1
|
Fernandes SLE, de Carvalho FAG. Preimplantation genetic testing: A narrative review. Porto Biomed J 2024; 9:262. [PMID: 38993950 PMCID: PMC11236403 DOI: 10.1097/j.pbj.0000000000000262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/18/2024] [Indexed: 07/13/2024] Open
Abstract
Preimplantation genetic testing (PGT) is a diagnostic procedure that has become a powerful complement to assisted reproduction techniques. PGT has numerous indications, and there is a wide range of techniques that can be used, each with advantages and limitations that should be considered before choosing the more adequate one. In this article, it is reviewed the indications for PGT, biopsy and diagnostic technologies, along with their evolution, while also broaching new emerging methods.
Collapse
Affiliation(s)
- Sofia L. E. Fernandes
- Genetics—Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal
| | | |
Collapse
|
2
|
Wu T, Wu Y, Yan J, Zhang J, Wang S. Microfluidic chip as a promising evaluation method in assisted reproduction: A systematic review. Bioeng Transl Med 2024; 9:e10625. [PMID: 38435817 PMCID: PMC10905557 DOI: 10.1002/btm2.10625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/26/2023] [Accepted: 11/09/2023] [Indexed: 03/05/2024] Open
Abstract
The aim of assisted reproductive technology (ART) is to select the high-quality sperm, oocytes, and embryos, and finally achieve a successful pregnancy. However, functional evaluation is hindered by intra- and inter-operator variability. Microfluidic chips emerge as the one of the most powerful tools to analyze biological samples for reduced size, precise control, and flexible extension. Herein, a systematic search was conducted in PubMed, Scopus, Web of Science, ScienceDirect, and IEEE Xplore databases until March 2023. We displayed and prospected all detection strategies based on microfluidics in the ART field. After full-text screening, 71 studies were identified as eligible for inclusion. The percentages of human and mouse studies equaled with 31.5%. The prominent country in terms of publication number was the USA (n = 13). Polydimethylsiloxane (n = 49) and soft lithography (n = 28) were the most commonly used material and fabrication method, respectively. All articles were classified into three types: sperm (n = 38), oocytes (n = 20), and embryos (n = 13). The assessment contents included motility, counting, mechanics, permeability, impedance, secretion, oxygen consumption, and metabolism. Collectively, the microfluidic chip technology facilitates more efficient, accurate, and objective evaluation in ART. It can even be combined with artificial intelligence to assist the daily activities of embryologists. More well-designed clinical studies and affordable integrated microfluidic chips are needed to validate the safety, efficacy, and reproducibility. Trial registration: The protocol was registered in the Open Science Frame REGISTRIES (identification: osf.io/6rv4a).
Collapse
Affiliation(s)
- Tong Wu
- National Clinical Research Center for Obstetrical and Gynecological DiseasesTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of EducationTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Department of Obstetrics and GynecologyTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Yangyang Wu
- College of Animal Science and TechnologySichuan Agricultural UniversityYa'anSichuanChina
| | - Jinfeng Yan
- National Clinical Research Center for Obstetrical and Gynecological DiseasesTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of EducationTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Department of Obstetrics and GynecologyTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- School of Materials Science and EngineeringHuazhong University of Science and TechnologyWuhanChina
| | - Jinjin Zhang
- National Clinical Research Center for Obstetrical and Gynecological DiseasesTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of EducationTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Department of Obstetrics and GynecologyTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Shixuan Wang
- National Clinical Research Center for Obstetrical and Gynecological DiseasesTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of EducationTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Department of Obstetrics and GynecologyTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
3
|
Latham KE. Preimplantation genetic testing: A remarkable history of pioneering, technical challenges, innovations, and ethical considerations. Mol Reprod Dev 2024; 91:e23727. [PMID: 38282313 DOI: 10.1002/mrd.23727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/15/2023] [Indexed: 01/30/2024]
Abstract
Preimplantation genetic testing (PGT) has emerged as a powerful companion to assisted reproduction technologies. The origins and history of PGT are reviewed here, along with descriptions of advances in molecular assays and sampling methods, their capabilities, and their applications in preventing genetic diseases and enhancing pregnancy outcomes. Additionally, the potential for increasing accuracy and genome coverage is considered, as well as some of the emerging ethical and legislative considerations related to the expanding capabilities of PGT.
Collapse
Affiliation(s)
- Keith E Latham
- Department of Animal Science, Michigan State University, East Lansing, Michigan, USA
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, East Lansing, Michigan, USA
- Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
4
|
Montgomery K, Montgomery S, Campbell A, Nash DM. A comparison of the morphokinetic profiles of embryos developed from vitrified versus fresh oocytes. Reprod Biomed Online 2023; 47:51-60. [PMID: 37188558 DOI: 10.1016/j.rbmo.2023.02.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/13/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023]
Abstract
RESEARCH QUESTION Do morphokinetic profiles and treatment outcomes differ between embryos developed from vitrified or fresh oocytes? DESIGN Retrospective multicentre analysis using data from eight CARE Fertility clinics across the UK between 2012 and 2019. Patients receiving treatment using embryos developed from vitrified oocytes (n = 118 women, n = 748 oocytes), providing 557 zygotes during this time period, were recruited and matched with patients undergoing treatment with embryos developed from fresh oocytes (n = 123 women, n = 1110 oocytes), providing 539 zygotes in the same time frame. Time-lapse microscopy was used to assess morphokinetic profiles, including early cleavage divisions (2- through to 8-cell), post-cleavage stages including time to start of compaction, time to morula, time to start of blastulation and time to full blastocyst. Duration of key stages such as the compaction stage were also calculated. Treatment outcomes were compared between the two groups (live birth rate, clinical pregnancy rate and implantation rate). RESULTS A significant delay of 2-3 h across all early cleavage divisions (2- through to 8-cell) and time to start of compaction occurred in the vitrified group versus fresh controls (all P ≤ 0.01). The compaction stage was significantly shorter in vitrified oocytes (19.02 ± 0.5 h) compared with fresh controls (22.45 ± 0.6 h, P < 0.001). There was no difference in the time that fresh and vitrified embryos reached the blastocyst stage (108.03 ± 0.7 versus 107.78 ± 0.6 h). There was no significant difference in treatment outcomes between the two groups. CONCLUSION Vitrification is a useful technique for extending female fertility with no effects on IVF treatment outcome.
Collapse
Affiliation(s)
- Kathryn Montgomery
- Department of Life Sciences, Aberystwyth University, Penglais, Aberystwyth, Ceredigion, UK
| | - Susan Montgomery
- CARE Fertility Manchester, 108-112 Daisy Bank Road, Victoria Park, Manchester, UK
| | - Alison Campbell
- CARE Fertility Manchester, 108-112 Daisy Bank Road, Victoria Park, Manchester, UK.
| | - Deborah Mary Nash
- Department of Life Sciences, Aberystwyth University, Penglais, Aberystwyth, Ceredigion, UK
| |
Collapse
|
5
|
Rabel RAC, Marchioretto PV, Bangert EA, Wilson K, Milner DJ, Wheeler MB. Pre-Implantation Bovine Embryo Evaluation-From Optics to Omics and Beyond. Animals (Basel) 2023; 13:2102. [PMID: 37443900 DOI: 10.3390/ani13132102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/16/2023] [Accepted: 06/17/2023] [Indexed: 07/15/2023] Open
Abstract
Approximately 80% of the ~1.5 million bovine embryos transferred in 2021 were in vitro produced. However, only ~27% of the transferred IVP embryos will result in live births. The ~73% pregnancy failures are partly due to transferring poor-quality embryos, a result of erroneous stereomicroscopy-based morphological evaluation, the current method of choice for pre-transfer embryo evaluation. Numerous microscopic (e.g., differential interference contrast, electron, fluorescent, time-lapse, and artificial-intelligence-based microscopy) and non-microscopic (e.g., genomics, transcriptomics, epigenomics, proteomics, metabolomics, and nuclear magnetic resonance) methodologies have been tested to find an embryo evaluation technique that is superior to morphologic evaluation. Many of these research tools can accurately determine embryo quality/viability; however, most are invasive, expensive, laborious, technically sophisticated, and/or time-consuming, making them futile in the context of in-field embryo evaluation. However accurate they may be, using complex methods, such as RNA sequencing, SNP chips, mass spectrometry, and multiphoton microscopy, at thousands of embryo production/collection facilities is impractical. Therefore, future research is warranted to innovate field-friendly, simple benchtop tests using findings already available, particularly from omics-based research methodologies. Time-lapse monitoring and artificial-intelligence-based automated image analysis also have the potential for accurate embryo evaluation; however, further research is warranted to innovate economically feasible options for in-field applications.
