1
|
Fakhari S, Campolina-Silva G, Asayesh F, Girardet L, Scott-Boyer MP, Droit A, Soulet D, Greener J, Belleannée C. Shear stress effects on epididymal epithelial cell via primary cilia mechanosensory signaling. J Cell Physiol 2024:e31475. [PMID: 39508588 DOI: 10.1002/jcp.31475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/24/2024] [Accepted: 10/17/2024] [Indexed: 11/15/2024]
Abstract
Shear stress, resulting from fluid flow, is a fundamental mechanical stimulus affecting various cellular functions. The epididymis, essential for sperm maturation, offers a compelling model to study the effects of shear stress on cellular behavior. This organ undergoes extensive proliferation and differentiation until puberty, achieving full functionality as spermatozoa commence their post-testicular maturation. Although the mechanical tension exerted by testicular fluid is hypothesized to drive epithelial proliferation and differentiation, the precise mechanisms remain unclear. Here we assessed whether the responsiveness of the epididymal cells to shear stress depends on functional primary cilia by combining microfluidic strategies on immortalized epididymal cells, calcium signaling assays, and high-throughput gene expression analysis. We identified 97 genes overexpressed in response to shear stress, including early growth response (Egr) 2/3, cellular communication network factor (Ccn) 1/2, and Fos proto-oncogene (Fos). While shear stress triggered a rapid increase of intracellular Ca2+, this response was abrogated following the impairment of primary ciliogenesis through pharmacological and siRNA approaches. Overall, our findings provide valuable insights into how mechanical forces influence the development of the male reproductive system, a requisite to sperm maturation.
Collapse
Affiliation(s)
- Sepideh Fakhari
- Department of Obstetrics, Gynecology, and Reproduction, Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle, Faculty of Medicine, Québec City, Quebec, Canada
- Centre de recherche du centre hospitalier universitaire de Québec - Université Laval, Québec City, Quebec, Canada
- Department of Chemistry, Faculty of Science and Engineering, Québec City, Quebec, Canada
| | - Gabriel Campolina-Silva
- Department of Obstetrics, Gynecology, and Reproduction, Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle, Faculty of Medicine, Québec City, Quebec, Canada
- Centre de recherche du centre hospitalier universitaire de Québec - Université Laval, Québec City, Quebec, Canada
| | - Farnaz Asayesh
- Department of Obstetrics, Gynecology, and Reproduction, Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle, Faculty of Medicine, Québec City, Quebec, Canada
| | - Laura Girardet
- Department of Obstetrics, Gynecology, and Reproduction, Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle, Faculty of Medicine, Québec City, Quebec, Canada
- Centre de recherche du centre hospitalier universitaire de Québec - Université Laval, Québec City, Quebec, Canada
| | - Marie-Pier Scott-Boyer
- Proteomics Platform, Québec Genomic Center, Université Laval, CHU de Québec Research Center (CHUL), Québec City, Quebec, Canada
| | - Arnaud Droit
- Proteomics Platform, Québec Genomic Center, Université Laval, CHU de Québec Research Center (CHUL), Québec City, Quebec, Canada
| | - Denis Soulet
- Centre de recherche du centre hospitalier universitaire de Québec - Université Laval, Québec City, Quebec, Canada
- Faculté de pharmacie, Université Laval, Québec City, Quebec, Canada
| | - Jesse Greener
- Centre de recherche du centre hospitalier universitaire de Québec - Université Laval, Québec City, Quebec, Canada
- Department of Chemistry, Faculty of Science and Engineering, Québec City, Quebec, Canada
| | - Clémence Belleannée
- Department of Obstetrics, Gynecology, and Reproduction, Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle, Faculty of Medicine, Québec City, Quebec, Canada
- Centre de recherche du centre hospitalier universitaire de Québec - Université Laval, Québec City, Quebec, Canada
| |
Collapse
|
2
|
Vinay L, Hess RA, Belleannée C. Human efferent ductules and epididymis display unique cell lineages with motile and primary cilia. Andrology 2024. [PMID: 39212979 DOI: 10.1111/andr.13732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Previous research has illustrated the role of cilia as mechanical and sensory antennae in various organs within the mammalian male reproductive system across different developmental stages. Despite their significance in both organ development and homeostasis, primary cilia in the human male reproductive excurrent duct have been overlooked due to limited access to human specimens. OBJECTIVE This study aimed to characterize the unique cellular composition of human efferent and epididymal ducts, with a focus on their association with primary cilia. MATERIALS AND METHODS Human efferent ductules/epididymides from five donors aged 32-47 years, were obtained through our local organ transplant program. Cell lineage specificity and primary cilia features were examined by immunofluorescent staining and confocal microscopy in the efferent ductules and the distinct segments of the epididymis. RESULTS The epithelium of the human efferent duct exhibited estrogen receptor-positive cells with primary cilia, FoxJ1-positive multiciliated cells with numerous motile cilia, and non-ciliated intraepithelial immune cells. Notably, intraluminal macrophages, identified by CD163/CD68 positivity, were observed to engage in sperm phagocytosis. In all three segments of the human epididymis, primary cilia were found on the surface of principal and basal cells. DISCUSSION AND CONCLUSIONS Our research indicates that the human efferent ductules create a distinct environment, characterized by the presence of two types of ciliated cells that are in contact with immune cells. The discovery of sensory primary cilia exposed on the surface of reabsorptive cells in the efferent ductules, as well as on basal and principal cells in the epididymis, lays the foundation for complementary functional studies. This research uncovers novel characteristics exclusive to human efferent ductules and epididymides, providing a basis for exploring innovative approaches to male contraception and infertility treatment.
