenta samples revealed no statistically significant differences in mean amplicon and CpG methylation between G5, HTF and NC placenta; however, the number of placenta samples exhibiting outlier methylation levels was higher in IVF placenta compared to NC (P < 0.00001). Also, we were able to identify 37 CpG sites that uniquely displayed outlier methylation in G5 placentas and 32 CpG sites that uniquely displayed outlier methylation in HTF. In 8/37 (G5) and 4/32 (HTF) unique outliers CpGs, a medium-specific unique outlier could be directly correlated to outlier methylation of the entire amplicon. Limitations, reasons for caution Due to practical reasons, not all placentas were collected during the trial, and we collected the placentas from natural conceptions from a different cohort, potentially creating bias. We limited ourselves to the DNA methylation status of 34 imprinted DMRs, and we studied only the placenta and no other embryo-derived tissues. Wider implications of the findings It has often been postulated, but has yet to be rigorously tested, that imprinting mediates the effects of embryo culture conditions on pregnancy, birth and child development in humans. Since we did not detect any statistically significant effects of embryo culture conditions on methylation status of imprinted genes in the placenta, this suggests that other unexplored mechanisms may underlie these effects. The biological and clinical relevance of detected outliers with respect to methylation levels of CpGs and DMR require additional analysis in a larger sample size as well. Given the importance and the growing number of children born through IVF, research into these molecular mechanisms is urgently needed. Study funding/competing interest(s) This study was funded by the March of Dimes grant number #6-FY13-153. The authors have no conflicts of interest. Trial registration number Placental biopsies were obtained under Netherlands Trial Registry number 1979 and 1298.
Collapse
Affiliation(s)
- Callista L Mulder
- Center for Reproductive Medicine, Amsterdam Reproduction & Development Research Institute, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Tess M Wattimury
- Center for Reproductive Medicine, Amsterdam Reproduction & Development Research Institute, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Aldo Jongejan
- Bioinformatics Laboratory, Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam Public Health Research Institute, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Cindy M de Winter-Korver
- Center for Reproductive Medicine, Amsterdam Reproduction & Development Research Institute, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Saskia K M van Daalen
- Center for Reproductive Medicine, Amsterdam Reproduction & Development Research Institute, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Robert B Struijk
- Center for Reproductive Medicine, Amsterdam Reproduction & Development Research Institute, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Susanne C M Borgman
- Center for Reproductive Medicine, Amsterdam Reproduction & Development Research Institute, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Yvonne Wurth
- Center for Reproductive Medicine, St. Elisabeth-TweeSteden Hospital, Hilvarenbeekseweg 60, 5022 GC, Tilburg, the Netherlands
| | - Dimitri Consten
- Center for Reproductive Medicine, St. Elisabeth-TweeSteden Hospital, Hilvarenbeekseweg 60, 5022 GC, Tilburg, the Netherlands
| | - Jannie van Echten-Arends
- Section of Reproductive Medicine, Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands
| | - Sebastiaan Mastenbroek
- Center for Reproductive Medicine, Amsterdam Reproduction & Development Research Institute, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - John C M Dumoulin
- Department of Obstetrics & Gynaecology, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, P Debyelaan 25, 6229 GX, Maastricht, the Netherlands
| | - Sjoerd Repping
- Center for Reproductive Medicine, Amsterdam Reproduction & Development Research Institute, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Ans M M van Pelt
- Center for Reproductive Medicine, Amsterdam Reproduction & Development Research Institute, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Aafke P A van Montfoort
- Department of Obstetrics & Gynaecology, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, P Debyelaan 25, 6229 GX, Maastricht, the Netherlands
| |
Collapse
|
20
|
Ozmen A, Kipmen-Korgun D, Isenlik BS, Erman M, Sakinci M, Berkkanoglu M, Coetzee K, Ozgur K, Cetindag E, Yanar K, Korgun ET. Does fresh or frozen embryo transfer affect imprinted gene expressions in human term placenta? Acta Histochem 2021; 123:151694. [PMID: 33571695 DOI: 10.1016/j.acthis.2021.151694] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 11/28/2022]
Abstract
Our research aimed to compare the epigenetic alterations between placentae of in vitro fertilization (IVF) patients and spontaneous pregnancies. Additionally, the expression levels of proliferation markers (PCNA, Ki67) and glucose transporter proteins (GLUT1, GLUT3) were assessed in control and IVF placentae to examine the possible consequences of epigenetic alterations on placental development. Control group placentae were obtained from spontaneous pregnancies of healthy women (n = 16). IVF placentae were obtained from fresh (n = 16) and frozen (n = 16) embryo transfer pregnancies. A group of maternal and paternal imprint genes H19, IGF2, IGF2, IGF2R, PHLDA2, PLAGL1, MASH2, GRB10, PEG1, PEG3, and PEG10 were detected by Real-Time PCR. Additionally, PCNA, Ki67, GLUT1, and GLUT3 protein levels were assessed by immunohistochemistry and western blot. In the fresh embryo transfer placenta group (fETP), gene expression of paternal PEG1 and PEG10 was upregulated compared with the control group. Increased gene expression in paternal PEG1 and maternal IGFR2 genes was detected in the frozen embryo transfer placenta group (FET) compared with the control group. Conversely, expression levels of H19 and IGF2 genes were downregulated in the FET group. On the other hand, GLUT3 and PCNA expression was increased in FET group placentae. IVF techniques affect placental imprinted gene expressions which are important for proper placental development. Imprinted genes are differently expressed in fresh ET placentae and frozen ET placentae. In conclusion, these data indicate that altered imprinted gene expression may affect glucose transport and cell proliferation, therefore play an important role in placental development.
Collapse
Affiliation(s)
- Asli Ozmen
- Department of Histology and Embryology, Medical Faculty, Akdeniz University, Antalya, Turkey
| | - Dijle Kipmen-Korgun
- Department of Biochemistry, Medical Faculty, Akdeniz University, Antalya, Turkey
| | - Bekir Sitki Isenlik
- Department of Obstetrics and Gynecology, Training and Research Hospital, Health Sciences University, Antalya, Turkey
| | - Munire Erman
- Department of Obstetrics and Gynecology, Medical Faculty, Akdeniz University, Antalya, Turkey
| | - Mehmet Sakinci
- Department of Obstetrics and Gynecology, Medical Faculty, Akdeniz University, Antalya, Turkey
| | | | - Kevin Coetzee
- Antalya IVF, Halide Edip Cd. No:7, Kanal Mh., Antalya, Turkey
| | - Kemal Ozgur
- Antalya IVF, Halide Edip Cd. No:7, Kanal Mh., Antalya, Turkey
| | - Emre Cetindag
- Department of Histology and Embryology, Medical Faculty, Akdeniz University, Antalya, Turkey
| | - Kerem Yanar
- Department of Histology and Embryology, Medical Faculty, Akdeniz University, Antalya, Turkey
| | - Emin Turkay Korgun
- Department of Histology and Embryology, Medical Faculty, Akdeniz University, Antalya, Turkey.
| |
Collapse
|
21
|
Luo J, Zhu L, Zhou N, Zhang Y, Zhang L, Zhang R. Construction of Circular RNA-MicroRNA-Messenger RNA Regulatory Network of Recurrent Implantation Failure to Explore Its Potential Pathogenesis. Front Genet 2021; 11:627459. [PMID: 33664765 PMCID: PMC7924221 DOI: 10.3389/fgene.2020.627459] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 12/15/2020] [Indexed: 01/04/2023] Open
Abstract
Background: Many studies on circular RNAs (circRNAs) have recently been published. However, the function of circRNAs in recurrent implantation failure (RIF) is unknown and remains to be explored. This study aims to determine the regulatory mechanisms of circRNAs in RIF. Methods: Microarray data of RIF circRNA (GSE147442), microRNA (miRNA; GSE71332), and messenger RNA (mRNA; GSE103465) were downloaded from the Gene Expression Omnibus (GEO) database to identify differentially expressed circRNA, miRNA, and mRNA. The circRNA–miRNA–mRNA network was constructed by Cytoscape 3.8.0 software, then the protein–protein interaction (PPI) network was constructed by STRING database, and the hub genes were identified by cytoHubba plug-in. The circRNA–miRNA–hub gene regulatory subnetwork was formed to understand the regulatory axis of hub genes in RIF. Finally, the Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of the hub genes were performed by clusterProfiler package of Rstudio software, and Reactome Functional Interaction (FI) plug-in was used for reactome analysis to comprehensively analyze the mechanism of hub genes in RIF. Results: A total of eight upregulated differentially expressed circRNAs (DECs), five downregulated DECs, 56 downregulated differentially expressed miRNAs (DEmiRs), 104 upregulated DEmiRs, 429 upregulated differentially expressed genes (DEGs), and 1,067 downregulated DEGs were identified regarding RIF. The miRNA response elements of 13 DECs were then predicted. Seven overlapping miRNAs were obtained by intersecting the predicted miRNA and DEmiRs. Then, 56 overlapping mRNAs were obtained by intersecting the predicted target mRNAs of seven miRNAs with 1,496 DEGs. The circRNA–miRNA–mRNA network and PPI network were constructed through six circRNAs, seven miRNAs, and 56 mRNAs; and four hub genes (YWHAZ, JAK2, MYH9, and RAP2C) were identified. The circRNA–miRNA–hub gene regulatory subnetwork with nine regulatory axes was formed in RIF. Functional enrichment analysis and reactome analysis showed that these four hub genes were closely related to the biological functions and pathways of RIF. Conclusion: The results of this study provide further understanding of the potential pathogenesis from the perspective of circRNA-related competitive endogenous RNA network in RIF.