Collapse
Affiliation(s)
- R A Chanaka Rabel
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Paula V Marchioretto
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Elizabeth A Bangert
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Kenneth Wilson
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Derek J Milner
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Matthew B Wheeler
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Biomedical and Translational Sciences, Carle-Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
6
|
Nashimoto Y, Shishido S, Onuma K, Ino K, Inoue M, Shiku H. Oxygen metabolism analysis of a single organoid for non-invasive discrimination of cancer subpopulations with different growth capabilities. Front Bioeng Biotechnol 2023; 11:1184325. [PMID: 37274161 PMCID: PMC10232988 DOI: 10.3389/fbioe.2023.1184325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 05/08/2023] [Indexed: 06/06/2023] Open
Abstract
Heterogeneous nature is a pivotal aspect of cancer, rendering treatment problematic and frequently resulting in recurrence. Therefore, advanced techniques for identifying subpopulations of a tumour in an intact state are essential to develop novel screening platforms that can reveal differences in treatment response among subpopulations. Herein, we conducted a non-invasive analysis of oxygen metabolism on multiple subpopulations of patient-derived organoids, examining its potential utility for non-destructive identification of subpopulations. We utilised scanning electrochemical microscopy (SECM) for non-invasive analysis of oxygen metabolism. As models of tumours with heterogeneous subpopulations, we used patient-derived cancer organoids with a distinct growth potential established using the cancer tissue-originated spheroid methodology. Scanning electrochemical microscopy measurements enabled the analysis of the oxygen consumption rate (OCR) for individual organoids as small as 100 µm in diameter and could detect the heterogeneity amongst studied subpopulations, which was not observed in conventional colorectal cancer cell lines. Furthermore, our oxygen metabolism analysis of pre-isolated subpopulations with a slow growth potential revealed that oxygen consumption rate may reflect differences in the growth rate of organoids. Although the proposed technique currently lacks single-cell level sensitivity, the variability of oxygen metabolism across tumour subpopulations is expected to serve as an important indicator for the discrimination of tumour subpopulations and construction of novel drug screening platforms in the future.
Collapse
Affiliation(s)
- Yuji Nashimoto
- Institute of Bioengineering and Biomaterials (IBB), Tokyo Medical and Dental University (TMDU), Tokyo, Japan
- Frontier Research Institute for Interdisciplinary Sciences (FRIS), Tohoku University, Sendai, Miyagi, Japan
- Graduate School of Environmental Studies, Tohoku University, Sendai, Miyagi, Japan
- Graduate School of Engineering, Tohoku University, Sendai, Miyagi, Japan
| | - Shotaro Shishido
- Graduate School of Environmental Studies, Tohoku University, Sendai, Miyagi, Japan
| | | | - Kosuke Ino
- Graduate School of Engineering, Tohoku University, Sendai, Miyagi, Japan
| | - Masahiro Inoue
- Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hitoshi Shiku
- Graduate School of Environmental Studies, Tohoku University, Sendai, Miyagi, Japan
- Graduate School of Engineering, Tohoku University, Sendai, Miyagi, Japan
| |
Collapse
|
7
|
Dornhof J, Zieger V, Kieninger J, Frejek D, Zengerle R, Urban GA, Kartmann S, Weltin A. Bioprinting-based automated deposition of single cancer cell spheroids into oxygen sensor microelectrode wells. LAB ON A CHIP 2022; 22:4369-4381. [PMID: 36254669 DOI: 10.1039/d2lc00705c] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Three-dimensional (3D) cell agglomerates, such as microtissues, organoids, and spheroids, become increasingly relevant in biomedicine. They can provide in vitro models that recapitulate functions of the original tissue in the body and have applications in cancer research. For example, they are widely used in organ-on-chip systems. Microsensors can provide essential real-time information on cell metabolism as well as the reliability and quality of culture conditions. The combination of sensors and 3D cell cultures, especially single spheroids, is challenging in terms of reproducible formation, manipulation, and access to spheroids, precise positioning near sensors, and high cell-to-volume ratios to obtain meaningful biosignals in the most parallel approach possible. To overcome this challenge, we combined state-of-the-art bioprinting techniques to automatically print tumour spheroids directly into microwells of a chip-based electrochemical oxygen sensor array. We demonstrated highly accurate and reproducible spheroid formation (diameter of approx. 200 μm) and a spheroid deposition precision of 25 μm within a volume of 22 nl per droplet. Microstructures and hydrogel-coated microwells allowed the placement of single MCF-7 breast cancer spheroids close to the sensor electrodes. The microelectrode wells were sealed for oxygen measurements within a 55 nl volume for fast concentration changes. Accurate and stable amperometric oxygen sensor performance was demonstrated from atmospheric to anoxic regions. Cellular respiration rates from single tumour spheroids in the range of 450-850 fmol min-1 were determined, and alterations of cell metabolism upon drug exposure were shown. Our results uniquely combine bioprinting with 3D cell culture monitoring and demonstrate the much-needed effort for facilitation, parallelization, sensor integration, and drug delivery in 3D cell culture and organ-on-chip experiments. The workflow has a high degree of automation and potential for scalability. In order to achieve greater flexibility in the automation of spheroid formation and trapping, we employed a method based on drop-on-demand liquid handling systems, instead of the typical on-chip approach commonly used in microfluidics. Its relevance ranges from fundamental metabolic research over standardization of cell culture experiments and toxicological studies, to personalized medicine, e.g. patient-specific chemotherapy.
Collapse
Affiliation(s)
- Johannes Dornhof
- Laboratory for Sensors, IMTEK - Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany.
| | - Viktoria Zieger
- Laboratory for MEMS Applications, IMTEK - Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany
| | - Jochen Kieninger
- Laboratory for Sensors, IMTEK - Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany.
| | | | - Roland Zengerle
- Laboratory for MEMS Applications, IMTEK - Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany
- Hahn-Schickard, Freiburg, Germany
| | - Gerald A Urban
- Laboratory for Sensors, IMTEK - Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany.
| | - Sabrina Kartmann
- Laboratory for MEMS Applications, IMTEK - Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany
- Hahn-Schickard, Freiburg, Germany
| | - Andreas Weltin
- Laboratory for Sensors, IMTEK - Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
8
|
Tsujimura M, Kusamori K, Takamura K, Ito T, Kaya T, Shimizu K, Konishi S, Nishikawa M. Quality evaluation of cell spheroids for transplantation by monitoring oxygen consumption using an on-chip electrochemical device. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2022; 36:e00766. [PMID: 36245695 PMCID: PMC9562952 DOI: 10.1016/j.btre.2022.e00766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/19/2022] [Accepted: 10/01/2022] [Indexed: 11/18/2022]
Abstract
Three-dimensional cell spheroids are superior cell-administration form for cell-based therapy which generally exhibit superior functionality and long-term survival after transplantation. Here, we nondestructively measured the oxygen consumption rate of cell spheroids using an on-chip electrochemical device (OECD) and examined whether this rate can be used as a marker to estimate the quality of cell spheroids. Cell spheroids containing NanoLuc luciferase-expressing mouse mesenchymal stem cell line C3H10T1/2 (C3H10T1/2/Nluc) were prepared. Spheroids of high or low quality were prepared by altering the medium change frequency. After transplantation into mice, the high-quality C3H10T1/2/Nluc spheroids exhibited a higher survival rate than the low-quality ones. The oxygen consumption rate of the high-quality C3H10T1/2/Nluc spheroids was maintained at high levels, whereas that of the low-quality spheroids decreased with time. These results indicate that OECD-based measurement of the oxygen consumption rate can be used to estimate the quality of cell spheroids without destructive analysis of the spheroids.
Collapse
Affiliation(s)
- Mari Tsujimura
- Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Kosuke Kusamori
- Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
- Corresponding author.
| | - Kodai Takamura
- Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Temmei Ito
- KONICA MINOLTA, INC., No.1 Sakura-machi, Hino-shi, Tokyo, 191-8511, Japan
| | - Takatoshi Kaya
- KONICA MINOLTA, INC., No.1 Sakura-machi, Hino-shi, Tokyo, 191-8511, Japan
| | - Kazunori Shimizu
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8603, Japan
| | - Satoshi Konishi
- Department of Mechanical Engineering, Graduate School of Science and Engineering, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga, 525-8577, Japan
| | - Makiya Nishikawa
- Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| |
Collapse
|
9
|
PTEN expression in human cumulus cells is associated with embryo development competence. ZYGOTE 2022; 30:611-618. [DOI: 10.1017/s096719942200003x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Summary
Embryo quality determines the success of in vitro fertilization and embryo transfer (IVF-ET) treatment. Biomarkers for the evaluation of embryo quality have some limitations. Apoptosis in cumulus cells (CCs) is important for ovarian function. PTEN (phosphatase and tensin homolog) is a well known tumour suppressor gene that functions as a mediator of apoptosis and is crucial for mammalian reproduction. In the present study, we analyzed the expression level of PTEN in human CCs and aimed to investigate its association with embryo developmental competence in IVF treatment cycles. The PTEN mRNA level in CCs was measured using real-time fluorescence quantitative PCR. The association of the differential expression of PTEN with embryo quality was analyzed. Our data showed that PTEN mRNA levels were significantly decreased in CCs surrounding mature oocytes compared with immature oocytes. Similar changes were found in the analysis of fertilization and blastocyst formation. The speculation that the measurement of PTEN mRNA levels in human CCs would provide a useful tool for selecting oocytes with greater chances to implant into the uterus needs to be further verified through single-embryo transfer in the future. The proapoptotic mechanism of PTEN in human reproduction needs to be further studied.
