1
|
Segmental aneuploidies with 1 Mb resolution in human preimplantation blastocysts. Genet Med 2022; 24:2285-2295. [PMID: 36107168 DOI: 10.1016/j.gim.2022.08.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/22/2022] Open
Abstract
PURPOSE This study aimed to investigate the spectrum and characteristics of segmental aneuploidies (SAs) of <10 megabase (Mb) length in human preimplantation blastocysts. METHODS Preimplantation genetic testing for aneuploidy was performed in 15,411 blastocysts from 5171 patients using a validated 1 Mb resolution platform. The characteristics and spectrum of SAs, including the incidence, sizes, type, inheritance pattern, clinical significance, and embryo distribution, were studied. RESULTS In total, 6.4% of the 15,411 blastocysts carried SAs of >10 Mb, 4.9% of embryos had SAs ranging between 1 to 10 Mb, and 84.3% of 1 to 10 Mb SAs were <5 Mb in size. Inheritance pattern analysis indicated that approximately 63.8% of 1 to 10 Mb SAs were inherited and were predominantly 1 to 3 Mb in size. Furthermore, 18.4% of inherited SAs and 51.9% de novo 1 to 10 Mb SAs were pathogenic or likely pathogenic (P/LP). Different from whole-chromosome aneuploidies, reanalysis indicated that 50% of the de novo 1 to 10 Mb SAs and 70% of the >10 Mb SAs arose from mitotic errors. CONCLUSION Based on the established platform, 1 to 10 Mb SAs are common in blastocysts and include a subset of P/LP SAs. Inheritance pattern analysis and clinical interpretation based on the American College of Medical Genetics and Genomics/Association for Molecular Pathology guidelines contributed to determine the P/LP SAs.
Collapse
|
2
|
TILLEY S, PACELLA-INCE L, HARDY T, FULLSTON T. Illuminating the Artefacts of NGS Seen in PGT-A & PGT-SR. FERTILITY & REPRODUCTION 2022. [DOI: 10.1142/s2661318222741273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Background: Advancements in next generation sequencing (NGS) based genomics over the past 10 years have allowed the routine adoption of preimplantation genetic testing for aneuploidy (PGT-A), and/or segmental rearrangements (PGT-SR) of [Formula: see text]10Mb 1 in the assisted reproductive technology (ART) clinic. However, one challenge remains within the assessment of aligned short read sequencing data, in the ability to discriminate between embryonic profiles with genuine pathological copy number variations (CNVs) from artefacts arising from erroneous DNA amplification or library preparation. Aim: To identify the common artefacts seen in next generation sequencing (NGS) based PGT to reduce inconclusive or false positive results. Method: NGS profiles generated from biopsied human embryonic trophectoderm cells were manually analysed for common genomic artefacts. Following trophectoderm biopsy within a clinical ART cycle, cell samples underwent DNA amplification (Illumina SureplexTM DNA amplification system), sequencing (VeriSeqTM PGS kit on the MiSeq[Formula: see text] System, and bioinformatic data analysis (Bluefuse Multi v4.4, Illumina). Results: Common artefacts were identified affecting chromosomes 7, 11, and 19. Artefacts imitated small CNVs typically displaying a [Formula: see text]50% increase in centromeric sequence counts on chromosomes 7 and 11, and a global increase of sequence counts of [Formula: see text]40% across the entire chromosome 19 (except at the centromere, presenting as diploid). Interestingly a technical repeat of the library preparation and sequencing of the original DNA template somewhat normalised these artefacts. Conclusion: The study found three commonly occurring artefacts involving chromosomes 7, 11, and 19 artificially introduced during suboptimal NGS library preparation. Importantly these artefacts may be normalised through technical repeat of library preparation and sequencing. The awareness of these artefacts may reduce false positive and/or inconclusive results, increasing clinical embryonic utilisation following PGT.