Collapse
Affiliation(s)
- Ludovic Vinay
- Faculty of Medicine, Department of Obstetrics, Gynecology and Reproduction, Université Laval, CHU de Québec Research Center (CHUL), Quebec City, Canada
- Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle, Quebec City, Canada
| | - Rex A Hess
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Clémence Belleannée
- Faculty of Medicine, Department of Obstetrics, Gynecology and Reproduction, Université Laval, CHU de Québec Research Center (CHUL), Quebec City, Canada
- Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle, Quebec City, Canada
| |
Collapse
|
3
|
Lee V, Hinton BT, Hirashima T. Collective cell dynamics and luminal fluid flow in the epididymis: A mechanobiological perspective. Andrology 2024; 12:939-948. [PMID: 37415418 PMCID: PMC11278975 DOI: 10.1111/andr.13490] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/08/2023] [Accepted: 07/04/2023] [Indexed: 07/08/2023]
Abstract
BACKGROUND The mammalian epididymis is a specialized duct system that serves a critical role in sperm maturation and storage. Its distinctive, highly coiled tissue morphology provides a unique opportunity to investigate the link between form and function in reproductive biology. Although recent genetic studies have identified key genes and signaling pathways involved in the development and physiological functions of the epididymis, there has been limited discussion about the underlying dynamic and mechanical processes that govern these phenomena. AIMS In this review, we aim to address this gap by examining two key aspects of the epididymis across its developmental and physiological phases. RESULTS AND DISCUSSION First, we discuss how the complex morphology of the Wolffian/epididymal duct emerges through collective cell dynamics, including duct elongation, cell proliferation, and arrangement during embryonic development. Second, we highlight dynamic aspects of luminal fluid flow in the epididymis, essential for regulating the microenvironment for sperm maturation and motility, and discuss how this phenomenon emerges and interplays with epididymal epithelial cells. CONCLUSION This review not only aims to summarize current knowledge but also to provide a starting point for further exploration of mechanobiological aspects related to the cellular and extracellular fluid dynamics in the epididymis.
Collapse
Affiliation(s)
- Veronica Lee
- Mechanobiology, Institute, National University of Singapore, Singapore, Singapore
| | - Barry T. Hinton
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Tsuyoshi Hirashima
- Mechanobiology, Institute, National University of Singapore, Singapore, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
4
|
Long X, Chen L, Xiao X, Min X, Wu Y, Yang Z, Wen X. Structure, function, and research progress of primary cilia in reproductive physiology and reproductive diseases. Front Cell Dev Biol 2024; 12:1418928. [PMID: 38887518 PMCID: PMC11180893 DOI: 10.3389/fcell.2024.1418928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 05/16/2024] [Indexed: 06/20/2024] Open
Abstract
Primary cilia, serving as the central hub for cellular signal transduction, possess the remarkable ability to translate diverse extracellular signals, both chemical and mechanical, into intracellular responses. Their ubiquitous presence in the reproductive system underscores their pivotal roles in various cellular processes including development, differentiation, and migration. Emerging evidence suggests primary cilia as key players in reproductive physiology and associated pathologies. Notably, primary cilia have been identified in granulosa cells within mouse ovaries and uterine stromal cells, and perturbations in their structure and function have been implicated in a spectrum of reproductive dysfunctions and ciliary-related diseases. Furthermore, disruptions in primary cilia-mediated signal transduction pathways under pathological conditions exacerbate the onset and progression of reproductive disorders. This review provides a comprehensive overview of current research progress on primary cilia and their associated signaling pathways in reproductive physiology and diseases, with the aim of furnishing theoretical groundwork for the prevention and management of primary cilia-related structural and functional abnormalities contributing to reproductive system pathologies.