Collapse
Affiliation(s)
- Jiahuan Luo
- Clinical Medical College, Dali University, Dali, China
| | - Li Zhu
- Department of Reproductive Medicine, The First Affiliated Hospital of Dali University, Dali, China.,Institute of Reproductive Medicine, Dali University, Dali, China
| | - Ning Zhou
- Clinical Medical College, Dali University, Dali, China
| | | | - Lirong Zhang
- Department of Reproductive Medicine, The First Affiliated Hospital of Dali University, Dali, China.,Institute of Reproductive Medicine, Dali University, Dali, China
| | - Ruopeng Zhang
- Department of Reproductive Medicine, The First Affiliated Hospital of Dali University, Dali, China.,Institute of Reproductive Medicine, Dali University, Dali, China
| |
Collapse
|
22
|
Protein O-GlcNAcylation Promotes Trophoblast Differentiation at Implantation. Cells 2020; 9:cells9102246. [PMID: 33036308 PMCID: PMC7599815 DOI: 10.3390/cells9102246] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 09/18/2020] [Accepted: 10/05/2020] [Indexed: 12/11/2022] Open
Abstract
Embryo implantation begins with blastocyst trophectoderm (TE) attachment to the endometrial epithelium, followed by the breaching of this barrier by TE-derived trophoblast. Dynamic protein modification with O-linked β-N-acetylglucosamine (O-GlcNAcylation) is mediated by O-GlcNAc transferase and O-GlcNAcase (OGA), and couples cellular metabolism to stress adaptation. O-GlcNAcylation is essential for blastocyst formation, but whether there is a role for this system at implantation remains unexplored. Here, we used OGA inhibitor thiamet g (TMG) to induce raised levels of O-GlcNAcylation in mouse blastocysts and human trophoblast cells. In an in vitro embryo implantation model, TMG promoted mouse blastocyst breaching of the endometrial epithelium. TMG reduced expression of TE transcription factors Cdx2, Gata2 and Gata3, suggesting that O-GlcNAcylation stimulated TE differentiation to invasive trophoblast. TMG upregulated transcription factors OVOL1 and GCM1, and cell fusion gene ERVFRD1, in a cell line model of syncytiotrophoblast differentiation from human TE at implantation. Therefore O-GlcNAcylation is a conserved pathway capable of driving trophoblast differentiation. TE and trophoblast are sensitive to physical, chemical and nutritive stress, which can occur as a consequence of maternal pathophysiology or during assisted reproduction, and may lead to adverse neonatal outcomes and associated adult health risks. Further investigation of how O-GlcNAcylation regulates trophoblast populations arising at implantation is required to understand how peri-implantation stress affects reproductive outcomes.
Collapse
|
23
|
Argyraki M, Damdimopoulou P, Chatzimeletiou K, Grimbizis GF, Tarlatzis BC, Syrrou M, Lambropoulos A. In-utero stress and mode of conception: impact on regulation of imprinted genes, fetal development and future health. Hum Reprod Update 2020; 25:777-801. [PMID: 31633761 DOI: 10.1093/humupd/dmz025] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 07/04/2019] [Accepted: 07/12/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Genomic imprinting is an epigenetic gene regulatory mechanism; disruption of this process during early embryonic development can have major consequences on both fetal and placental development. The periconceptional period and intrauterine life are crucial for determining long-term susceptibility to diseases. Treatments and procedures in assisted reproductive technologies (ART) and adverse in-utero environments may modify the methylation levels of genomic imprinting regions, including insulin-like growth factor 2 (IGF2)/H19, mesoderm-specific transcript (MEST), and paternally expressed gene 10 (PEG10), affecting the development of the fetus. ART, maternal psychological stress, and gestational exposures to chemicals are common stressors suspected to alter global epigenetic patterns including imprinted genes. OBJECTIVE AND RATIONALE Our objective is to highlight the effect of conception mode and maternal psychological stress on fetal development. Specifically, we monitor fetal programming, regulation of imprinted genes, fetal growth, and long-term disease risk, using the imprinted genes IGF2/H19, MEST, and PEG10 as examples. The possible role of environmental chemicals in genomic imprinting is also discussed. SEARCH METHODS A PubMed search of articles published mostly from 2005 to 2019 was conducted using search terms IGF2/H19, MEST, PEG10, imprinted genes, DNA methylation, gene expression, and imprinting disorders (IDs). Studies focusing on maternal prenatal stress, psychological well-being, environmental chemicals, ART, and placental/fetal development were evaluated and included in this review. OUTCOMES IGF2/H19, MEST, and PEG10 imprinted genes have a broad developmental effect on fetal growth and birth weight variation. Their disruption is linked to pregnancy complications, metabolic disorders, cognitive impairment, and cancer. Adverse early environment has a major impact on the developing fetus, affecting mostly growth, the structure, and subsequent function of the hypothalamic-pituitary-adrenal axis and neurodevelopment. Extensive evidence suggests that the gestational environment has an impact on epigenetic patterns including imprinting, which can lead to adverse long-term outcomes in the offspring. Environmental stressors such as maternal prenatal psychological stress have been found to associate with altered DNA methylation patterns in placenta and to affect fetal development. Studies conducted during the past decades have suggested that ART pregnancies are at a higher risk for a number of complications such as birth defects and IDs. ART procedures involve multiple steps that are conducted during critical windows for imprinting establishment and maintenance, necessitating long-term evaluation of children conceived through ART. Exposure to environmental chemicals can affect placental imprinting and fetal growth both in humans and in experimental animals. Therefore, their role in imprinting should be better elucidated, considering the ubiquitous exposure to these chemicals. WIDER IMPLICATIONS Dysregulation of imprinted genes is a plausible mechanism linking stressors such as maternal psychological stress, conception using ART, and chemical exposures with fetal growth. It is expected that a greater understanding of the role of imprinted genes and their regulation in fetal development will provide insights for clinical prevention and management of growth and IDs. In a broader context, evidence connecting impaired imprinted gene function to common diseases such as cancer is increasing. This implies early regulation of imprinting may enable control of long-term human health, reducing the burden of disease in the population in years to come.
Collapse
Affiliation(s)
- Maria Argyraki
- First Department of Obstetrics and Gynecology, Laboratory of Genetics, School of Medicine, Aristotle University of Thessaloniki, Papageorgiou General Hospital, Ring Road, Nea Efkarpia, 56403 Thessaloniki, Greece
| | - Pauliina Damdimopoulou
- Karolinska Institutet, Department of Clinical Sciences, Intervention and Technology, Unit of Obstetrics and Gynecology, K57 Karolinska University Hospital Huddinge, SE-14186 Stockholm, Sweden
| | - Katerina Chatzimeletiou
- First Department of Obstetrics and Gynecology, Unit for Human Reproduction, School of Medicine, Aristotle University of Thessaloniki, Papageorgiou General Hospital, Ring Road, Nea Efkarpia, 56403 Thessaloniki, Greece
| | - Grigoris F Grimbizis
- First Department of Obstetrics and Gynecology, Unit for Human Reproduction, School of Medicine, Aristotle University of Thessaloniki, Papageorgiou General Hospital, Ring Road, Nea Efkarpia, 56403 Thessaloniki, Greece
| | - Basil C Tarlatzis
- First Department of Obstetrics and Gynecology, Unit for Human Reproduction, School of Medicine, Aristotle University of Thessaloniki, Papageorgiou General Hospital, Ring Road, Nea Efkarpia, 56403 Thessaloniki, Greece
| | - Maria Syrrou
- Department of Biology, Laboratory of Biology, School of Health Sciences, University of Ioannina, Dourouti University Campus, 45110, Ioannina, Greece
| | - Alexandros Lambropoulos
- First Department of Obstetrics and Gynecology, Laboratory of Genetics, School of Medicine, Aristotle University of Thessaloniki, Papageorgiou General Hospital, Ring Road, Nea Efkarpia, 56403 Thessaloniki, Greece
| |
Collapse
|
24
|
Hu M, Lou Y, Liu S, Mao Y, Le F, Wang L, Li L, Wang Q, Li H, Lou H, Wang N, Jin F. Altered expression of DNA damage repair genes in the brain tissue of mice conceived by in vitro fertilization. Mol Hum Reprod 2020; 26:141-153. [PMID: 32003796 DOI: 10.1093/molehr/gaaa010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 12/16/2019] [Accepted: 01/08/2020] [Indexed: 12/22/2022] Open
Abstract
Our previous study revealed a higher incidence of gene dynamic mutation in newborns conceived by IVF, highlighting that IVF may be disruptive to the DNA stability of IVF offspring. However, the underlying mechanisms remain unclear. The DNA damage repair system plays an essential role in gene dynamic mutation and neurodegenerative disease. To evaluate the long-term impact of IVF on DNA damage repair genes, we established an IVF mouse model and analyzed gene and protein expression levels of MSH2, MSH3, MSH6, MLH1, PMS2, OGG1, APEX1, XPA and RPA1 and also the amount of H2AX phosphorylation of serine 139 which is highly suggestive of DNA double-strand break (γH2AX expression level) in the brain tissue of IVF conceived mice and their DNA methylation status using quantitative real-time PCR, western blotting and pyrosequencing. Furthermore, we assessed the capacity of two specific non-physiological factors in IVF procedures during preimplantation development. The results demonstrated that the expression and methylation levels of some DNA damage repair genes in the brain tissue of IVF mice were significantly changed at 3 weeks, 10 weeks and 1.5 years of age, when compared with the in vivo control group. In support of mouse model findings, oxygen concentration of in vitro culture environment was shown to have the capacity to modulate gene expression and DNA methylation levels of some DNA damage repair genes. In summary, our study indicated that IVF could bring about long-term alterations of gene and protein expression and DNA methylation levels of some DNA damage repair genes in the brain tissue and these alterations might be resulted from the different oxygen concentration of culture environment, providing valuable perspectives to improve the safety and efficiency of IVF at early embryonic stage and also throughout different life stages.