Collapse
Affiliation(s)
- Sam TILLEY
- Repromed, 180 Fullarton Road, Dulwich, South Australia 5065, Australia
| | - Leanne PACELLA-INCE
- Repromed, 180 Fullarton Road, Dulwich, South Australia 5065, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, South Australia 5005, Australia
- Fertility Tasmania, 4/81 Elizabeth St, Hobart, Tasmania, 7000, Australia
| | - Tristan HARDY
- Repromed, 180 Fullarton Road, Dulwich, South Australia 5065, Australia
- SA Pathology, Adelaide, South Australia, 5000, Australia
| | - Tod FULLSTON
- Repromed, 180 Fullarton Road, Dulwich, South Australia 5065, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, South Australia 5005, Australia
| |
Collapse
|
3
|
Ogur C, Kahraman S, Griffin DK, Cinar Yapan C, Tufekci MA, Cetinkaya M, Temel SG, Yilmaz A. PGT for structural chromosomal rearrangements in 300 couples reveals specific risk factors but an interchromosomal effect is unlikely. Reprod Biomed Online 2022; 46:713-727. [PMID: 36803887 DOI: 10.1016/j.rbmo.2022.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/17/2022] [Accepted: 07/25/2022] [Indexed: 11/26/2022]
Abstract
RESEARCH QUESTION What factors affect the proportion of chromosomally balanced embryos in structural rearrangement carriers? Is there any evidence for an interchromosomal effect (ICE)? DESIGN Preimplantation genetic testing outcomes of 300 couples (198 reciprocal, 60 Robertsonian, 31 inversion and 11 complex structural rearrangement carriers) were assessed retrospectively. Blastocysts were analysed either by array-comparative genomic hybridization or next-generation sequencing techniques. ICE was investigated using a matched control group and sophisticated statistical measurement of effect size (φ). RESULTS 300 couples underwent 443 cycles; 1835 embryos were analysed and 23.8% were diagnosed as both normal/balanced and euploid. The overall cumulative clinical pregnancy and live birth rates were 69.5% and 55.8%, respectively. Complex translocations and female age (≥35) were found to be risk factors associated with lower chance of having a transferable embryo (P < 0.001). Based on analysis of 5237 embryos, the cumulative de-novo aneuploidy rate was lower in carriers compared to controls (45.6% versus 53.4%, P < 0.001) but this was a 'negligible' association (φ < 0.1). A further assessment of 117,033 chromosomal pairs revealed a higher individual chromosome error rate in embryos of carriers compared to controls (5.3% versus 4.9%), which was also a 'negligible' association (φ < 0.1), despite a P-value of 0.007. CONCLUSIONS These findings suggest that rearrangement type, female age and sex of the carrier have significant impacts on the proportion of transferable embryos. Careful examination of structural rearrangement carriers and controls indicated little or no evidence for an ICE. This study helps to provide a statistical model for investigating ICE and an improved personalized reproductive genetics assessment for structural rearrangement carriers.
Collapse
Affiliation(s)
- Cagri Ogur
- Yildiz Technical University, Department of Bioengineering, Istanbul, Turkey; Igenomix Avrupa Laboratories, Istanbul, Turkey.
| | - Semra Kahraman
- Istanbul Memorial Hospital, ART and Reproductive Genetics Center, Istanbul, Turkey
| | - Darren Karl Griffin
- School of Biosciences, Centre for Interdisciplinary Studies of Reproduction, University of Kent, Canterbury CT2 7NJ, UK
| | - Cigdem Cinar Yapan
- Istanbul Memorial Hospital, ART and Reproductive Genetics Center, Istanbul, Turkey
| | - Mehmet Ali Tufekci
- Istanbul Memorial Hospital, ART and Reproductive Genetics Center, Istanbul, Turkey
| | - Murat Cetinkaya
- Istanbul Memorial Hospital, ART and Reproductive Genetics Center, Istanbul, Turkey
| | - Sehime Gulsun Temel
- Uludag University, Faculty of Medicine, Department of Medical Genetics, Bursa, Turkey.