Collapse
|
10
|
Anagnostopoulou C, Rosas IM, Singh N, Gugnani N, Chockalingham A, Singh K, Desai D, Darbandi M, Manoharan M, Darbandi S, Leonardi Diaz SI, Gupta S, Henkel R, Sallam HN, Boitrelle F, Wirka KA, Agarwal A. Oocyte quality and embryo selection strategies: a review for the embryologists, by the embryologists. Panminerva Med 2022; 64:171-184. [PMID: 35179016 DOI: 10.23736/s0031-0808.22.04680-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
With the advance of assisted reproduction techniques, and the trend towards blastocyst culture and single embryo transfer, gamete and embryo assessment have gained greater importance in ART treatment. Embryo quality depends mainly on gamete quality and culture conditions. Oocyte maturity identification is necessary in order to plan fertilization timing. Mature oocytes at the metaphase II stage show a higher fertilization rate compared to immature oocytes. Morphology assessment is a critical yet challenging task that may serve as a good prognostic tool for future development and implantation potential if done effectively. Various grading systems have been suggested to assess embryos at pronuclear, cleavage, and blastocyst stages. By identifying the embryo with the highest implantation potential, it is possible to reduce the number of embryos transferred without compromising the chances of a successful pregnancy. Apart from the conventional morphology assessment, there are several invasive or non-invasive methods for embryo selection such as preimplantation genetic testing, morphokinetics, proteomics, metabolomics, oxygen consumption, and measurement of oxidative stress in culture medium. Morphokinetics is a method based on time-lapse technology and continuous monitoring of embryos. In this review, we aim to describe and compare the most effective and widely used methods for gamete and embryo assessment as well as embryo selection.
Collapse
Affiliation(s)
| | - Israel M Rosas
- Citmer Reproductive Medicine, IVF LAB, Mexico City, Mexico
| | | | - Nivita Gugnani
- Milann-The Fertility Centre, Delhi, India.,All India Institute of Medical Sciences, Delhi, India
| | | | - Keerti Singh
- Faculty of Medical Sciences, The University of the West Indies, Cave Hill Campus, Barbados
| | - Dimple Desai
- DPU IVF & ENDOSCOPY CENTER, Dr. D. Y. Patil Hospital & Research Centre, Pune, India
| | - Mahsa Darbandi
- Fetal Health Research Center, Hope Generation Foundation, Tehran, Iran.,Gene Therapy and Regenerative Medicine Research Center, Hope Generation Foundation, Tehran, Iran
| | | | - Sara Darbandi
- Fetal Health Research Center, Hope Generation Foundation, Tehran, Iran.,Gene Therapy and Regenerative Medicine Research Center, Hope Generation Foundation, Tehran, Iran
| | | | - Sajal Gupta
- American Center for Reproductive Medicine, Cleveland, OH, USA
| | - Ralf Henkel
- American Center for Reproductive Medicine, Cleveland, OH, USA.,Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.,Department of Medical Bioscience, University of the Western Cape, Bellville, South Africa.,Logix X Pharma, Theale, Berkshire, UK
| | - Hassan N Sallam
- Department of Obstetrics and Gynaecology, Alexandria University Faculty of Medicine, Alexandria, Egypt
| | - Florence Boitrelle
- Reproductive Biology, Fertility Preservation, Andrology, CECOS, Poissy Hospital, Poissy, France.,Department of Biology, Reproduction, Epigenetics, Environment and Development, ParisSaclay University, UVSQ, INRAE, BREED, Jouyen-Josas, France
| | - Kelly A Wirka
- Fertility & Endocrinology, Medical Affairs, EMD Serono, USA
| | - Ashok Agarwal
- American Center for Reproductive Medicine, Cleveland, OH, USA -
| |
Collapse
|
11
|
McKeegan PJ, Boardman SF, Wanless AA, Boyd G, Warwick LJ, Lu J, Gnanaprabha K, Picton HM. Intracellular oxygen metabolism during bovine oocyte and preimplantation embryo development. Sci Rep 2021; 11:21245. [PMID: 34711892 PMCID: PMC8553752 DOI: 10.1038/s41598-021-99512-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/24/2021] [Indexed: 11/11/2022] Open
Abstract
We report a novel method to profile intrcellular oxygen concentration (icO2) during in vitro mammalian oocyte and preimplantation embryo development using a commercially available multimodal phosphorescent nanosensor (MM2). Abattoir-derived bovine oocytes and embryos were incubated with MM2 in vitro. A series of inhibitors were applied during live-cell multiphoton imaging to record changes in icO2 associated with mitochondrial processes. The uncoupler carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP) uncouples mitochondrial oxygen consumption to its maximum, while antimycin inhibits complex III to ablate mitochondrial oxygen consumption. Increasing oxygen consumption was expected to reduce icO2 and decreasing oxygen consumption to increase icO2. Use of these inhibitors quantifies how much oxygen is consumed at basal in comparison to the upper and lower limits of mitochondrial function. icO2 measurements were compared to mitochondrial DNA copy number analysed by qPCR. Antimycin treatment increased icO2 for all stages tested, suggesting significant mitochondrial oxygen consumption at basal. icO2 of oocytes and preimplantation embryos were unaffected by FCCP treatment. Inner cell mass icO2 was lower than trophectoderm, perhaps reflecting limitations of diffusion. Mitochondrial DNA copy numbers were similar between stages in the range 0.9-4 × 106 copies and did not correlate with icO2. These results validate the MM2 probe as a sensitive, non-toxic probe of intracellular oxygen concentration in mammalian oocytes and preimplantation embryos.
Collapse
Affiliation(s)
- Paul J McKeegan
- Reproduction and Early Development Research Group, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Clarendon Way, Leeds, LS2 9JT, UK.
- Centre for Anatomical and Human Sciences, Hull York Medical School, University of Hull, Hull, HU6 7RX, UK.
| | - Selina F Boardman
- Reproduction and Early Development Research Group, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Clarendon Way, Leeds, LS2 9JT, UK
- CARE Fertility, Manchester, England, UK
| | - Amy A Wanless
- Reproduction and Early Development Research Group, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Clarendon Way, Leeds, LS2 9JT, UK
- Assisted Conception Unit, Ninewells Hospital, Dundee, Scotland, UK
| | - Grace Boyd
- Reproduction and Early Development Research Group, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Clarendon Way, Leeds, LS2 9JT, UK
- Department of Biological Sciences, University of York, Wentworth Way, York, YO10 5DD, England, UK
| | - Laura J Warwick
- Reproduction and Early Development Research Group, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Clarendon Way, Leeds, LS2 9JT, UK
- St James's University Hospital, Beckett Street, Leeds, LS9 7TF, England, UK
| | - Jianping Lu
- Reproduction and Early Development Research Group, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Clarendon Way, Leeds, LS2 9JT, UK
| | - Keerthi Gnanaprabha
- Reproduction and Early Development Research Group, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Clarendon Way, Leeds, LS2 9JT, UK
- GCRM Fertility, 21 Fifty Pitches Way, Glasgow, G51 4FD, Scotland, UK
| | - Helen M Picton
- Reproduction and Early Development Research Group, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Clarendon Way, Leeds, LS2 9JT, UK
| |
Collapse
|
12
|
Fujimine-Sato A, Kuno T, Higashi K, Sugawara A, Hiraga H, Takahashi A, Tanaka K, Yokoyama E, Shiga N, Watanabe Z, Yaegashi N, Tachibana M. Exploration of the Cytoplasmic Function of Abnormally Fertilized Embryos via Novel Pronuclear-Stage Cytoplasmic Transfer. Int J Mol Sci 2021; 22:ijms22168765. [PMID: 34445470 PMCID: PMC8395835 DOI: 10.3390/ijms22168765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/08/2021] [Accepted: 08/10/2021] [Indexed: 11/16/2022] Open
Abstract
In regular IVF, a portion of oocytes exhibit abnormal numbers of pronuclei (PN) that is considered as abnormal fertilization, and they are routinely discarded. However, it is known that abnormal ploidy still does not completely abandon embryo development and implantation. To explore the potential of cytoplasm from those abnormally fertilized oocytes, we developed a novel technique for the transfer of large cytoplasm between pronuclear-stage mouse embryos, and assessed its impact. A large volume of cytoplast could be efficiently transferred in the PN stage using a novel two-step method of pronuclear-stage cytoplasmic transfer (PNCT). PNCT revealed the difference in the cytoplasmic function among abnormally fertilized embryos where the cytoplasm of 3PN was developmentally more competent than 1PN, and the supplementing of fresh 3PN cytoplasm restored the impaired developmental potential of postovulatory “aged” oocytes. PNCT-derived embryos harbored significantly higher mitochondrial DNA copies, ATP content, oxygen consumption rate, and total cells. The difference in cytoplasmic function between 3PN and 1PN mouse oocytes probably attributed to the proper activation via sperm and may impact subsequent epigenetic events. These results imply that PNCT may serve as a potential alternative treatment to whole egg donation for patients with age-related recurrent IVF failure.