Collapse
Affiliation(s)
- Minhao Hu
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, 1 Xueshi Road, Hangzhou 310006, China
| | - Yiyun Lou
- Department of Gynaecology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou 310007, China
| | - Shuyuan Liu
- Department of Gynaecology, Weifang Maternal and Child Health Hospital, Weifang 261000, China
| | - Yuchan Mao
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, 1 Xueshi Road, Hangzhou 310006, China
| | - Fang Le
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, 1 Xueshi Road, Hangzhou 310006, China
| | - Liya Wang
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, 1 Xueshi Road, Hangzhou 310006, China
| | - Lejun Li
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, 1 Xueshi Road, Hangzhou 310006, China
| | - Qijing Wang
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, 1 Xueshi Road, Hangzhou 310006, China
| | - Hongping Li
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, 1 Xueshi Road, Hangzhou 310006, China
| | - Hangying Lou
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, 1 Xueshi Road, Hangzhou 310006, China
| | - Ning Wang
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, 1 Xueshi Road, Hangzhou 310006, China
| | - Fan Jin
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, 1 Xueshi Road, Hangzhou 310006, China.,Women's Reproductive Health Laboratory of Zhejiang Province, Key Laboratory of Reproductive Genetics, Ministry of Education, Hangzhou 310006, China
| |
Collapse
|
25
|
Timmermans YEG, van de Kant KDG, Reijnders D, Kleijkers LMP, Dompeling E, Kramer BW, Zimmermann LJI, Steegers-Theunissen RPM, Spaanderman MEA, Vreugdenhil ACE. Towards Prepared mums (TOP-mums) for a healthy start, a lifestyle intervention for women with overweight and a child wish: study protocol for a randomised controlled trial in the Netherlands. BMJ Open 2019; 9:e030236. [PMID: 31748290 PMCID: PMC6886927 DOI: 10.1136/bmjopen-2019-030236] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 10/03/2019] [Accepted: 10/10/2019] [Indexed: 12/16/2022] Open
Abstract
INTRODUCTION Periconception obesity is associated with a higher risk for adverse perinatal outcomes such as gestational diabetes mellitus, preeclampsia, large for gestational age, operative delivery and preterm birth. Lifestyle interventions during pregnancy have resulted in insufficient effects on reducing these perinatal complications. A few reasons for this disappointing effect can be suggested: (1) the time period during pregnancy for improvement of developmental circumstances is too short; (2) the periconception period in which complications originate is not included; and (3) lifestyle interventions may not have been sufficiently multidisciplinary and customised. A preconception lifestyle intervention might be more effective to reduce perinatal complications. Therefore, the aim of the Towards Prepared mums study is to evaluate the effect of a lifestyle intervention starting prior to conception on lifestyle behaviour change. METHODS AND ANALYSIS This protocol outlines a non-blinded, randomised controlled trial. One hundred and twelve women (18-40 years of age) with overweight or obesity (body mass index≥25.0 kg/m2) who plan to conceive within 1 year will be randomised to either the intervention or care as usual group. The intervention group will receive a multidisciplinary, customised lifestyle intervention stimulating physical activity, a healthy diet and smoking cessation, if applicable. The lifestyle intervention and monitoring will take place until 12 months postpartum. The primary outcome is difference in weight in kg from baseline to 6 weeks postpartum. Secondary outcomes are gestational weight gain, postpartum weight retention, smoking cessation, dietary and physical activity habits. Furthermore, exploratory outcomes include body composition, cardiometabolic alterations, time to pregnancy, need for assisted reproductive technologies, perinatal complications of mother and child, and lung function of the child. Vaginal and oral swabs, samples of faeces, breast milk, placenta and cord blood will be stored for evaluation of microbial flora, epigenetic markers and breast milk composition. Furthermore, a cost-effectiveness analysis will take place. ETHICS AND DISSEMINATION Ethical approval was obtained from the Medical Ethical Committee of Maastricht University Medical Centre+ (NL52452.068.15/METC152026). Knowledge derived from this study will be made available by publications in international peer-reviewed scientific journals and will be presented at (inter)national scientific conferences. A dissemination plan for regional and national implementation of the intervention is developed. TRIAL REGISTRATION NUMBER ClinicalTrials.gov NCT02703753.
Collapse
Affiliation(s)
- Yvon E G Timmermans
- Department of Paediatrics, Maastricht University Medical Centre (MUMC+), Maastricht, Netherlands
- School for Oncology and Developmental Biology (GROW), Maastricht University, Maastricht, Netherlands
| | - Kim D G van de Kant
- Department of Paediatrics, Maastricht University Medical Centre (MUMC+), Maastricht, Netherlands
- School for Public Health and Primary Health Care (CAPHRI), Maastricht University, Maastricht, Netherlands
| | - Dorien Reijnders
- Department of Paediatrics, Maastricht University Medical Centre (MUMC+), Maastricht, Netherlands
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, Netherlands
| | - Lina M P Kleijkers
- Department of Paediatrics, Maastricht University Medical Centre (MUMC+), Maastricht, Netherlands
| | - Edward Dompeling
- Department of Paediatrics, Maastricht University Medical Centre (MUMC+), Maastricht, Netherlands
- School for Public Health and Primary Health Care (CAPHRI), Maastricht University, Maastricht, Netherlands
| | - Boris W Kramer
- Department of Paediatrics, Maastricht University Medical Centre (MUMC+), Maastricht, Netherlands
- School for Oncology and Developmental Biology (GROW), Maastricht University, Maastricht, Netherlands
| | - Luc J I Zimmermann
- Department of Paediatrics, Maastricht University Medical Centre (MUMC+), Maastricht, Netherlands
- School for Oncology and Developmental Biology (GROW), Maastricht University, Maastricht, Netherlands
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, Netherlands
| | | | - Marc E A Spaanderman
- School for Oncology and Developmental Biology (GROW), Maastricht University, Maastricht, Netherlands
- Department of Gynaecology & Obstetrics, MUMC+, Maastricht, Netherlands
| | - Anita C E Vreugdenhil
- Department of Paediatrics, Maastricht University Medical Centre (MUMC+), Maastricht, Netherlands
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, Netherlands
| |
Collapse
|
26
|
Wang Q, Zhang Y, Le F, Wang N, Zhang F, Luo Y, Lou Y, Hu M, Wang L, Thurston LM, Xu X, Jin F. Alteration in the expression of the renin-angiotensin system in the myocardium of mice conceived by in vitro fertilization. Biol Reprod 2019; 99:1276-1288. [PMID: 30010728 PMCID: PMC6299247 DOI: 10.1093/biolre/ioy158] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 07/11/2018] [Indexed: 12/25/2022] Open
Abstract
Epidemiological studies have revealed that offspring conceived by in vitro fertilization (IVF) have an elevated risk of cardiovascular malformations at birth, and are more predisposed to cardiovascular diseases. The renin-angiotensin system (RAS) plays an essential role in both the pathogenesis of congenital heart disease in fetuses and cardiovascular dysfunction in adults. This study aimed to assess the relative expression levels of genes in the RAS pathway in mice conceived using IVF, compared to natural mating with superovulation. Results demonstrated that expression of the angiotensin II receptor type 1 (AGTR1), connective tissue growth factor (CTGF), and collagen 3 (COL3), in the myocardial tissue of IVF-conceived mice, was elevated at 3 weeks, 10 weeks, and 1.5 years of age, when compared to their non-IVF counterparts. These data were supported by microRNA microarray analysis of the myocardial tissue of aged IVF-conceived mice, where miR-100, miR-297, and miR-758, which interact with COL3, AGTR1, and COL1 respectively, were upregulated when compared to naturally mated mice of the same age. Interestingly, bisulfite sequencing data indicated that IVF-conceived mice exhibited decreased methylation of CpG sites in Col1. In support of our in vivo investigations, miR-297 overexpression was shown to upregulate AGTR1 and CTGF, and increased cell proliferation in cultured H9c2 cardiomyocytes. These findings indicate that the altered expression of RAS in myocardial tissue might contribute to cardiovascular malformation and/or dysfunction in IVF-conceived offspring. Furthermore, these cardiovascular abnormalities might be the result of altered DNA methylation and abnormal regulation of microRNAs.