| | - Alper Yilmaz
- Yildiz Technical University, Department of Bioengineering, Istanbul, Turkey.
| |
Collapse
|
4
|
Kato T, Miyai S, Suzuki H, Murase Y, Ota S, Yamauchi H, Ammae M, Nakano T, Nakaoka Y, Inoue T, Morimoto Y, Fukuda A, Utsunomiya T, Nishizawa H, Kurahashi H. Usefulness of combined NGS and QF-PCR analysis for product of conception karyotyping. Reprod Med Biol 2022; 21:e12449. [PMID: 35386384 PMCID: PMC8967279 DOI: 10.1002/rmb2.12449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/03/2022] [Accepted: 02/14/2022] [Indexed: 12/02/2022] Open
Abstract
Purpose Since chromosomal abnormalities can be detected in more than half of miscarriages, cytogenetic testing of the product of conception (POC) can provide important information when preparing for a subsequent pregnancy. Conventional karyotyping is the common diagnostic method for a POC but can be problematic due to the need for cell culture. Methods We here conducted shallow whole-genome sequencing (sWGS) using next-generation sequencing (NGS) for alternative POC cytogenomic analysis. Since female euploidy samples can include 69,XXX triploidy, additional QF-PCR was performed in these cases. Results We here analyzed POC samples from miscarriages in 300 assisted reproductive technology (ART) pregnancies and detected chromosomal abnormalities in 201 instances (67.0%). Autosomal aneuploidy (151 cases, 50.3%) was the most frequent abnormality, consistent with prior conventional karyotyping data. Mosaic aneuploidy was detected in seven cases (2.0%). Notably, the frequency of triploidy was 2.3%, 10-fold lower than the reported frequency in non-ART pregnancies. Structural rearrangements were identified in nine samples (3%), but there was no case of segmental mosaicism. Conclusions These data suggest that NGS-based sWGS, with the aid of QF-PCR, is a viable alternative karyotyping procedure that does not require cell culture. This method could also assist with genetic counseling for couples who undergoes embryo selection based on PGT-A data.
Collapse
Affiliation(s)
- Takema Kato
- Division of Molecular GeneticsInstitute for Comprehensive Medical ScienceFujita Health UniversityAichiJapan
| | - Shunsuke Miyai
- Division of Molecular GeneticsInstitute for Comprehensive Medical ScienceFujita Health UniversityAichiJapan
- OVUS Inc.AichiJapan
| | | | | | | | | | | | | | | | | | | | | | | | - Haruki Nishizawa
- Department of Obstetrics and GynecologyFujita Health University School of MedicineAichiJapan
| | - Hiroki Kurahashi
- Division of Molecular GeneticsInstitute for Comprehensive Medical ScienceFujita Health UniversityAichiJapan
- OVUS Inc.AichiJapan
| |
Collapse
|
5
|
Snider AC, Darvin T, Spor L, Akinwole A, Cinnioglu C, Kayali R. Criteria to evaluate patterns of segmental and complete aneuploidies in preimplantation genetic testing for aneuploidy results suggestive of an inherited balanced translocation or inversion. F S Rep 2021; 2:72-79. [PMID: 34223276 PMCID: PMC8244368 DOI: 10.1016/j.xfre.2020.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/19/2020] [Accepted: 12/12/2020] [Indexed: 11/01/2022] Open
Abstract
Objective To define criteria for determining when preimplantation genetic testing for aneuploidy (PGT-A) results are suggestive of a potential balanced chromosomal rearrangement in the egg or sperm source and warrant karyotyping. Design Performance evaluation of criteria developed to assess PGT-A results for patterns of imbalances suggestive of a balanced chromosomal rearrangement in the egg or sperm source. Setting A single PGT-A laboratory and multiple in vitro fertilization centers. Patients Reproductive couples who underwent routine PGT-A testing. Interventions Karyotyping of reproductive couples for whom patterns of imbalances observed in PGT-A results suggested a balanced chromosomal rearrangement in the egg or sperm source. Main Outcome Measures Correct or incorrect flagging of predicted translocation in either the egg or sperm source based on chromosome analysis. Results Proposed criteria correctly predicted a balanced reciprocal translocation in 97% of cases (n = 33), a (13;14) Robertsonian translocation in all cases (n = 3), and an inversion in all cases (n = 2). Other criteria evaluated were determined to be ineffective because of relatively low occurrences that met the criteria and/or low predictive value. Conclusions Our results showed that the proposed criteria were effective for evaluating patterns of imbalances observed in PGT-A results suggestive of a potential chromosomal rearrangement in the egg or sperm source. Our proposed criteria can be employed by clinicians in the in vitro fertilization setting in combination with a patient's reproductive history to identify PGT-A patients who are likely carriers of balanced chromosomal rearrangements.