Collapse
Affiliation(s)
- Ayako Fujimine-Sato
- Department of Obstetrics and Gynecology, Tohoku University Hospital, Sendai 980-8574, Japan; (A.F.-S.); (T.K.); (K.H.); (A.S.); (H.H.); (A.T.); (K.T.); (E.Y.); (N.S.); (Z.W.); (N.Y.)
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Takashi Kuno
- Department of Obstetrics and Gynecology, Tohoku University Hospital, Sendai 980-8574, Japan; (A.F.-S.); (T.K.); (K.H.); (A.S.); (H.H.); (A.T.); (K.T.); (E.Y.); (N.S.); (Z.W.); (N.Y.)
| | - Keiko Higashi
- Department of Obstetrics and Gynecology, Tohoku University Hospital, Sendai 980-8574, Japan; (A.F.-S.); (T.K.); (K.H.); (A.S.); (H.H.); (A.T.); (K.T.); (E.Y.); (N.S.); (Z.W.); (N.Y.)
| | - Atsushi Sugawara
- Department of Obstetrics and Gynecology, Tohoku University Hospital, Sendai 980-8574, Japan; (A.F.-S.); (T.K.); (K.H.); (A.S.); (H.H.); (A.T.); (K.T.); (E.Y.); (N.S.); (Z.W.); (N.Y.)
| | - Hiroaki Hiraga
- Department of Obstetrics and Gynecology, Tohoku University Hospital, Sendai 980-8574, Japan; (A.F.-S.); (T.K.); (K.H.); (A.S.); (H.H.); (A.T.); (K.T.); (E.Y.); (N.S.); (Z.W.); (N.Y.)
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Aiko Takahashi
- Department of Obstetrics and Gynecology, Tohoku University Hospital, Sendai 980-8574, Japan; (A.F.-S.); (T.K.); (K.H.); (A.S.); (H.H.); (A.T.); (K.T.); (E.Y.); (N.S.); (Z.W.); (N.Y.)
| | - Keiko Tanaka
- Department of Obstetrics and Gynecology, Tohoku University Hospital, Sendai 980-8574, Japan; (A.F.-S.); (T.K.); (K.H.); (A.S.); (H.H.); (A.T.); (K.T.); (E.Y.); (N.S.); (Z.W.); (N.Y.)
| | - Emi Yokoyama
- Department of Obstetrics and Gynecology, Tohoku University Hospital, Sendai 980-8574, Japan; (A.F.-S.); (T.K.); (K.H.); (A.S.); (H.H.); (A.T.); (K.T.); (E.Y.); (N.S.); (Z.W.); (N.Y.)
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Naomi Shiga
- Department of Obstetrics and Gynecology, Tohoku University Hospital, Sendai 980-8574, Japan; (A.F.-S.); (T.K.); (K.H.); (A.S.); (H.H.); (A.T.); (K.T.); (E.Y.); (N.S.); (Z.W.); (N.Y.)
| | - Zen Watanabe
- Department of Obstetrics and Gynecology, Tohoku University Hospital, Sendai 980-8574, Japan; (A.F.-S.); (T.K.); (K.H.); (A.S.); (H.H.); (A.T.); (K.T.); (E.Y.); (N.S.); (Z.W.); (N.Y.)
| | - Nobuo Yaegashi
- Department of Obstetrics and Gynecology, Tohoku University Hospital, Sendai 980-8574, Japan; (A.F.-S.); (T.K.); (K.H.); (A.S.); (H.H.); (A.T.); (K.T.); (E.Y.); (N.S.); (Z.W.); (N.Y.)
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Masahito Tachibana
- Department of Obstetrics and Gynecology, Tohoku University Hospital, Sendai 980-8574, Japan; (A.F.-S.); (T.K.); (K.H.); (A.S.); (H.H.); (A.T.); (K.T.); (E.Y.); (N.S.); (Z.W.); (N.Y.)
- Correspondence: ; Tel.: +81-22-717-7253; Fax: +81-22-717-7258
| |
Collapse
|
13
|
Molecular Drivers of Developmental Arrest in the Human Preimplantation Embryo: A Systematic Review and Critical Analysis Leading to Mapping Future Research. Int J Mol Sci 2021; 22:ijms22158353. [PMID: 34361119 PMCID: PMC8347543 DOI: 10.3390/ijms22158353] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/28/2021] [Accepted: 07/31/2021] [Indexed: 12/14/2022] Open
Abstract
Developmental arrest of the preimplantation embryo is a multifactorial condition, characterized by lack of cellular division for at least 24 hours, hindering the in vitro fertilization cycle outcome. This systematic review aims to present the molecular drivers of developmental arrest, focusing on embryonic and parental factors. A systematic search in PubMed/Medline, Embase and Cochrane-Central-Database was performed in January 2021. A total of 76 studies were included. The identified embryonic factors associated with arrest included gene variations, mitochondrial DNA copy number, methylation patterns, chromosomal abnormalities, metabolic profile and morphological features. Parental factors included, gene variation, protein expression levels and infertility etiology. A valuable conclusion emerging through critical analysis indicated that genetic origins of developmental arrest analyzed from the perspective of parental infertility etiology and the embryo itself, share common ground. This is a unique and long-overdue contribution to literature that for the first time presents an all-inclusive methodological report on the molecular drivers leading to preimplantation embryos’ arrested development. The variety and heterogeneity of developmental arrest drivers, along with their inevitable intertwining relationships does not allow for prioritization on the factors playing a more definitive role in arrested development. This systematic review provides the basis for further research in the field.
Collapse
|
14
|
Real-Time Analysis of Oxygen Gradient in Oocyte Respiration Using a High-Density Microelectrode Array. BIOSENSORS-BASEL 2021; 11:bios11080256. [PMID: 34436058 PMCID: PMC8393405 DOI: 10.3390/bios11080256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/20/2021] [Accepted: 07/26/2021] [Indexed: 02/05/2023]
Abstract
Physiological events related to oxygen concentration gradients provide valuable information to determine the state of metabolizing biological cells. The existing oxygen sensing methods (i.e., optical photoluminescence, magnetic resonance, and scanning electrochemical) are well-established and optimized for existing in vitro analyses. However, such methods also present various limitations in resolution, real-time sensing performance, complexity, and costs. An electrochemical imaging system with an integrated microelectrode array (MEA) would offer attractive means of measuring oxygen consumption rate (OCR) based on the cell’s two-dimensional (2D) oxygen concentration gradient. This paper presents an application of an electrochemical sensor platform with a custom-designed complementary-metal-oxide-semiconductor (CMOS)-based microchip and its Pt-coated surface MEA. The high-density MEA provides 16,064 individual electrochemical pixels that cover a 3.6 mm × 3.6 mm area. Utilizing the three-electrode configuration, the system is capable of imaging low oxygen concentration (18.3 µM, 0.58 mg/L, or 13.8 mmHg) at 27.5 µm spatial resolution and up to 4 Hz temporal resolution. In vitro oxygen imaging experiments were performed to analyze bovine cumulus-oocytes-complexes cells OCR and oxygen flux density. The integration of a microfluidic system allows proper bio-sample handling and delivery to the MEA surface for imaging. Finally, the imaging results are processed and presented as 2D heatmaps, representing the dissolved oxygen concentration in the immediate proximity of the MEA. This paper provides the results of real-time 2D imaging of OCR of live cells/tissues to gain spatial and temporal dynamics of target cell metabolism.
