1
|
Hyperandrogenism by Liquid Chromatography Tandem Mass Spectrometry in PCOS: Focus on Testosterone and Androstenedione. J Clin Med 2020; 10:jcm10010119. [PMID: 33396396 PMCID: PMC7795755 DOI: 10.3390/jcm10010119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/21/2020] [Accepted: 12/27/2020] [Indexed: 12/12/2022] Open
Abstract
The identification of hyperandrogenism in polycystic ovary syndrome (PCOS) is concerning because of the poor accuracy of the androgen immunoassays (IA) and controversies regarding which androgens should be measured. The aim of our study was to evaluate the impact of the assessment of testosterone (T) and androstenedione (A) by liquid chromatography in tandem with mass spectrometry (LC/MS-MS), in the diagnosis of PCOS. We evaluated 131 patients referred for suspected PCOS. Fourteen patients in total were excluded, some because of other diagnosis (n = 7) or incomplete diagnostic workup (n = 7). We measured T and A both by IA and LC-MS/MS in the 117 subjects included. We calculated free T (fT) by the Vermeulen formula and recorded clinical and metabolic data. 73 healthy females served as controls to derive immunoassays (IA) and LC-MS/MS reference intervals for T, fT and A. PCOS was confirmed in 90 subjects by IA and in 93 (+3.3%) by LC-MS/MS. The prevalence of biochemical hyperandrogenism in PCOS by LC-MS/MS increased from 81.7% to 89.2% if A was also considered. The most frequently elevated androgens were fT (73.1%) and A (64.5%) and they had similar levels of accuracy in differentiating PCOS and controls (0.34 ng/dL, Sn 91% Sp 89%; 1.16 ng/mL, Sn 91% Sp 88%, respectively). Free testosterone correlated with body mass index (BMI), homeostatic model assessment (HOMA)-index, glycated hemoglobin (HbA1c), and sex-binding globulin (SHBG). The results confirm that LC-MS/MS is slightly more sensitive than IA in the diagnosis of PCOS with LC-MS/MS detecting higher levels of fT and A. Moreover, assessment of fT and A by LC-MS/MS had a similar level of accuracy in discriminating between PCOs and control subjects. Lastly, fT by LC-MS/MS correlates with adverse metabolic parameters.
Collapse
|
2
|
Wang Z, Wang H, Peng Y, Chen F, Zhao L, Li X, Qin J, Li Q, Wang B, Pan B, Guo W. A liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based assay to profile 20 plasma steroids in endocrine disorders. Clin Chem Lab Med 2020; 58:1477-1487. [PMID: 32084000 DOI: 10.1515/cclm-2019-0869] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 01/02/2020] [Indexed: 11/15/2022]
Abstract
Background Liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based assays are employed in more and more clinical laboratories to quantify steroids. The steroid quantification by LC-MS/MS shows great value in screening or diagnosing endocrine disorders; however, the number of functional steroids included in the LC-MS/MS methods is still limited. Methods Here, we describe the performance and validation of a 20-steroid plasma panel by LC-MS/MS. The panel included progestogens (including mineralocorticoids and glucocorticoids), androgens and estrogens biosynthesized in steroid metabolic pathways. The LC-MS/MS method was validated according to guidance documents, and subsequently employed to profile steroid changes in endocrine disorders. Results Using LC-MS/MS, 20 steroids were separated and quantified in 8 min. Coefficients of variation (CVs) of the 20 analytes at the lower limit of quantification (LLoQ) were all less than 15% (ranging from 1.84% to 14.96%). The linearity of the assay was demonstrated by all the R2 values greater than 0.995. Individual plasma steroids changed significantly in patients with subclinical Cushing's syndrome (SCS) and polycystic ovary syndrome (PCOS) - 17-hydroxypregnenolone (17-OH-PR), testosterone (T) and dihydrotestosterone (DHT) were significantly decreased in SCS patients, while in PCOS patients, pregnenolone, corticosterone (CORT), androstenedione (A4) and T were significantly increased and DHT was decreased. Conclusions The LC-MS/MS method we developed for the quantification of 20 plasma steroids is clinical practicable. The steroid profiling data using this assay indicate its screening value for endocrine disorders. To further explore the value of the assay, more investigations are however needed.
Collapse
Affiliation(s)
- Zhenxin Wang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, P.R. China.,Institute of Biomedical Science, Fudan University, Shanghai, P.R. China
| | - Hao Wang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - Yingfei Peng
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - Fangjun Chen
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - Lin Zhao
- Department of Endocrinology and Metabolism, Fudan Institute of Metabolic Diseases, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - Xiaomu Li
- Department of Endocrinology and Metabolism, Fudan Institute of Metabolic Diseases, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - Jiaqian Qin
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - Qianqian Li
- Waters Technologies (Shanghai) Co., Ltd., Pudong New District, Shanghai, P.R. China
| | - Beili Wang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - Baishen Pan
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - Wei Guo
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| |
Collapse
|