Collapse
|
6
|
Blyth U, Craciunas L, Hudson G, Choudhary M. Maternal germline factors associated with aneuploid pregnancy loss: a systematic review. Hum Reprod Update 2021; 27:866-884. [PMID: 33969392 DOI: 10.1093/humupd/dmab010] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 03/02/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Miscarriage describes the spontaneous loss of pregnancy before the threshold of viability; the vast majority occur before 12 weeks of gestation. Miscarriage affects one in four couples and is the most common complication of pregnancy. Chromosomal abnormalities of the embryo are identified in ∼50% of first trimester miscarriages; aneuploidy accounts for 86% of these cases. The majority of trisomic miscarriages are of maternal origin with errors occurring during meiotic division of the oocytes. Chromosome segregation errors in oocytes may be sporadic events secondary to advancing maternal age; however, there is increasing evidence to suggest possible maternal germline contributions to this. OBJECTIVE AND RATIONALE The objective of this review was to appraise critically the existing evidence relating to maternal germline factors associated with pregnancy loss secondary to embryo aneuploidy, identify limitations in the current evidence base and establish areas requiring further research. SEARCH METHODS The initial literature search was performed in September 2019 and updated in January 2021 using the electronic databases OVID MEDLINE, EMBASE and the Cochrane Library. No time or language restrictions were applied to the searches and only primary research was included. Participants were women who had suffered pregnancy loss secondary to numerical chromosomal abnormalities of the embryo. Study identification and subsequent data extraction were performed by two authors independently. The Newcastle-Ottawa Scale was used to judge the quality of the included studies. The results were synthesized narratively. OUTCOMES The literature search identified 2198 titles once duplicates were removed, of which 21 were eligible for inclusion in this systematic review. They reported on maternal germline factors having variable degrees of association with pregnancy loss of aneuploid origin. The Online Mendelian Inheritance in Man (OMIM) gene ontology database was used as a reference to establish the functional role currently attributed to the genes reported. The majority of the cases reported and included were secondary to the inheritance of maternal structural factors such as Robertsonian translocations, deletions and insertions. Germline factors with a plausible role in aneuploid pregnancy loss of maternal origin included skewed X-inactivation and CGG repeats in the fragile X mental retardation (FMR1) gene. Studies that reported the association of single gene mutations with aneuploid pregnancy loss were conflicting. Single gene mutations with an uncertain or no role in aneuploid pregnancy loss included mutations in synaptonemal complex protein 3 (SYCP3), mitotic polo-like kinase 4 (PLK4) and meiotic stromal antigen 3 (STAG3) spindle integrity variants and 5,10-methylenetetrahydrofolate reductase (MTHFR). WIDER IMPLICATIONS Identifying maternal genetic factors associated with an increased risk of aneuploidy will expand our understanding of cell division, non-disjunction and miscarriage secondary to embryo aneuploidy. The candidate germline factors identified may be incorporated in a screening panel for women suffering miscarriage of aneuploidy aetiology to facilitate counselling for subsequent pregnancies.