Collapse
|
15
|
Gimeno I, García-Manrique P, Carrocera S, López-Hidalgo C, Valledor L, Martín-González D, Gómez E. The Metabolic Signature of In Vitro Produced Bovine Embryos Helps Predict Pregnancy and Birth after Embryo Transfer. Metabolites 2021; 11:484. [PMID: 34436426 PMCID: PMC8399324 DOI: 10.3390/metabo11080484] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 12/28/2022] Open
Abstract
In vitro produced (IVP) embryos show large metabolic variability induced by breed, culture conditions, embryonic stage and sex and gamete donors. We hypothesized that the birth potential could be accurately predicted by UHPLC-MS/MS in culture medium (CM) with the discrimination of factors inducing metabolic variation. Day-6 embryos were developed in single CM (modified synthetic oviduct fluid) for 24 h and transferred to recipients as fresh (28 ETs) or frozen/thawed (58 ETs) Day-7 blastocysts. Variability was induced with seven bulls, slaughterhouse oocyte donors, culture conditions (serum + Bovine Serum Albumin [BSA] or BSA alone) prior to single culture embryonic stage records (Day-6: morula, early blastocyst, blastocyst; Day-7: expanding blastocyst; fully expanded blastocysts) and cryopreservation. Retained metabolite signals (6111) were analyzed as a function of pregnancy at Day-40, Day-62 and birth in a combinatorial block study with all fixed factors. We identified 34 accumulated metabolites through 511 blocks, 198 for birth, 166 for Day-62 and 147 for Day-40. The relative abundance of metabolites was higher within blocks from non-pregnant (460) than from pregnant (51) embryos. Taxonomy classified lipids (12 fatty acids and derivatives; 224 blocks), amino acids (12) and derivatives (3) (186 blocks), benzenoids (4; 58 blocks), tri-carboxylic acids (2; 41 blocks) and 5-Hydroxy-l-tryptophan (2 blocks). Some metabolites were effective as single biomarkers in 95 blocks (Receiver Operating Characteristic - Area Under the Curve [ROC-AUC]: 0.700-1.000). In contrast, more accurate predictions within the largest data sets were obtained with combinations of 2, 3 and 4 single metabolites in 206 blocks (ROC-AUC = 0.800-1.000). Pregnancy-prone embryos consumed more amino acids and citric acid, and depleted less lipids and cis-aconitic acid. Big metabolic differences between embryos support efficient pregnancy and birth prediction when analyzed in discriminant conditions.
Collapse
Affiliation(s)
- Isabel Gimeno
- Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Centro de Biotecnología Animal, Camino de Rioseco 1225, 33394 Gijón, Spain; (I.G.); (S.C.); (D.M.-G.)
| | - Pablo García-Manrique
- Molecular Mass Spectrometry Unit, Scientific and Technical Services, University of Oviedo, Catedrático Rodrigo Uria s/n, 33006 Oviedo, Spain;
| | - Susana Carrocera
- Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Centro de Biotecnología Animal, Camino de Rioseco 1225, 33394 Gijón, Spain; (I.G.); (S.C.); (D.M.-G.)
| | - Cristina López-Hidalgo
- Department of Organisms and Systems Biology, University Institute of Biotechnology of Asturias (IUBA), University of Oviedo, Catedrático Rodrigo Uria s/n, 33006 Oviedo, Spain; (C.L.-H.); (L.V.)
| | - Luis Valledor
- Department of Organisms and Systems Biology, University Institute of Biotechnology of Asturias (IUBA), University of Oviedo, Catedrático Rodrigo Uria s/n, 33006 Oviedo, Spain; (C.L.-H.); (L.V.)
| | - David Martín-González
- Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Centro de Biotecnología Animal, Camino de Rioseco 1225, 33394 Gijón, Spain; (I.G.); (S.C.); (D.M.-G.)
| | - Enrique Gómez
- Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Centro de Biotecnología Animal, Camino de Rioseco 1225, 33394 Gijón, Spain; (I.G.); (S.C.); (D.M.-G.)
| |
Collapse
|
16
|
Mukomoto R, Nashimoto Y, Terai T, Imaizumi T, Hiramoto K, Ino K, Yokokawa R, Miura T, Shiku H. Oxygen consumption rate of tumour spheroids during necrotic-like core formation. Analyst 2021; 145:6342-6348. [PMID: 32716439 DOI: 10.1039/d0an00979b] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Hypoxia is one of the major hallmarks of solid tumours and is associated with the poor prognosis of various cancers. A multicellular aggregate, termed a spheroid, has been used as a tumour model with a necrotic-like core for more than 45 years. Oxygen metabolism in spheroids has been studied using phosphorescence quenching and oxygen-sensitive electrodes. However, these conventional methods require chemical labelling and physical insertion of the electrode into each spheroid, which may be functionally and structurally disruptive. Scanning electrochemical microscopy (SECM) can non-invasively analyse oxygen metabolism. Here, we used SECM to investigate whether the changes of the internal structure of spheroids affect the oxygen metabolism. We investigated the oxygen consumption rate (OCR) of MCF-7 breast tumour spheroids with and without a necrotic-like core. A numerical simulation was used to describe a method for estimating the OCR of spheroids that settled at the bottom of the conventional culture plates. The OCR per spheroid volume decreased with increasing spheroid radius, indicating the limitation of the oxygen supply to the core of the MCF-7 spheroid. Formation of the necrotic-like core did not affect the oxygen metabolism significantly, implying that the core had minimal contribution to the OCR even before necrosis occurred. OCR analysis using SECM non-invasively monitors the change of oxygen metabolism in tumour spheroids. The approach is promising to evaluate various three-dimensional culture models.
Collapse
Affiliation(s)
- Rei Mukomoto
- Graduate School of Environmental Studies, Tohoku University, Miyagi 980-8579, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Metabolites Secreted by Bovine Embryos In Vitro Predict Pregnancies That the Recipient Plasma Metabolome Cannot, and Vice Versa. Metabolites 2021; 11:metabo11030162. [PMID: 33799889 PMCID: PMC7999939 DOI: 10.3390/metabo11030162] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/02/2021] [Accepted: 03/08/2021] [Indexed: 12/23/2022] Open
Abstract
This work describes the use of mass spectrometry-based metabolomics as a non-invasive approach to accurately predict birth prior to embryo transfer (ET) starting from embryo culture media and plasma recipient. Metabolomics was used here as a predictive platform. Day-6 in vitro produced embryos developed singly in modified synthetic oviduct fluid culture medium (CM) drops for 24 h were vitrified as Day-7 blastocysts and transferred to recipients. Day-0 and Day-7 recipient plasma (N = 36 × 2) and CM (N = 36) were analyzed by gas chromatography coupled to the quadrupole time of flight mass spectrometry (GC-qTOF). Metabolites quantified in CM and plasma were analyzed as a function to predict pregnancy at Day-40, Day-62, and birth (univariate and multivariate statistics). Subsequently, a Boolean matrix (F1 score) was constructed with metabolite pairs (one from the embryo, and one from the recipient) to combine the predictive power of embryos and recipients. Validation was performed in independent cohorts of ETs analyzed. Embryos that did not reach birth released more stearic acid, capric acid, palmitic acid, and glyceryl monostearate in CM (i.e., (p < 0.05, FDR < 0.05, Receiver Operator Characteristic—area under curve (ROC-AUC) > 0.669)). Within Holstein recipients, hydrocinnamic acid, alanine, and lysine predicted birth (ROC-AUC > 0.778). Asturiana de los Valles recipients that reached birth showed lower concentrations of 6-methyl-5-hepten-2-one, stearic acid, palmitic acid, and hippuric acid (ROC-AUC > 0.832). Embryonal capric acid and glyceryl-monostearate formed F1 scores generally >0.900, with metabolites found both to differ (e.g., hippuric acid, hydrocinnamic acid) or not (e.g., heptadecanoic acid, citric acid) with pregnancy in plasmas, as hypothesized. Efficient lipid metabolism in the embryo and the recipient can allow pregnancy to proceed. Changes in phenolics from plasma suggest that microbiota and liver metabolism influence the pregnancy establishment in cattle.
Collapse
|
18
|
Han S, Hou J, Zhang X, Huang G. Predicting The Developmental Potential Of Cleavage Stage Embryos Based On Oxygen Consumption Rate In FET Cycles. JBRA Assist Reprod 2020; 24:241-244. [PMID: 32072993 PMCID: PMC7365525 DOI: 10.5935/1518-0557.20190080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVE To study the value of oxygen consumption (OC) as a predictor of the developmental potential of D3 embryos in frozen embryo transfer (FET) cycles. METHODS This observational study included 148 patients undergoing FET cycles with two embryos transferred per cycle. OC rates were examined by scanning electrochemical microscopy before embryo transfer. Implantation, clinical pregnancy, miscarriage, and live birth rates were calculated. RESULTS A total of 296 embryos were transferred in 148 cycles, or two embryos per cycle. The embryos were divided into three groups based on OC: Group A included the cases in which the OC rate of each of the two transferred embryos was greater than 3.0 fmol/s; Group B included the cases in which the OC rate of one of the embryos was greater than 3.0 fmol/s and the OC rate of the other embryo was less than 3.0 fmol/s; and Group C included the cases in which the OC rates of the two embryos were less than 3.0 fmol/s. Higher live birth rates and lower miscarriage rates were observed in Group A (p<0.05). CONCLUSIONS Our data suggest that OC is positively correlated with embryo developmental potential. Therefore, measuring the OC of human embryos may be useful in embryo assessment.