Collapse
Affiliation(s)
- Qijing Wang
- Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics of National Ministry of Education, Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Yue Zhang
- Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics of National Ministry of Education, Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Fang Le
- Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics of National Ministry of Education, Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Ning Wang
- Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics of National Ministry of Education, Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Fan Zhang
- Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics of National Ministry of Education, Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Yuqin Luo
- Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics of National Ministry of Education, Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Yiyun Lou
- Department of Gynaecology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang Province, China
| | - Minhao Hu
- Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics of National Ministry of Education, Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Liya Wang
- Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics of National Ministry of Education, Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Lisa M Thurston
- Department of Comparative Biomedical Science, Royal Veterinary College, University of London, London NW1 0TU, UK.,Academic Unit of Reproduction and Development, Department of Oncology and Metabolism, University of Sheffield, Sheffield S10 2SF, UK
| | - Xiangrong Xu
- Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics of National Ministry of Education, Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Fan Jin
- Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics of National Ministry of Education, Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| |
Collapse
|
27
|
Dong J, Wen L, Guo X, Xiao X, Jiang F, Li B, Jin N, Wang J, Wang X, Chen S, Wang X. The increased expression of glucose transporters in human full-term placentas from assisted reproductive technology without changes of mTOR signaling. Placenta 2019; 86:4-10. [DOI: 10.1016/j.placenta.2019.08.087] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 08/18/2019] [Accepted: 08/28/2019] [Indexed: 01/04/2023]
|
28
|
Placental programming of neuropsychiatric disease. Pediatr Res 2019; 86:157-164. [PMID: 31003234 DOI: 10.1038/s41390-019-0405-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 04/05/2019] [Accepted: 04/11/2019] [Indexed: 12/24/2022]
Abstract
The placenta is vital for fetal growth, and compromised function is associated with abnormal development, especially of the brain. Linking placental function to brain development is a new field we have dubbed neuroplacentology. Approximately 380,000 infants in the United States each year abruptly lose placental support upon premature birth, and more than 10% of pregnancies are affected by more insidious placental dysfunction such as preeclampsia or infection. Abnormal fetal brain development or injury can lead to life-long neurological impairments, including psychiatric disorders. The majority of research connecting placental compromise to fetal brain injury has focused on gas exchange or nutritional programming, neglecting the placenta's essential neuroendocrine role. We will review the current evidence that placental dysfunction, particularly endocrine dysfunction, secretion of pro-inflammatory cytokines, or barrier breakdown may place many thousands of fetuses at risk for life-long neurodevelopmental impairments each year. Understanding how specific placental factors shape brain development and increase the risk for later psychiatric disorders, including autism, attention deficit disorder, and schizophrenia, paves the way for novel treatment strategies to maintain the normal developmental milieu and protect from further injury.
Collapse
|
29
|
Zhao L, Zheng X, Liu J, Zheng R, Yang R, Wang Y, Sun L. PPAR signaling pathway in the first trimester placenta from in vitro fertilization and embryo transfer. Biomed Pharmacother 2019; 118:109251. [PMID: 31351426 DOI: 10.1016/j.biopha.2019.109251] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/16/2019] [Accepted: 07/18/2019] [Indexed: 01/27/2023] Open
Abstract
Placenta is a temporary critical organ related to fetal development and pregnancy outcomes. And epidemiologic data demonstrate an increased risk of placental abnormality after in vitro fertilization and embryo transfer (IVF-ET). This study aims to explore the molecular mechanism for PPAR signaling pathway in placenta subjected to IVF-ET in the first trimester. Four first trimester placenta samples from double chorionic twins to single reduction in IVF-ET only because of oviducts factors. The other four control placenta samples from double chorionic twin were derived from those unplanned spontaneously conceived pregnancy after the legal termination. Affymetrix HG-U133 Plus 2.0 Array was performed to evaluate the global gene expressions. We confirmed microarray results from 10 significant differential genes using RT-qPCR. And 10 deregulated gene products were stained in the first trimester placenta by immunohistochemistry. These differentially expressed genes in IVF-ET placentas were submitted to functional annotation of clustering tools of bioinformatics resources and gene ontology enrichment analysis. Schematic representation of placental PPAR signaling pathway was labelled by Kyoto Encyclopedia of Genes and Genomes (KEGG). Analysis results of early placental PPAR signaling pathway gene expression from 8 women demonstrated 34 genes with a significant change in expression between IVF-ET and control group, 25 up-regulated; 9 down-regulated. KEGG pathway analysis indicated that IVF-ET manipulation extensively over-activated PPAR signaling pathway. Immune tolerance, trophoblast invasion, syncytia formation, lipid and glucose metabolism, inflammatory response and other complex biological functions were disturbed. RT-qPCR results and proteins staining intensity were consisted with microarray. Placental gene expressions and functions in PPAR signaling pathway were affected by IVF-ET treatment in the first trimester, which may offer a potential mechanism for the pathogenesis of various adverse outcomes during the perinatal period.
Collapse
Affiliation(s)
- Liang Zhao
- Department of Obstetrics and Gynecology, Beijing Jishuitan Hospital, No. 31, Xinjiekou East Street, Xicheng District, Beijing, 100035, China
| | - Xiuli Zheng
- Department of Obstetrics and Gynecology, Beijing Jishuitan Hospital, No. 31, Xinjiekou East Street, Xicheng District, Beijing, 100035, China
| | - Jingfang Liu
- Department of Obstetrics and Gynecology, Beijing Jishuitan Hospital, No. 31, Xinjiekou East Street, Xicheng District, Beijing, 100035, China
| | - Rong Zheng
- Department of Obstetrics and Gynecology, Beijing Jishuitan Hospital, No. 31, Xinjiekou East Street, Xicheng District, Beijing, 100035, China
| | - Rui Yang
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, No. 49, Huayuan North Road, Haidian District, Beijing, 100191, China
| | - Ying Wang
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, No. 49, Huayuan North Road, Haidian District, Beijing, 100191, China
| | - Lifang Sun
- Department of Obstetrics and Gynecology, Beijing Jishuitan Hospital, No. 31, Xinjiekou East Street, Xicheng District, Beijing, 100035, China.
| |
Collapse
|
30
|
Zhao L, Zheng X, Liu J, Zheng R, Yang R, Wang Y, Sun L. The placental transcriptome of the first-trimester placenta is affected by in vitro fertilization and embryo transfer. Reprod Biol Endocrinol 2019; 17:50. [PMID: 31262321 PMCID: PMC6604150 DOI: 10.1186/s12958-019-0494-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/17/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The placenta is a highly specialized temporary organ that is related to fetal development and pregnancy outcomes, and epidemiological data demonstrate an increased risk of placental abnormality after in vitro fertilization and embryo transfer (IVF-ET). METHODS This study examines alterations in the transcriptome profile of first-trimester placentas from IVF-ET pregnancies and analyzes the potential mechanisms that play a role in the adverse perinatal outcomes associated with IVF-ET procedures. Four human placental villi from first-trimester samples were obtained through fetal bud aspiration from patients subjected to IVF-ET due to oviductal factors. An additional four control human placental villi were derived from a group of subjects who spontaneously conceived a twin pregnancy. We analyzed their transcriptomes by microarray. Then, RT-qPCR and immunohistochemistry were utilized to analyze several dysregulated genes to validate the microarray results. Biological functions and pathways were analyzed with bioinformatics tools. RESULTS A total of 3405 differentially regulated genes were identified as significantly dysregulated (> 2-fold change; P < 0.05) in the IVF-ET placenta in the first trimester: 1910 upregulated and 1495 downregulated genes. Functional enrichment analysis of the differentially regulated genes demonstrated that the genes were involved in more than 50 biological processes and pathways that have been shown to play important roles in the first trimester in vivo. These pathways can be clustered into coagulation cascades, immune response, transmembrane signaling, metabolism, cell cycle, stress control, invasion and vascularization. Nearly the same number of up- and downregulated genes participate in the same biological processes related to placental development and maintenance. Procedures utilized in IVF-ET altered the expression of first-trimester placental genes that are critical to these biological processes and triggered a compensatory mechanism during early implantation in vivo. CONCLUSION These data provide a potential basis for further analysis of the higher frequency of adverse perinatal outcomes following IVF-ET, with the ultimate goal of developing safer IVF-ET protocols.