Collapse
Affiliation(s)
- Ursula Blyth
- Newcastle Fertility Centre at Life, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Laurentiu Craciunas
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Gavin Hudson
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Meenakshi Choudhary
- Newcastle Fertility Centre at Life, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| |
Collapse
|
7
|
Liu XY, Fan Q, Wang J, Li R, Xu Y, Guo J, Wang YZ, Zeng YH, Ding CH, Cai B, Zhou CQ, Xu YW. Higher chromosomal abnormality rate in blastocysts from young patients with idiopathic recurrent pregnancy loss. Fertil Steril 2020; 113:853-864. [PMID: 32228881 DOI: 10.1016/j.fertnstert.2019.11.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 11/10/2019] [Accepted: 11/12/2019] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To determine whether the incidence of chromosomal abnormalities in blastocysts is higher in patients with idiopathic recurrent pregnancy loss (iRPL) who underwent preimplantation genetic testing for aneuploidy (PGT-A) than in those who underwent preimplantation genetic testing for monogenic defects (PGT-M). DESIGN Retrospective cohort study. SETTING University-affiliated reproductive center. PATIENT(S) A total of 62 patients with iRPL underwent 101 PGT-A cycles (iRPL group), and 212 patients underwent 311 PGT-M cycles (control group). INTERVENTIONS(S) Blastocyst biopsy and comprehensive chromosome screening technologies, including single-nucleotide polymorphism microarrays and next-generation sequencing. MAIN OUTCOME MEASURE(S) Incidence of chromosomal abnormalities in blastocysts and clinical miscarriage (CM) rate. RESULT(S) Stratification analysis by maternal age showed an increased incidence of chromosomal abnormalities in the iRPL group aged ≤35 years (48.9% vs. 36.9%), whereas no significant increase was found in the iRPL group aged >35 years (66.9% vs. 61.4%). After transfer of euploid embryos, women aged ≤35 years with iRPL exhibited an increased CM rate compared with the control group (26.1% vs. 3.1%). CONCLUSION(S) Young patients with iRPL have a significantly higher rate of chromosomal abnormalities in blastocysts compared with patients with no or sporadic CM. Although euploid embryos were transferred after PGT-A, young patients with iRPL had a higher CM rate, which may indicate that chromosomal abnormalities might not be the only causal factor for iRPL. Therefore, the role of PGT-A in iRPL still needs to be clarified.
Collapse
Affiliation(s)
- Xin-Yan Liu
- Guangdong Provincial Key Laboratory of Reproductive Medicine, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Qi Fan
- Guangdong Provincial Key Laboratory of Reproductive Medicine, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Jing Wang
- Guangdong Provincial Key Laboratory of Reproductive Medicine, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Rong Li
- Guangdong Provincial Key Laboratory of Reproductive Medicine, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Yan Xu
- Guangdong Provincial Key Laboratory of Reproductive Medicine, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Jing Guo
- Guangdong Provincial Key Laboratory of Reproductive Medicine, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Yi-Zi Wang
- Guangdong Provincial Key Laboratory of Reproductive Medicine, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Yan-Hong Zeng
- Guangdong Provincial Key Laboratory of Reproductive Medicine, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Chen-Hui Ding
- Guangdong Provincial Key Laboratory of Reproductive Medicine, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Bing Cai
- Guangdong Provincial Key Laboratory of Reproductive Medicine, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Can-Quan Zhou
- Guangdong Provincial Key Laboratory of Reproductive Medicine, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Yan-Wen Xu
- Guangdong Provincial Key Laboratory of Reproductive Medicine, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China.