Collapse
Affiliation(s)
- Shubiao Han
- Chongqing Key Laboratory of Human Embryo Engineering, Chongqing Reproductive and Genetics Institute, Chongqing Health Center for Women and Children. Chongqing, China
| | - Jiying Hou
- Department of Histology and Embryology, Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University. Chongqing, China
| | - Xiaodong Zhang
- Chongqing Key Laboratory of Human Embryo Engineering, Chongqing Reproductive and Genetics Institute, Chongqing Health Center for Women and Children. Chongqing, China
| | - Guoning Huang
- Chongqing Key Laboratory of Human Embryo Engineering, Chongqing Reproductive and Genetics Institute, Chongqing Health Center for Women and Children. Chongqing, China
| |
Collapse
|
19
|
Simoska O, Stevenson KJ. Electrochemical sensors for rapid diagnosis of pathogens in real time. Analyst 2020; 144:6461-6478. [PMID: 31603150 DOI: 10.1039/c9an01747j] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Microbial infections remain the principal cause for high morbidity and mortality rates. While approximately 1400 human pathogens have been recognized, the majority of healthcare-associated infectious diseases are caused by only a few opportunistic pathogens (e.g., Pseudomonas aeruginosa, Staphylococcus aureus, Escherichia coli), which are associated with increased antibiotic and antimicrobial resistance. Rapid detection, reliable identification and real-time monitoring of these pathogens remain not only a scientific problem but also a practical challenge of vast importance, especially in tailoring effective treatment strategies. Although the development of vaccinations and antibacterial drug treatments are the leading research, progress, and implementation of early warning, quantitative systems indicative of confirming pathogen presence are necessary. Over the years, various approaches, such as conventional culturing, straining, molecular methods (e.g., polymerase chain reaction and immunological assays), microscopy-based and mass spectrometry techniques, have been employed to identify and quantify pathogenic agents. While being sensitive in some cases, these procedures are costly, time-consuming, mostly qualitative, and are indirect detection methods. A great challenge is therefore to develop rapid, highly sensitive, specific devices with adequate figures of merit to corroborate the presence of microbes and enable dynamic real-time measurements of metabolism. As an alternative, electrochemical sensor platforms have been developed as powerful quantitative tools for label-free detection of infection-related biomarkers with high sensitivity. This minireview is focused on the latest electrochemical-based approaches for pathogen sensing, putting them into the context of standard sensing methods, such as cell culturing, mass spectrometry, and fluorescent-based approaches. Description of the latest, impactful electrochemical sensors for pathogen detection will be presented. Recent breakthroughs will be highlighted, including the use of micro- and nano-electrode arrays for real-time detection of bacteria in polymicrobial infections and microfluidic devices for pathogen separation analysis. We will conclude with perspectives and outlooks to understand shortcomings in designing future sensing schemes. The need for high sensitivity and selectivity, low-cost implementation, fast detection, and screening increases provides an impetus for further development in electrochemical detectors for microorganisms and biologically relevant targets.
Collapse
Affiliation(s)
- Olja Simoska
- Department of Chemistry, University of Texas at Austin, 1 University Station, Stop A5300, Austin, TX 78712, USA
| | | |
Collapse
|
20
|
Kuno T, Tachibana M, Fujimine-Sato A, Fue M, Higashi K, Takahashi A, Kurosawa H, Nishio K, Shiga N, Watanabe Z, Yaegashi N. A Preclinical Evaluation towards the Clinical Application of Oxygen Consumption Measurement by CERMs by a Mouse Chimera Model. Int J Mol Sci 2019; 20:ijms20225650. [PMID: 31726651 PMCID: PMC6888687 DOI: 10.3390/ijms20225650] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/01/2019] [Accepted: 11/06/2019] [Indexed: 11/16/2022] Open
Abstract
We have developed an automated device for the measurement of oxygen consumption rate (OCR) called Chip-sensing Embryo Respiratory Measurement system (CERMs). To verify the safety and the significance of the OCR measurement by CERMs, we conducted comprehensive tests using a mouse model prior to clinical trials in a human in vitro fertilization (IVF) program. Embryo transfer revealed that the OCR measured by CERMs did not compromise the full-term development of mice or their future fertility, and was positively correlated with adenosine triphosphate (ATP) production and the mitochondrial membrane potential (ΔΨm), thereby indirectly reflecting mitochondrial oxidative phosphorylation (OXPHOS) activity. We demonstrated that the OCR is independent of embryo morphology (the size) and number of mitochondria (mitochondrial DNA copy number). The OCR correlated with the total cell numbers, whereas the inner cell mass (ICM) cell numbers and the fetal developmental rate were not. Thus, the OCR may serve as an indicator of the numbers of trophectoderm (TE) cells, rather than number or quality of ICM cells. However, implantation ability was neither correlated with the OCR, nor the embryo size in this model. This can probably be attributed to the limitation that chimeric embryos contain non-physiological high TE cells counts that are beneficial for implantation. CERMs can be safely employed in clinical IVF owing to it being a safe, highly effective, non-invasive, accurate, and quantitative tool for OCR measurement. Utilization of CERMs for clinical testing of human embryos would provide further insights into the nature of oxidative metabolism and embryonic viability.
Collapse
Affiliation(s)
- Takashi Kuno
- Department of Obstetrics and Gynecology, Tohoku University Hospital, Sendai 980-8574, Japan; (T.K.); (A.F.-S.); (M.F.); (K.H.); (A.T.); (N.S.); (Z.W.); (N.Y.)
| | - Masahito Tachibana
- Department of Obstetrics and Gynecology, Tohoku University Hospital, Sendai 980-8574, Japan; (T.K.); (A.F.-S.); (M.F.); (K.H.); (A.T.); (N.S.); (Z.W.); (N.Y.)
- Correspondence: ; Tel.: +81-22-717-7251; Fax: +81-22-717-7258
| | - Ayako Fujimine-Sato
- Department of Obstetrics and Gynecology, Tohoku University Hospital, Sendai 980-8574, Japan; (T.K.); (A.F.-S.); (M.F.); (K.H.); (A.T.); (N.S.); (Z.W.); (N.Y.)
| | - Misaki Fue
- Department of Obstetrics and Gynecology, Tohoku University Hospital, Sendai 980-8574, Japan; (T.K.); (A.F.-S.); (M.F.); (K.H.); (A.T.); (N.S.); (Z.W.); (N.Y.)
| | - Keiko Higashi
- Department of Obstetrics and Gynecology, Tohoku University Hospital, Sendai 980-8574, Japan; (T.K.); (A.F.-S.); (M.F.); (K.H.); (A.T.); (N.S.); (Z.W.); (N.Y.)
| | - Aiko Takahashi
- Department of Obstetrics and Gynecology, Tohoku University Hospital, Sendai 980-8574, Japan; (T.K.); (A.F.-S.); (M.F.); (K.H.); (A.T.); (N.S.); (Z.W.); (N.Y.)
| | - Hiroki Kurosawa
- Department of Obstetrics and Gynecology, Tohoku Medical and pharmaceutical university, Wakabayashi hospital, Sendai 984-8560, Japan;
| | - Keisuke Nishio
- Institute for Animal Experimentation, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan;
| | - Naomi Shiga
- Department of Obstetrics and Gynecology, Tohoku University Hospital, Sendai 980-8574, Japan; (T.K.); (A.F.-S.); (M.F.); (K.H.); (A.T.); (N.S.); (Z.W.); (N.Y.)
| | - Zen Watanabe
- Department of Obstetrics and Gynecology, Tohoku University Hospital, Sendai 980-8574, Japan; (T.K.); (A.F.-S.); (M.F.); (K.H.); (A.T.); (N.S.); (Z.W.); (N.Y.)
| | - Nobuo Yaegashi
- Department of Obstetrics and Gynecology, Tohoku University Hospital, Sendai 980-8574, Japan; (T.K.); (A.F.-S.); (M.F.); (K.H.); (A.T.); (N.S.); (Z.W.); (N.Y.)
| |
Collapse
|
21
|
Han S, Han W, Zhang X, Liu J, Huang G. Vitrification of Human In-Vitro Matured Oocytes: Effects on Mitochondrial Ultrastructure and Oxygen Consumption. FERTILITY & REPRODUCTION 2019. [DOI: 10.1142/s2661318219500130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Background: This study was conducted to evaluate the impact of vitrification on mitochondrial of human IVM oocytes. Methods: A total of 401 immature oocytes were obtained from ovarian stimulated cycles, which were randomly divided into fresh and vitrification groups after IVM. According to the cultured time after thawing, the vitrification groups were divided into 0 hours (0 h), 2 hours (2 h), or 4 hours (4 h) subgroups. Mitochondrial morphology and oxygen consumption were compared among the four groups. After fertilization by ICSI, normal fertilization, cleaved embryos, and blastocyst formation rate were also calculated. Results: The mean gray value of mitochondria structure was significantly decreased in 0 h and 2 h groups when compared to control group (0.48 ± 0.09, 0.50 ± 0.36 vs. 0.61 ± 0.12, respectively; P [Formula: see text] 0.05), and recovered (0.61 ± 0.24 vs. 0.61 ± 0.12, P [Formula: see text] 0.05) in 4 h group. In addition, oxygen consumption was also significantly decreased in 0 h and 2 h groups compared to fresh (2.91 ± 0.77 fmol/s, 3.26 ± 1.34 fmol/s vs. 3.96 ± 1.44 fmol/s, respectively; P [Formula: see text] 0.05), and recovered after 4 h culture (3.96 ± 1.44 fmol/s vs. 4.41 ± 1.38 fmol/s, respectively; P [Formula: see text] 0.05). The percentage of normal fertilization and cleaved embryos were no differences among the four groups, however, blastocyst development rate was significantly lower in 0 h group. Conclusion: These results indicate that during the vitrification process, the oxygen consumption and mitochondrial structure of oocytes may undergo temporary dynamic changes, but appear to recover by 4 hours.