Collapse
Affiliation(s)
- Liang Zhao
- Department of Obstetrics and Gynecology, Beijing Jishuitan, Hospital, No. 31, Xinjiekou East Street, Xicheng District, Beijing, 100035, People's Republic of China
| | - Xiuli Zheng
- Department of Obstetrics and Gynecology, Beijing Jishuitan, Hospital, No. 31, Xinjiekou East Street, Xicheng District, Beijing, 100035, People's Republic of China
| | - Jingfang Liu
- Department of Obstetrics and Gynecology, Beijing Jishuitan, Hospital, No. 31, Xinjiekou East Street, Xicheng District, Beijing, 100035, People's Republic of China
| | - Rong Zheng
- Department of Obstetrics and Gynecology, Beijing Jishuitan, Hospital, No. 31, Xinjiekou East Street, Xicheng District, Beijing, 100035, People's Republic of China
| | - Rui Yang
- Reproductive Medical Center, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49, Huayuan North Road, Haidian District, Beijing, 100191, People's Republic of China
| | - Ying Wang
- Reproductive Medical Center, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49, Huayuan North Road, Haidian District, Beijing, 100191, People's Republic of China
| | - Lifang Sun
- Department of Obstetrics and Gynecology, Beijing Jishuitan, Hospital, No. 31, Xinjiekou East Street, Xicheng District, Beijing, 100035, People's Republic of China.
| |
Collapse
|
31
|
An oviduct-on-a-chip provides an enhanced in vitro environment for zygote genome reprogramming. Nat Commun 2018; 9:4934. [PMID: 30467383 PMCID: PMC6250703 DOI: 10.1038/s41467-018-07119-8] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 10/11/2018] [Indexed: 01/01/2023] Open
Abstract
Worldwide over 5 million children have been conceived using assisted reproductive technology, and research has concentrated on increasing the likelihood of ongoing pregnancy. However, studies using animal models have indicated undesirable effects of in vitro embryo culture on offspring development and health. In vivo, the oviduct hosts a period in which the early embryo undergoes complete reprogramming of its (epi)genome in preparation for the reacquisition of (epi)genetic marks. We designed an oviduct-on-a-chip platform to better investigate the mechanisms related to (epi)genetic reprogramming and the degree to which they differ between in vitro and in vivo embryos. The device supports more physiological (in vivo-like) zygote genetic reprogramming than conventional IVF. This approach will be instrumental in identifying and investigating factors critical to fertilization and pre-implantation development, which could improve the quality and (epi)genetic integrity of IVF zygotes with likely relevance for early embryonic and later fetal development.
Collapse
|
32
|
Huntriss J, Balen AH, Sinclair KD, Brison DR, Picton HM. Epigenetics and Reproductive Medicine. BJOG 2018; 125:e43-e54. [DOI: 10.1111/1471-0528.15240] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
33
|
Abstract
Epigenetic mechanisms allow the establishment and maintenance of multiple cellular phenotypes from a single genomic code. At the initiation of development, the oocyte and spermatozoa provide their fully differentiated chromatin that soon after fertilization undergo extensive remodeling, resulting in a totipotent state that can then drive cellular differentiation towards all cell types. These remodeling involves different epigenetic modifications, including DNA methylation, post-translational modifications of histones, non-coding RNAs, and large-scale chromatin conformation changes. Moreover, epigenetic remodeling is responsible for reprogramming somatic cells to totipotency upon somatic cell nuclear transfer/cloning, which is often incomplete and inefficient. Given that environmental factors, such as assisted reproductive techniques (ARTs), can affect epigenetic remodeling, there is interest in understanding the mechanisms driving these changes. We describe and discuss our current understanding of mechanisms responsible for the epigenetic remodeling that ensues during preimplantation development of mammals, presenting findings from studies of mouse embryos and when available comparing them to what is known for human and cattle embryos.
Collapse
Affiliation(s)
- Pablo J Ross
- Department of Animal Science, University of California Davis, Davis, CA, United States
| | - Rafael V Sampaio
- Department of Animal Science, University of California Davis, Davis, CA, United States.,Department of Animal Science, University of California Davis, Davis, CA, United States
| |
Collapse
|
34
|
Arena R, Zacchini F, Toschi P, Palazzese L, Czernik M, Ptak GE. Developmental peculiarities in placentae of ovine uniparental conceptuses. PLoS One 2017; 12:e0188278. [PMID: 29190766 PMCID: PMC5708791 DOI: 10.1371/journal.pone.0188278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 11/03/2017] [Indexed: 12/30/2022] Open
Abstract
Genomic imprinting is an epigenetic phenomenon regulating mono-allelic expression of genes depending on their parental origin. Defective genomic imprinting is involved in several placental disorders, such as intrauterine growth restriction and pre-eclampsia. Uniparental embryos, having maternal-only or paternal-only genomes (parthenogenotes [PAR] and androgenotes [AND], respectively), are useful models to study placentation. The aim of this work was to reveal the effect of parental genome (maternal and paternal) on placentation. To do this, uniparental (AND and PAR) and biparental (CTR) in vitro produced sheep embryos transferred to recipient females were collected at day 20 of pregnancy and their placentae were analyzed. qPCR analysis showed that imprinted genes (H19, IGF2R and DLK1) were expressed accordingly to their parental origin while the expression f DNA methyltransferases () was disregulated, especially in PAR (P < 0.05). AND placentae were significantly hypomethylated compared to both PAR and CTR (P = 0.023). Chorion-allantoid of AND showed impaired development of vessels and reduced mRNA expression of vasculogenetic factors (ANG2 P = 0.05; VEGFR2 P< 0.001; TIE2 P < 0.001). Morphologically, PAR placentae were characterized by abnormal structure of the trophoectodermal epithelium and reduced total number (P<0.03) of Trophoblastic Binucleate Cells. A reduced implantation rate of both classes of uniparental embryos (P<0.03) was also noted. Our results provide new insights into the characterization of uniparental embryos and demonstrate the complementary role of parental genomes for the correct establishment of pregnancy. Thus, our findings may suggest new targets to improve our understanding of the origin of imprinting-related placental dysfunction.
Collapse
Affiliation(s)
- Roberta Arena
- Department of Experimental Embryology, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzebiec, Poland
| | - Federica Zacchini
- Department of Experimental Embryology, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzebiec, Poland
| | - Paola Toschi
- Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
| | - Luca Palazzese
- Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
| | - Marta Czernik
- Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
| | - Grażyna Ewa Ptak
- Department of Experimental Embryology, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzebiec, Poland
- Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
- * E-mail:
| |
Collapse
|
35
|
Liu F, Wu W, Wu K, Chen Y, Wu H, Wang H, Zhang W. MiR-203 Participates in Human Placental Angiogenesis by Inhibiting VEGFA and VEGFR2 Expression. Reprod Sci 2017; 25:358-365. [PMID: 28826364 DOI: 10.1177/1933719117725817] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Angiogenesis during placentation is of great significance in maintaining normal pregnancy. However, the molecular mechanisms of this process are not clear. It has been reported that miR-203 plays a critical role in the development and progression of many tumors but not focused on the relationship between miR-203 and placental angiogenesis. The present study aims to illustrate the correlation between miR-203 and vascular endothelial growth factor (VEGFA)/vascular endothelial growth factor receptors 2 (VEGFR2) in human placenta and human umbilical vein endothelial cells (HUVECs) obtained from 40 samples. Samples of human placenta were collected based on gestation age, which was divided into early preterm (n = 10), late preterm (n = 12), and term (n = 18). In this work, we demonstrated that the expression of miR-203 decreased significantly in the placenta according to the gestation age, in contrast, the expression of VEGFA and VEGFR2 increased accordingly. In vitro experiments revealed that overexpression of miR-203 not only suppressed the proliferation, migration, invasion, and tube formation of HUVECs but also affected the expression of VEGFA and VEGFR2. Furthermore, inhibition of miR-203 expression showed equally apparent positive effects on HUVECs. In conclusion, our study suggests that miR-203 plays an important role in regulating placental angiogenesis through inhibiting the expression of VEGFA and VEGFR2, thus miR-203 may represent a potential therapeutic target for patients with abnormal formation of blood vessels in the placenta.