| |
Collapse
|
8
|
Preimplantation Genetic Testing for Chromosomal Abnormalities: Aneuploidy, Mosaicism, and Structural Rearrangements. Genes (Basel) 2020; 11:genes11060602. [PMID: 32485954 PMCID: PMC7349251 DOI: 10.3390/genes11060602] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 05/25/2020] [Accepted: 05/27/2020] [Indexed: 12/18/2022] Open
Abstract
There is a high incidence of chromosomal abnormalities in early human embryos, whether they are generated by natural conception or by assisted reproductive technologies (ART). Cells with chromosomal copy number deviations or chromosome structural rearrangements can compromise the viability of embryos; much of the naturally low human fecundity as well as low success rates of ART can be ascribed to these cytogenetic defects. Chromosomal anomalies are also responsible for a large proportion of miscarriages and congenital disorders. There is therefore tremendous value in methods that identify embryos containing chromosomal abnormalities before intrauterine transfer to a patient being treated for infertility—the goal being the exclusion of affected embryos in order to improve clinical outcomes. This is the rationale behind preimplantation genetic testing for aneuploidy (PGT-A) and structural rearrangements (-SR). Contemporary methods are capable of much more than detecting whole chromosome abnormalities (e.g., monosomy/trisomy). Technical enhancements and increased resolution and sensitivity permit the identification of chromosomal mosaicism (embryos containing a mix of normal and abnormal cells), as well as the detection of sub-chromosomal abnormalities such as segmental deletions and duplications. Earlier approaches to screening for chromosomal abnormalities yielded a binary result of normal versus abnormal, but the new refinements in the system call for new categories, each with specific clinical outcomes and nuances for clinical management. This review intends to give an overview of PGT-A and -SR, emphasizing recent advances and areas of active development.
Collapse
|
9
|
Beyer CE, Lewis A, Willats E, Mullen J. Preimplantation genetic testing using Karyomapping for a paternally inherited reciprocal translocation: a case study. J Assist Reprod Genet 2019; 36:951-963. [PMID: 30756205 DOI: 10.1007/s10815-019-01413-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 01/28/2019] [Indexed: 12/30/2022] Open
Abstract
PURPOSE Preimplantation genetic testing (PGT) using Karyomapping is used to screen embryos for single gene disorders prior to implantation. While Karyomapping is not designed to screen for abnormalities in chromosome copy number, this testing is based upon a genome-wide analysis of single nucleotide polymorphisms (SNP) and, as such, some chromosome abnormalities are detected. The aim of this study was to validate whether Karyomapping could provide reliable and accurate PGT for a paternal 46,XY,t(10;19)(p15;p13.3) reciprocal translocation. METHODS Feasibility/validation for PGT was performed using DNA from the couple, as well as DNA from the paternal parents and from a previous unbalanced pregnancy. Karyomapping was performed using Illumina's HumanKaryomap-12 BeadChip microarray technology. SNP analysis was performed using BlueFuse Multi software (Illumina). Transmission of the translocation was assessed through the analysis of SNP markers on the chromosome regions of interest. RESULTS PGT-SR was determined to be feasible as chromosomal SNP analysis could reliably distinguish normal/balanced outcomes from all unbalanced outcomes. The couple transferred a normal/balanced embryo in an elective single embryo transfer procedure following 2 IVF/PGT-SR cycles. A clinical pregnancy was achieved. CONCLUSION This is the first report of PGT-SR test validation using Karyomapping for a 46,XY,t(10;19)(p15;p13.3) reciprocal translocation. Karyomapping may offer a means of detecting unbalanced forms of chromosome rearrangements when other PGT platforms fail.
Collapse
Affiliation(s)
- C E Beyer
- Monash IVF, Suite 1, 252 Clayton Rd, Clayton, Victoria, 3168, Australia.
| | - A Lewis
- Monash IVF, Suite 1, 252 Clayton Rd, Clayton, Victoria, 3168, Australia
| | - E Willats
- Monash IVF, Suite 1, 252 Clayton Rd, Clayton, Victoria, 3168, Australia
| | - J Mullen
- Monash IVF, Suite 1, 252 Clayton Rd, Clayton, Victoria, 3168, Australia
| |
Collapse
|