Collapse
Affiliation(s)
- Shubiao Han
- Chongqing Health Center for Women and Children, Chongqing 400010, China
| | - Wei Han
- Chongqing Health Center for Women and Children, Chongqing 400010, China
| | - Xiaodong Zhang
- Chongqing Health Center for Women and Children, Chongqing 400010, China
| | - Junxia Liu
- Chongqing Health Center for Women and Children, Chongqing 400010, China
| | - Guoning Huang
- Chongqing Health Center for Women and Children, Chongqing 400010, China
| |
Collapse
|
22
|
Shi J, Tong L, Tong W, Chen H, Lan M, Sun X, Zhu Y. Current progress in long-term and continuous cell metabolite detection using microfluidics. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.05.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
23
|
Ino K, Şen M, Shiku H, Matsue T. Micro/nanoelectrochemical probe and chip devices for evaluation of three-dimensional cultured cells. Analyst 2018; 142:4343-4354. [PMID: 29106427 DOI: 10.1039/c7an01442b] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Herein, we present an overview of recent research progress in the development of micro/nanoelectrochemical probe and chip devices for the evaluation of three-dimensional (3D) cultured cells. First, we discuss probe devices: a general outline, evaluation of O2 consumption, enzyme-modified electrodes, evaluation of endogenous enzyme activity, and the collection of cell components from cell aggregates are discussed. The next section is focused on integrated chip devices: a general outline, electrode array devices, smart electrode array devices, droplet detection of 3D cultured cells, cell manipulation using dielectrophoresis (DEP), and electrodeposited hydrogels used for fabrication of 3D cultured cells on chip devices are discussed. Finally, we provide a summary and discussion of future directions of research in this field.
Collapse
Affiliation(s)
- Kosuke Ino
- Graduate School of Engineering, Tohoku University, 6-6-11-406 Aramaki-aza Aoba, Aoba-ku, Sendai 980-8579, Japan.
| | - Mustafa Şen
- Department of Biomedical Engineering, Izmir Katip Celebi University, 35620 Cigli, Izmir, Turkey
| | - Hitoshi Shiku
- Graduate School of Engineering, Tohoku University, 6-6-11-406 Aramaki-aza Aoba, Aoba-ku, Sendai 980-8579, Japan.
| | - Tomokazu Matsue
- Graduate School of Environmental Studies, Tohoku University, 6-6-11-604 Aramaki-aza Aoba, Aoba-ku, Sendai 980-8579, Japan.
| |
Collapse
|
24
|
SHIKU H. Characterization System of Embryos, Embryoid Bodies and Multicellular Spheroids Based on an Electrochemical Method. BUNSEKI KAGAKU 2018. [DOI: 10.2116/bunsekikagaku.67.653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Simopoulou M, Sfakianoudis K, Rapani A, Giannelou P, Anifandis G, Bolaris S, Pantou A, Lambropoulou M, Pappas A, Deligeoroglou E, Pantos K, Koutsilieris M. Considerations Regarding Embryo Culture Conditions: From Media to Epigenetics. ACTA ACUST UNITED AC 2018; 32:451-460. [PMID: 29695546 DOI: 10.21873/invivo.11261] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 03/13/2018] [Accepted: 03/20/2018] [Indexed: 02/05/2023]
Abstract
There are numerous reports on embryo culture media and conditions in the laboratory, as the subject is multifaceted and complex, reflecting the variation in practice. In this scoping review, we attempt to approach the topic of culture media and conditions from the practitioners' perspective aiming to highlight, in a comprehensive fashion, important aspects regarding the options available, introduce points of debate and controversy, while maintaining the viewpoint of the practicing embryologist's concerns.
Collapse
Affiliation(s)
- Mara Simopoulou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece .,Assisted Conception Unit, 2nd Department of Obstetrics and Gynecology, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Anna Rapani
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Polina Giannelou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece.,Centre for Human Reproduction, Genesis Athens Clinic, Athens, Greece
| | - George Anifandis
- Department of Histology and Embryology, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Stamatis Bolaris
- Assisted Conception Unit, Elena Venizelou General-Maternity District Hospital, Athens, Greece
| | - Agni Pantou
- Centre for Human Reproduction, Genesis Athens Clinic, Athens, Greece
| | - Maria Lambropoulou
- Department of Histology and Embryology, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| | - Athanasios Pappas
- Centre for Human Reproduction, Genesis Athens Clinic, Athens, Greece
| | - Efthimios Deligeoroglou
- Assisted Conception Unit, 2nd Department of Obstetrics and Gynecology, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Michael Koutsilieris
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
26
|
Goto K, Kumasako Y, Koike M, Kanda A, Kido K, Nagaki M, Otsu E, Kawabe F, Kai Y, Utsunomiya T. Prediction of the in vitro developmental competence of early-cleavage-stage human embryos with time-lapse imaging and oxygen consumption rate measurement. Reprod Med Biol 2018; 17:289-296. [PMID: 30013431 PMCID: PMC6046524 DOI: 10.1002/rmb2.12104] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 03/27/2018] [Indexed: 01/18/2023] Open
Abstract
PURPOSE To assess an embryo's ability to develop into a good-quality blastocyst during the early-cleavage stage using time-lapse imaging and the oxygen consumption rate. METHODS In total, 942 zygotes had their oxygen consumption rates measured. In total, 282 zygotes were assessed by using time-lapse imaging. In total, 121 zygotes were examined by using both their oxygen consumption rate and time-lapse imaging. RESULTS The embryos with moderate respiration rates of between 0.41 and 0.61 (×1014/mol s-1) on day 3 had a 22.1% chance of becoming good-quality blastocysts; those outside that range had a 14.3% chance. With the time-lapse system, when the first division was within 24 hours, 22.3% of the embryos grew to good blastocysts. After 24 hours, the rate dropped to 8.6%. The intervals between two consecutive cleavages were calculated and the duration of the second cell cycle was defined. When the time was between nine hours and 13 hours, there was a higher rate of good blastocysts. Regarding both criteria, when the embryos had progressed in the optimal range, a high percentage of them had become good blastocysts; it was 8.0% outside of that range. CONCLUSION Individual embryos with the potential to develop into good-quality blastocysts could be selected at day 3 of culture using these systems.
Collapse
|
27
|
Cecchino GN, Seli E, Alves da Motta EL, García-Velasco JA. The role of mitochondrial activity in female fertility and assisted reproductive technologies: overview and current insights. Reprod Biomed Online 2018; 36:686-697. [DOI: 10.1016/j.rbmo.2018.02.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 02/18/2018] [Accepted: 02/28/2018] [Indexed: 12/21/2022]
|
28
|
Lin TE, Rapino S, Girault HH, Lesch A. Electrochemical imaging of cells and tissues. Chem Sci 2018; 9:4546-4554. [PMID: 29899947 PMCID: PMC5969511 DOI: 10.1039/c8sc01035h] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 04/09/2018] [Indexed: 01/10/2023] Open
Abstract
This minireview summarizes the recent achievements of electrochemical imaging platforms to map cellular functions in biological specimens using electrochemical scanning nano/micro-probe microscopy and 2D chips containing microelectrode arrays.
The technological and experimental progress in electrochemical imaging of biological specimens is discussed with a view on potential applications for skin cancer diagnostics, reproductive medicine and microbial testing. The electrochemical analysis of single cell activity inside cell cultures, 3D cellular aggregates and microtissues is based on the selective detection of electroactive species involved in biological functions. Electrochemical imaging strategies, based on nano/micrometric probes scanning over the sample and sensor array chips, respectively, can be made sensitive and selective without being affected by optical interference as many other microscopy techniques. The recent developments in microfabrication, electronics and cell culturing/tissue engineering have evolved in affordable and fast-sampling electrochemical imaging platforms. We believe that the topics discussed herein demonstrate the applicability of electrochemical imaging devices in many areas related to cellular functions.