Collapse
Affiliation(s)
- Fulin Liu
- 1 The First Department of Gynaecology, Renmin Hospital of Wuhan University, Wuchang District, Wuhan, Hubei, China
| | - Wanrong Wu
- 1 The First Department of Gynaecology, Renmin Hospital of Wuhan University, Wuchang District, Wuhan, Hubei, China
| | - Kejia Wu
- 2 Department of Gynaecology, Zhongnan Hospital of Wuhan University, Wuchang District, China
| | - Yurou Chen
- 1 The First Department of Gynaecology, Renmin Hospital of Wuhan University, Wuchang District, Wuhan, Hubei, China
| | - Hanshu Wu
- 1 The First Department of Gynaecology, Renmin Hospital of Wuhan University, Wuchang District, Wuhan, Hubei, China
| | - Hui Wang
- 3 Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, China
- 4 Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan, China
| | - Wei Zhang
- 1 The First Department of Gynaecology, Renmin Hospital of Wuhan University, Wuchang District, Wuhan, Hubei, China
- 4 Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan, China
| |
Collapse
|
36
|
Pattern of adhesive molecules expression in placenta of non-complicated ART pregnancies. Placenta 2016; 48:126-132. [DOI: 10.1016/j.placenta.2016.10.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 10/19/2016] [Accepted: 10/31/2016] [Indexed: 01/03/2023]
|
37
|
Ferraz MAMM, Henning HHW, Stout TAE, Vos PLAM, Gadella BM. Designing 3-Dimensional In Vitro Oviduct Culture Systems to Study Mammalian Fertilization and Embryo Production. Ann Biomed Eng 2016; 45:1731-1744. [PMID: 27844174 PMCID: PMC5489612 DOI: 10.1007/s10439-016-1760-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 11/04/2016] [Indexed: 12/17/2022]
Abstract
The oviduct was long considered a largely passive conduit for gametes and embryos. However, an increasing number of studies into oviduct physiology have demonstrated that it specifically and significantly influences gamete interaction, fertilization and early embryo development. While oviduct epithelial cell (OEC) function has been examined during maintenance in conventional tissue culture dishes, cells seeded into these two-dimensional (2-D) conditions suffer a rapid loss of differentiated OEC characteristics, such as ciliation and secretory activity. Recently, three-dimensional (3-D) cell culture systems have been developed that make use of cell inserts to create basolateral and apical medium compartments with a confluent epithelial cell layer at the interface. Using such 3-D culture systems, OECs can be triggered to redevelop typical differentiated cell properties and levels of tissue organization can be developed that are not possible in a 2-D culture. 3-D culture systems can be further refined using new micro-engineering techniques (including microfluidics and 3-D printing) which can be used to produce ‘organs-on-chips’, i.e. live 3-D cultures that bio-mimic the oviduct. In this review, concepts for designing bio-mimic 3-D oviduct cultures are presented. The increased possibilities and concomitant challenges when trying to more closely investigate oviduct physiology, gamete activation, fertilization and embryo production are discussed.
Collapse
Affiliation(s)
- Marcia A M M Ferraz
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, 3584CM, Utrecht, The Netherlands
| | - Heiko H W Henning
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 112, 3584CM,, Utrecht, The Netherlands
| | - Tom A E Stout
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, 3584CM, Utrecht, The Netherlands.,Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 112, 3584CM,, Utrecht, The Netherlands
| | - Peter L A M Vos
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, 3584CM, Utrecht, The Netherlands
| | - Bart M Gadella
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, 3584CM, Utrecht, The Netherlands. .,Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 79, 3584CM, Utrecht, The Netherlands.
| |
Collapse
|
38
|
Sunde A, Brison D, Dumoulin J, Harper J, Lundin K, Magli MC, Van den Abbeel E, Veiga A. Time to take human embryo culture seriously. Hum Reprod 2016; 31:2174-82. [PMID: 27554442 DOI: 10.1093/humrep/dew157] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
STUDY QUESTION Is it important that end-users know the composition of human embryo culture media? SUMMARY ANSWER We argue that there is as strong case for full transparency concerning the composition of embryo culture media intended for human use. WHAT IS KNOWN ALREADY Published data suggest that the composition of embryo culture media may influence the phenotype of the offspring. STUDY DESIGN, SIZE, DURATION A review of the literature was carried out. PARTICIPANTS/MATERIALS, SETTING, METHODS Data concerning the potential effects on embryo development of culture media were assessed and recommendations for users made. MAIN RESULTS AND THE ROLE OF CHANCE The safety of ART procedures, especially with respect to the health of the offspring, is of major importance. There are reports from the literature indicating a possible effect of culture conditions, including culture media, on embryo and fetal development. Since the introduction of commercially available culture media, there has been a rapid development of different formulations, often not fully documented, disclosed or justified. There is now evidence that the environment the early embryo is exposed to can cause reprogramming of embryonic growth leading to alterations in fetal growth trajectory, birthweight, childhood growth and long-term disease including Type II diabetes and cardiovascular problems. The mechanism for this is likely to be epigenetic changes during the preimplantation period of development. In the present paper the ESHRE working group on culture media summarizes the present knowledge of potential effects on embryo development related to culture media, and makes recommendations. LIMITATIONS, REASONS FOR CAUTION There is still a need for large prospective randomized trials to further elucidate the link between the composition of embryo culture media used and the phenotype of the offspring. We do not presently know if the phenotypic changes induced by in vitro embryo culture represent a problem for long-term health of the offspring. WIDER IMPLICATIONS OF THE FINDINGS Published data indicate that there is a strong case for demanding full transparency concerning the compositions of and the scientific rationale behind the composition of embryo culture media. STUDY FUNDING/COMPETING INTERESTS This work was funded by The European Society for Human Reproduction and Embryology. No competing interests to declare.
Collapse
Affiliation(s)
- Arne Sunde
- Department of Obstetrics and Gynaecology, St. Olav's University Hospital in Trondheim, Trondheim, Norway
| | - Daniel Brison
- Department of Reproductive Medicine, St Mary's Hospital, Central Manchester NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK
| | - John Dumoulin
- Department of Obstetrics and Gynaecology, IVF Laboratory, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Joyce Harper
- Embryology, IVF and reproductive genetics group, Institute for Women's Health, University College London, London, UK
| | - Kersti Lundin
- Reproductive Medicine, Sahlgrenska University Hospital, Göteborg, Sweden
| | | | | | - Anna Veiga
- Reproductive Medicine Service, Hospital Universitari Dexeus, Barcelona, Spain
| |
Collapse
|
39
|
Vrooman LA, Xin F, Bartolomei MS. Morphologic and molecular changes in the placenta: what we can learn from environmental exposures. Fertil Steril 2016; 106:930-40. [PMID: 27523298 DOI: 10.1016/j.fertnstert.2016.08.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 08/04/2016] [Accepted: 08/04/2016] [Indexed: 12/18/2022]
Abstract
In mammals, the extraembryonic tissues, which include the placenta, are crucial for embryonic development and growth. Because the placenta is no longer needed for postnatal life, however, it has been relatively understudied as a tissue of interest in biomedical research. Recently, increased efforts have been placed on understanding the placenta and how it may play a key role in human health and disease. In this review, we discuss two very different types of environmental exposures: assisted reproductive technologies and in utero exposure to endocrine-disrupting chemicals. We summarize the current literature on their effects on placental development in both rodent and human, and comment on the potential use of placental biomarkers as predictors of offspring health outcomes.
Collapse
Affiliation(s)
- Lisa A Vrooman
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Frances Xin
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Marisa S Bartolomei
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
40
|
Rizzo G, Aiello E, Pietrolucci ME, Arduini D. Placental volume and uterine artery Doppler evaluation at 11 + 0 to 13 + 6 weeks' gestation in pregnancies conceived with in-vitro fertilization: comparison between autologous and donor oocyte recipients. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2016; 47:726-31. [PMID: 26053472 DOI: 10.1002/uog.14918] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 05/23/2015] [Accepted: 05/31/2015] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To compare first-trimester uterine artery pulsatility index (UtA-PI) and three-dimensional (3D) placental volume in pregnancies conceived through in-vitro fertilization (IVF) using autologous or donor oocytes and pregnancies conceived naturally, and to relate these measurements to the development of pre-eclampsia (PE). METHODS UtA-PI and placental volume were measured at 11 + 0 to 13 + 6 weeks of gestation in 416 IVF pregnancies (307 with autologous and 109 with donor oocytes) and in 498 spontaneously conceived pregnancies. We recruited nulliparous women with singleton pregnancy. The measured mean UtA-PI and placental volume values were converted to multiples of the expected normal median (MoM), adjusted for gestational age. MoM values of IVF pregnancies were compared with MoM values of the naturally conceived pregnancies and related to PE development. RESULTS Placental volume was significantly reduced in IVF pregnancies (K = 169.3; P < 0.0001) compared with natural pregnancies. No difference was found in UtA-PI MoM between the two groups. Among IVF pregnancies, significantly lower placental volumes were seen in those that received donor oocytes when compared with those with autologous oocytes (z = 3.89; P < 0.001). In IVF pregnancies that developed PE, lower values of placental volume were demonstrated with respect to normotensive pregnancies (donor: U = 6.8; P = 0.009; autologous: U = 5.1; P = 0.023), whereas no difference was found in UtA-PI. Multivariate logistic regression analysis demonstrated that placental volume (odds ratio (OR), 1.97 (95% CI, 1.33-2.27)) and donor oocytes in IVF pregnancy (OR, 2.24 (95% CI, 1.5-2.83)) were independent predictors of PE, whereas autologous oocytes in IVF pregnancy were not found to be significant in the model. CONCLUSIONS First-trimester placental volume, as assessed by 3D ultrasound, is reduced in IVF pregnancies and this reduction is more marked in those involving donor oocyte recipients. The relative decrease in placental volume in IVF pregnancies that developed PE suggests an etiological mechanism different from uterine perfusion in such patients. Copyright © 2015 ISUOG. Published by John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- G Rizzo
- Department of Obstetrics and Gynecology, Università di Roma 'Tor Vergata', Rome, Italy
| | - E Aiello
- Department of Obstetrics and Gynecology, Università di Roma 'Tor Vergata', Rome, Italy
| | - M E Pietrolucci
- Department of Obstetrics and Gynecology, Università di Roma 'Tor Vergata', Rome, Italy
| | - D Arduini
- Department of Obstetrics and Gynecology, Università di Roma 'Tor Vergata', Rome, Italy
| |
Collapse
|
41
|
Vincent RN, Gooding LD, Louie K, Chan Wong E, Ma S. Altered DNA methylation and expression of PLAGL1 in cord blood from assisted reproductive technology pregnancies compared with natural conceptions. Fertil Steril 2016; 106:739-748.e3. [PMID: 27178226 DOI: 10.1016/j.fertnstert.2016.04.036] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Revised: 04/24/2016] [Accepted: 04/25/2016] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To investigate DNA methylation and expression of imprinted genes and an imprinted gene network (IGN) in neonates conceived via assisted reproductive technology (ART). DESIGN Case control. SETTING Research institution. PATIENT(S) Two hundred sixty-four cases of cord blood and/or placental villi from neonates (101 IVF, 81 ICSI, 82 naturally conceived). INTERVENTION(S) Placentas were obtained at birth for biopsy and cord blood extraction. MAIN OUTCOME MEASURE(S) DNA methylation and expression of imprinted genes. RESULT(S) DNA methylation at the PLAGL1 differentially methylated region (DMR) was significantly higher in IVF cord blood (48.0%) compared with controls (46.0%). No differences were found in DNA methylation between conception modes for KvDMR1 and LINE-1 in cord blood and placenta as well as PLAGL1 and PEG10 in placenta villi. PLAGL1 expression was lower in both IVF and ICSI cord blood groups than in controls (relative quantification of 0.65, 0.74, 0.89, respectively). Analyzing the expression of 3 genes in a PLAGL1 regulated IGN revealed different expression between conception modes and a significant correlation to PLAGL1 expression in only one (KCNQ1OT1). CONCLUSION(S) Our results suggest a stability of DNA methylation at imprinted DMRs; however, we show PLAGL1 methylation/expression to be altered after ART. As PLAGL1 expression correlated with only one of the three IGN genes in cord blood, we propose there is a more complex mechanism of regulating the IGN that may involve other genes and epigenetic modifications in this tissue. Further research investigating IGN-implicated genes in various neonatal tissues is warranted to elucidate the full effects ART-induced alterations to PLAGL1 and the IGN may have on fetal growth/development.
Collapse
Affiliation(s)
- Rebecca N Vincent
- Department of Obstetrics and Gynaecology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Luke D Gooding
- Department of Obstetrics and Gynaecology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kenny Louie
- Department of Obstetrics and Gynaecology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Edgar Chan Wong
- Department of Obstetrics and Gynaecology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sai Ma
- Department of Obstetrics and Gynaecology, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
42
|
Mainigi MA, Sapienza C, Butts S, Coutifaris C. A Molecular Perspective on Procedures and Outcomes with Assisted Reproductive Technologies. Cold Spring Harb Perspect Med 2016; 6:a023416. [PMID: 26747835 DOI: 10.1101/cshperspect.a023416] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The emerging association of assisted reproductive technologies with adverse perinatal outcomes has prompted the in-depth examination of clinical and laboratory protocols and procedures and their possible effects on epigenetic regulatory mechanism(s). The application of various approaches to study epigenetic regulation to problems in reproductive medicine has the potential to identify relative risk indicators for particular conditions, diagnostic biomarkers of disease state, and prognostic indicators of outcome. Moreover, when applied genome-wide, these techniques are likely to find novel pathways of disease pathogenesis and identify new targets for intervention. The analysis of DNA methylation, histone modifications, transcription factors, enhancer binding and other chromatin proteins, DNase-hypersensitivity and, micro- and other noncoding RNAs all provide overlapping and often complementary snapshots of chromatin structure and resultant "gene activity." In terms of clinical application, the predictive power and utility of epigenetic information will depend on the power of individual techniques to discriminate normal levels of interindividual variation from variation linked to a disease state. At present, quantitative analysis of DNA methylation at multiple loci seems likely to hold the greatest promise for achieving the level of precision, reproducibility, and throughput demanded in a clinical setting.
Collapse
Affiliation(s)
- Monica A Mainigi
- Department of Obstetrics and Gynecology and the Center for Research on Reproduction and Women's Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Carmen Sapienza
- Fels Institute for Cancer Research and Molecular Biology and Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania 19140
| | - Samantha Butts
- Department of Obstetrics and Gynecology and the Center for Research on Reproduction and Women's Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Christos Coutifaris
- Department of Obstetrics and Gynecology and the Center for Research on Reproduction and Women's Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
43
|
Kappil MA, Li Q, Li A, Dassanayake PS, Xia Y, Nanes JA, Landrigan PJ, Stodgell CJ, Aagaard KM, Schadt EE, Dole N, Varner M, Moye J, Kasten C, Miller RK, Ma Y, Chen J, Lambertini L. In utero exposures to environmental organic pollutants disrupt epigenetic marks linked to fetoplacental development. ENVIRONMENTAL EPIGENETICS 2016; 2:dvv013. [PMID: 27308065 PMCID: PMC4905724 DOI: 10.1093/eep/dvv013] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 11/05/2015] [Accepted: 12/08/2015] [Indexed: 05/24/2023]
Abstract
While the developing fetus is largely shielded from the external environment through the protective barrier provided by the placenta, it is increasingly appreciated that environmental agents are able to cross and even accumulate in this vital organ for fetal development. To examine the potential influence of environmental pollutants on the placenta, we assessed the relationship between polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs), 1,1-dichloro-2,2-bis(p-chlorophenyl) ethylene (DDE) and several epigenetic marks linked to fetoplacental development. We measured IGF2/H19 imprint control region methylation, IGF2 and H19 expression, IGF2 loss of imprinting (LOI) and global DNA methylation levels in placenta (n = 116) collected in a formative research project of the National Children's Study to explore the relationship between these epigenetic marks and the selected organic environmental pollutants. A positive association was observed between global DNA methylation and total PBDE levels (P <0.01) and between H19 expression and total PCB levels (P = 0.04). These findings suggest that differences in specific epigenetic marks linked to fetoplacental development occur in association with some, but not all, measured environmental exposures.
Collapse
Affiliation(s)
- Maya A. Kappil
- Departments of Preventive Medicine, Pediatrics, Oncological Sciences, Obstetrics, Gynecology and Reproductive Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Qian Li
- Departments of Preventive Medicine, Pediatrics, Oncological Sciences, Obstetrics, Gynecology and Reproductive Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - An Li
- School of Public Health, University of Illinois at Chicago, Chicago, IL
| | | | - Yulin Xia
- School of Public Health, University of Illinois at Chicago, Chicago, IL
| | - Jessica A. Nanes
- School of Public Health, University of Illinois at Chicago, Chicago, IL
| | - Philip J. Landrigan
- Departments of Preventive Medicine, Pediatrics, Oncological Sciences, Obstetrics, Gynecology and Reproductive Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Christopher J. Stodgell
- Departments of Obs/Gyn, and Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY
| | | | - Eric E. Schadt
- Department of Genetics and Genomic Sciences and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York City, NY
| | - Nancy Dole
- Carolina Population Center, University of North Carolina, Chapel Hill, NC
| | - Michael Varner
- Department of Pediatrics and Obs/Gyn, University of Utah, Salt Lake City, UT
| | - John Moye
- Eunice Kennedy Shriver
National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Carol Kasten
- Division of Pediatric and Maternal Health, US Food and Drug Administration, Silver Spring, MD, USA
| | - Richard K. Miller
- Departments of Obs/Gyn, and Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY
| | - Yula Ma
- Departments of Preventive Medicine, Pediatrics, Oncological Sciences, Obstetrics, Gynecology and Reproductive Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Jia Chen
- Departments of Preventive Medicine, Pediatrics, Oncological Sciences, Obstetrics, Gynecology and Reproductive Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Luca Lambertini
- Departments of Preventive Medicine, Pediatrics, Oncological Sciences, Obstetrics, Gynecology and Reproductive Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
44
|
Vannuccini S, Clifton VL, Fraser IS, Taylor HS, Critchley H, Giudice LC, Petraglia F. Infertility and reproductive disorders: impact of hormonal and inflammatory mechanisms on pregnancy outcome. Hum Reprod Update 2015; 22:104-15. [PMID: 26395640 PMCID: PMC7289323 DOI: 10.1093/humupd/dmv044] [Citation(s) in RCA: 228] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 09/03/2015] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Reproductive disorders and infertility are associated with the risk of obstetric complications and have a negative impact on pregnancy outcome. Affected patients often require assisted reproductive technologies (ART) to conceive, and advanced maternal age is a further confounding factor. The challenge is to dissect causation, correlation and confounders in determining how infertility and reproductive disorders individually or together predispose women to poor pregnancy outcomes. METHODS The published literature, to June 2015, was searched using PubMed, summarizing all evidences concerning the perinatal outcome of women with infertility and reproductive disorders and the potential mechanisms that may influence poor pregnancy outcome. RESULTS Reproductive disorders (endometriosis, adenomyosis, polycystic ovary syndrome and uterine fibroids) and unexplained infertility share inflammatory pathways, hormonal aberrations, decidual senescence and vascular abnormalities that may impair pregnancy success through common mechanisms. Either in combination or alone, these disorders results in an increased risk of preterm birth, fetal growth restriction, placental pathologies and hypertensive disorders. Systemic hormonal aberrations, and inflammatory and metabolic factors acting on endometrium, myometrium, cervix and placenta are all associated with an aberrant milieu during implantation and pregnancy, thus contributing to the genesis of obstetric complications. Some of these features have been also described in placentas from ART. CONCLUSIONS Reproductive disorders are common in women of childbearing age and rarely occur in isolation. Inflammatory, endocrine and metabolic mechanisms associated with these disorders are responsible for an increased incidence of obstetric complications. These patients should be recognized as 'high risk' for poor pregnancy outcomes and monitored with specialized follow-up. There is a real need for development of evidence-based recommendations about clinical management and specific obstetric care pathways for the introduction of prompt preventative care measures.