Collapse
Affiliation(s)
- Tzu-En Lin
- Laboratory of Physical and Analytical Electrochemistry (LEPA) , École Polytechnique Fédéderale de Lausanne , EPFL Valais Valais , Rue de l'Industrie 17 , CP 440 , 1951 Sion , Switzerland .
| | - Stefania Rapino
- Chemistry Department "Giacomo Ciamician" , University of Bologna , Via Selmi 2 , 40126 Bologna , Italy
| | - Hubert H Girault
- Laboratory of Physical and Analytical Electrochemistry (LEPA) , École Polytechnique Fédéderale de Lausanne , EPFL Valais Valais , Rue de l'Industrie 17 , CP 440 , 1951 Sion , Switzerland .
| | - Andreas Lesch
- Laboratory of Physical and Analytical Electrochemistry (LEPA) , École Polytechnique Fédéderale de Lausanne , EPFL Valais Valais , Rue de l'Industrie 17 , CP 440 , 1951 Sion , Switzerland .
| |
Collapse
|
29
|
Lima A, Burgstaller J, Sanchez-Nieto JM, Rodríguez TA. The Mitochondria and the Regulation of Cell Fitness During Early Mammalian Development. Curr Top Dev Biol 2017; 128:339-363. [PMID: 29477168 DOI: 10.1016/bs.ctdb.2017.10.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
From fertilization until the onset of gastrulation the early mammalian embryo undergoes a dramatic series of changes that converts a single fertilized cell into a remarkably complex organism. Much attention has been given to the molecular changes occurring during this process, but here we will review what is known about the changes affecting the mitochondria and how they impact on the energy metabolism and apoptotic response of the embryo. We will also focus on understanding what quality control mechanisms ensure optimal mitochondrial activity in the embryo, and in this way provide an overview of the importance of the mitochondria in determining cell fitness during early mammalian development.
Collapse
Affiliation(s)
- Ana Lima
- British Heart Foundation Centre for Research Excellence, National Heart and Lung Institute, Imperial Centre for Translational and Experimental Medicine, Imperial College London, London, United Kingdom; Cell Stress Group, MRC London Institute of Medical Sciences (LMS), London, United Kingdom
| | - Jörg Burgstaller
- British Heart Foundation Centre for Research Excellence, National Heart and Lung Institute, Imperial Centre for Translational and Experimental Medicine, Imperial College London, London, United Kingdom; Biotechnology in Animal Production, Department for Agrobiotechnology, IFA Tulln, Tulln, Austria
| | - Juan M Sanchez-Nieto
- British Heart Foundation Centre for Research Excellence, National Heart and Lung Institute, Imperial Centre for Translational and Experimental Medicine, Imperial College London, London, United Kingdom
| | - Tristan A Rodríguez
- British Heart Foundation Centre for Research Excellence, National Heart and Lung Institute, Imperial Centre for Translational and Experimental Medicine, Imperial College London, London, United Kingdom.
| |
Collapse
|
30
|
Hiramoto K, Yasumi M, Ushio H, Shunori A, Ino K, Shiku H, Matsue T. Development of Oxygen Consumption Analysis with an on-Chip Electrochemical Device and Simulation. Anal Chem 2017; 89:10303-10310. [DOI: 10.1021/acs.analchem.7b02074] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Kaoru Hiramoto
- Corporate
Engineering Division, Automotive and Industrial Systems Company, Panasonic Corporation, 1006 Kadoma, Kadomashi, 571-0050, Japan
| | - Masahiro Yasumi
- Corporate
Engineering Division, Automotive and Industrial Systems Company, Panasonic Corporation, 1006 Kadoma, Kadomashi, 571-0050, Japan
| | - Hiroshi Ushio
- Corporate
Engineering Division, Automotive and Industrial Systems Company, Panasonic Corporation, 1006 Kadoma, Kadomashi, 571-0050, Japan
| | - Atsushi Shunori
- Corporate
Engineering Division, Automotive and Industrial Systems Company, Panasonic Corporation, 1006 Kadoma, Kadomashi, 571-0050, Japan
| | - Kosuke Ino
- Graduate
School of Engineering, Tohoku University, 6-6-11-406 Aramaki-aza Aoba, Aoba-ku, Sendai 980-8579, Japan
| | - Hitoshi Shiku
- Graduate
School of Engineering, Tohoku University, 6-6-11-406 Aramaki-aza Aoba, Aoba-ku, Sendai 980-8579, Japan
| | - Tomokazu Matsue
- Graduate School of Environmental Studies, Tohoku University, 6-6-11-605
Aramaki-aza Aoba, Aoba-ku, Sendai, 980-8579, Japan
| |
Collapse
|
31
|
Hu K, Yu Y. Metabolite availability as a window to view the early embryo microenvironment in vivo. Mol Reprod Dev 2017; 84:1027-1038. [PMID: 28722155 DOI: 10.1002/mrd.22868] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 07/17/2017] [Indexed: 01/03/2023]
Abstract
A preimplantation embryo exists independent of blood supply, and relies on energy sources from its in vivo environment (e.g., oviduct and uterine fluid) to sustain its development. The embryos can survive in this aqueous environment because it contains amino acids, proteins, lactate, pyruvate, oxygen, glucose, antioxidants, ions, growth factors, hormones, and phospholipids-albeit the concentration of each component varies by species, stage of the estrous cycle, and anatomical location. The dynamic nature of this environment sustains early development from the one-cell zygote to blastocyst, and is reciprocally influenced by the embryo at each embryonic stage. Focusing on embryo metabolism allowed us to identify how the local environment was deliberately selected to meet the dynamic needs of the preimplantation embryo, and helped reveal approaches to improve the in vitro culture of human embryos for improved implantation rates and pregnancy outcome.
Collapse
Affiliation(s)
- Kailun Hu
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Reproductive Medical Center, Beijing, People's Republic of China
| | - Yang Yu
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Reproductive Medical Center, Beijing, People's Republic of China
| |
Collapse
|
32
|
Bolnick A, Awonuga AO, Yang Y, Abdulhasan M, Xie Y, Zhou S, Puscheck EE, Rappolee DA. Using stem cell oxygen physiology to optimize blastocyst culture while minimizing hypoxic stress. J Assist Reprod Genet 2017. [PMID: 28647787 DOI: 10.1007/s10815-017-0971-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
This review is a response to the Fellows Forum on testing 2% oxygen for best culture of human blastocysts (J Ass Reprod Gen 34:303-8, 1; J Ass Reprod Gen 34:309-14, 2) prior to embryo transfer. It is a general analysis in support of the position that an understanding of stem cell physiology and responses to oxygen are necessary for optimization of blastocyst culture in IVF and to enhance reproductive success in fertile women.
Collapse
Affiliation(s)
- Alan Bolnick
- CS Mott Center for Human Growth and Development, Department of Ob/Gyn, Reproductive Endocrinology and Infertility, Wayne State University School of Medicine, Detroit, MI, 48201, USA.,Department of Obstetrics and Gynecology, Kaleida Women's and Children's Hospital Buffalo New York, Buffalo, NY, USA
| | - Awoniyi O Awonuga
- CS Mott Center for Human Growth and Development, Department of Ob/Gyn, Reproductive Endocrinology and Infertility, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Yu Yang
- CS Mott Center for Human Growth and Development, Department of Ob/Gyn, Reproductive Endocrinology and Infertility, Wayne State University School of Medicine, Detroit, MI, 48201, USA.,Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Mohammed Abdulhasan
- CS Mott Center for Human Growth and Development, Department of Ob/Gyn, Reproductive Endocrinology and Infertility, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Yufen Xie
- Fertility and Surgical Associates of California, Thousand Oaks, CA, 91361, USA
| | - Sichang Zhou
- University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Elizabeth E Puscheck
- CS Mott Center for Human Growth and Development, Department of Ob/Gyn, Reproductive Endocrinology and Infertility, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Daniel A Rappolee
- CS Mott Center for Human Growth and Development, Department of Ob/Gyn, Reproductive Endocrinology and Infertility, Wayne State University School of Medicine, Detroit, MI, 48201, USA. .,Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, USA. .,Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA. .,Institutes for Environmental Health Science, Wayne State University School of Medicine, Detroit, MI, USA. .,Department of Biology, University of Windsor, Windsor, ON, N9B 3P4, Canada. .,CS Mott Center for Human Growth and Development, Wayne State University School of Medicine, 275 East Hancock, Detroit, MI, 48201, USA.
| |
Collapse
|