Collapse
Affiliation(s)
- Silvia Vannuccini
- Department of Molecular and Developmental Medicine, Obstetrics and Gynecology, University of Siena, Siena, Italy
| | - Vicki L Clifton
- Robinson Research Institute, University of Adelaide, Adelaide, Australia
| | - Ian S Fraser
- Department of Obstetrics and Gynaecology, Center for Women's Health, University of New South Wales, Sydney, Australia
| | - Hugh S Taylor
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University, New Haven, CT, USA
| | - Hilary Critchley
- MRC Centre for Reproductive Health, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - Linda C Giudice
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, 550 16th Street, Floor 7, Box 0132, San Francisco, CA 94143, USA
| | - Felice Petraglia
- Department of Molecular and Developmental Medicine, Obstetrics and Gynecology, University of Siena, Siena, Italy
| |
Collapse
|
45
|
Sakian S, Louie K, Wong EC, Havelock J, Kashyap S, Rowe T, Taylor B, Ma S. Altered gene expression of H19 and IGF2 in placentas from ART pregnancies. Placenta 2015; 36:1100-5. [PMID: 26386650 DOI: 10.1016/j.placenta.2015.08.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 08/14/2015] [Accepted: 08/17/2015] [Indexed: 12/16/2022]
Abstract
INTRODUCTION The aim of this study is to determine whether the gene expression and associated DNA methylation regulation of H19 and IGF2 are altered in placentas conceived by assisted reproductive technologies (ART) compared to natural conceptions. METHODS 113 pregnancies were recruited resulting in 119 placentas (83 singletons and 36 twins), where 56 were conceived via in vitro fertilization (IVF), 41 via intracytoplasmic sperm injection (ICSI), and 22 naturally. Regulation of imprinting of H19 and IGF2 was determined by the DNA methylation status at three CpG sites within the H19 imprinting control region 1 (ICR1) using bisulphite pyrosequencing. Expression of H19 and IGF2 in 45 of these placentas (17 IVF, 14 ICSI, and 14 NC) was measured by determining the relative mRNA transcript levels using RT-qPCR in placental villi. RESULTS Placental weight and birth weight were not significantly different between groups. H19 expression was significantly increased in both IVF and ICSI placentas when compared to controls (1.8 and 1.9 fold higher, respectively). Conversely, IGF2 was significantly decreased in both ART groups (0.8 and 0.7 fold lower, respectively). Mean DNA methylation at ICR1 was found to be similar between all groups. No correlation was found between DNA methylation at ICR1 and expression of either gene. However, a significant inverse relationship was found between H19 and IGF2 expression. CONCLUSION We provide evidence of altered H19 and IGF2 expression in ART placentas. The altered expression pattern may suggest a loss of imprinting on the paternal allele. Furthermore, these alterations may not be entirely associated with DNA methylation at ICR1. We show further indirect evidence of the H19-IGF2 inverse expression pattern.
Collapse
Affiliation(s)
- Sina Sakian
- Department of Obstetrics and Gynaecology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kenny Louie
- Department of Obstetrics and Gynaecology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Edgar Chan Wong
- Department of Obstetrics and Gynaecology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jon Havelock
- Department of Obstetrics and Gynaecology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sonya Kashyap
- Department of Obstetrics and Gynaecology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Timothy Rowe
- Department of Obstetrics and Gynaecology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Beth Taylor
- Department of Obstetrics and Gynaecology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sai Ma
- Department of Obstetrics and Gynaecology, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
46
|
The placenta: phenotypic and epigenetic modifications induced by Assisted Reproductive Technologies throughout pregnancy. Clin Epigenetics 2015; 7:87. [PMID: 26300992 PMCID: PMC4546204 DOI: 10.1186/s13148-015-0120-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 08/02/2015] [Indexed: 02/07/2023] Open
Abstract
Today, there is growing interest in the potential epigenetic risk related to assisted reproductive technologies (ART). Much evidence in the literature supports the hypothesis that adverse pregnancy outcomes linked to ART are associated with abnormal trophoblastic invasion. The aim of this review is to investigate the relationship between epigenetic dysregulation caused by ART and subsequent placental response. The dialogue between the endometrium and the embryo is a crucial step to achieve successful trophoblastic invasion, thus ensuring a non-complicated pregnancy and healthy offspring. However, as described in this review, ART could impair both actors involved in this dialogue. First, ART may induce epigenetic defects in the conceptus by modifying the embryo environment. Second, as a result of hormone treatments, ART may impair endometrial receptivity. In some cases, it results in embryonic growth arrest but, when the development of the embryo continues, the placenta could bring adaptive responses throughout pregnancy. Amongst the different mechanisms, epigenetics, especially thanks to a finely tuned network of imprinted genes stimulated by foetal signals, may modify nutrient transfer, placental growth and vascularization. If these coping mechanisms are overwhelmed, improper maternal-foetal exchanges occur, potentially leading to adverse pregnancy outcomes such as abortion, preeclampsia or intra-uterine growth restriction. But in most cases, successful placental adaptation enables normal progress of the pregnancy. Nevertheless, the risks induced by these modifications during pregnancy are not fully understood. Metabolic diseases later in life could be exacerbated through the memory of epigenetic adaptation mechanisms established during pregnancy. Thus, more research is still needed to better understand abnormal interactions between the embryo and the milieu in artificial conditions. As trophectoderm cells are in direct contact with the environment, they deserve to be studied in more detail. The ultimate goal of these studies will be to render ART protocols safer. Optimization of the environment will be the key to improving the dialogue between the endometrium and embryo, so as to ensure that placentation after ART is similar to that following natural conception.
Collapse
|
47
|
Assisted reproduction causes placental maldevelopment and dysfunction linked to reduced fetal weight in mice. Sci Rep 2015; 5:10596. [PMID: 26085229 PMCID: PMC4471727 DOI: 10.1038/srep10596] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 04/21/2015] [Indexed: 02/06/2023] Open
Abstract
Compelling evidence indicates that stress in utero, as manifested by low birth weight (LBW), increases the risk of metabolic syndrome in adulthood. Singletons conceived by assisted reproductive technology (ART) display a significant increase in LBW risk and ART offspring have a different metabolic profile starting at birth. Here, used mouse as a model, we found that ART resulted in reduced fetal weight and placental overgrowth at embryonic day 18.5 (E18.5). The ART placentae exhibited histomorphological alterations with defects in placental layer segregation and glycogen cells migration at E18.5. Further, ART treatments resulted in downregulation of a majority of placental nutrient transporters and reduction in placental efficiency. Moreover, the ART placentae were associated with increased methylation levels at imprinting control regions of H19, KvDMR1 and disrupted expression of a majority of imprinted genes important for placental development and function at E18.5. Our results from the mouse model show the first piece of evidence that ART treatment could affect fetal growth by disrupting placental development and function, suggests that perturbation of genomic imprinting resulted from embryo manipulation may contribute to these problems.
Collapse
|
48
|
Liu X, Wei Q, Zhang J, Yang W, Zhao X, Ma B. Derivation of embryonic stem cells from Kunming mice IVF blastocyst in feeder- and serum-free condition. In Vitro Cell Dev Biol Anim 2015; 51:541-5. [DOI: 10.1007/s11626-014-9863-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 12/18/2014] [Indexed: 01/09/2023]
|