Collapse
Affiliation(s)
- Xiaochuan Long
- Clinical Veterinary Laboratory, College of Animal Science, Guizhou University, Guizhou, China
- Key Laboratory of Animal Genetic, Breeding and Reproduction in the plateau Mountainous Region, Ministry of Education, Guizhou University, Guizhou, China
| | - Li Chen
- Clinical Veterinary Laboratory, College of Animal Science, Guizhou University, Guizhou, China
- Key Laboratory of Animal Genetic, Breeding and Reproduction in the plateau Mountainous Region, Ministry of Education, Guizhou University, Guizhou, China
| | - Xinyao Xiao
- Clinical Veterinary Laboratory, College of Animal Science, Guizhou University, Guizhou, China
- Key Laboratory of Animal Genetic, Breeding and Reproduction in the plateau Mountainous Region, Ministry of Education, Guizhou University, Guizhou, China
| | - Xiayu Min
- Clinical Veterinary Laboratory, College of Animal Science, Guizhou University, Guizhou, China
- Key Laboratory of Animal Genetic, Breeding and Reproduction in the plateau Mountainous Region, Ministry of Education, Guizhou University, Guizhou, China
| | - Yao Wu
- Clinical Veterinary Laboratory, College of Animal Science, Guizhou University, Guizhou, China
- Key Laboratory of Animal Genetic, Breeding and Reproduction in the plateau Mountainous Region, Ministry of Education, Guizhou University, Guizhou, China
| | - Zengming Yang
- Key Laboratory of Animal Genetic, Breeding and Reproduction in the plateau Mountainous Region, Ministry of Education, Guizhou University, Guizhou, China
- Basic Veterinary Laboratory, College of Animal Science, Guizhou University, Guizhou, China
| | - Xin Wen
- Clinical Veterinary Laboratory, College of Animal Science, Guizhou University, Guizhou, China
- Key Laboratory of Animal Genetic, Breeding and Reproduction in the plateau Mountainous Region, Ministry of Education, Guizhou University, Guizhou, China
| |
Collapse
|
5
|
Belleannée C, Viana AGDA, Lavoie-Ouellet C. Intra and intercellular signals governing sperm maturation. Reprod Fertil Dev 2022; 35:27-38. [PMID: 36592975 DOI: 10.1071/rd22226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
After their production in the testis, spermatozoa do not have the capacity to move progressively and are unable to fertilise an oocyte. They sequentially acquire these abilities following their maturation in the epididymis and their capacitation/hyperactivation in the female reproductive system. As gene transcription is silenced in spermatozoa, extracellular factors released from the epididymal epithelium and from secretory glands allow spermatozoa to acquire bioactive molecules and to undergo intrinsic modifications. These modifications include epigenetic changes and post-translational modifications of endogenous proteins, which are important processes in sperm maturation. This article emphasises the roles played by extracellular factors secreted by the epididymis and accessory glands in the control of sperm intercellular signallings and fertilising abilities.
Collapse
Affiliation(s)
- Clémence Belleannée
- Faculty of Medicine, Department of Obstetrics, Gynecology and Reproduction, Université Laval, Center for Research in Reproduction, Development and Intergenerational Health (CRDSI), CHU de Québec Research Center (CHUL), Quebec City, QC, Canada
| | | | - Camille Lavoie-Ouellet
- Faculty of Medicine, Department of Obstetrics, Gynecology and Reproduction, Université Laval, Center for Research in Reproduction, Development and Intergenerational Health (CRDSI), CHU de Québec Research Center (CHUL), Quebec City, QC, Canada
| |
Collapse
|
6
|
Girardet L, Cyr DG, Belleannée C. Arl13b controls basal cell stemness properties and Hedgehog signaling in the mouse epididymis. Cell Mol Life Sci 2022; 79:556. [PMID: 36261680 DOI: 10.1007/s00018-022-04570-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/09/2022] [Accepted: 09/22/2022] [Indexed: 11/30/2022]
Abstract
Epithelial cells orchestrate a series of intercellular signaling events in response to tissue damage. While the epididymis is composed of a pseudostratified epithelium that controls the acquisition of male fertility, the maintenance of its integrity in the context of tissue damage or inflammation remains largely unknown. Basal cells of the epididymis contain a primary cilium, an organelle that controls cellular differentiation in response to Hedgehog signaling cues. Hypothesizing its contribution to epithelial homeostasis, we knocked out the ciliary component ARL13B in keratin 5-positive basal cells. In this model, the reduced size of basal cell primary cilia was associated with impaired Hedgehog signaling and the loss of KRT5, KRT14, and P63 basal cell markers. When subjected to tissue injury, the epididymal epithelium from knock-out mice displayed imbalanced rates of cell proliferation/apoptosis and failed to properly regenerate in vivo. This response was associated with changes in the transcriptomic landscape related to immune response, cell differentiation, cell adhesion, and triggered severe hypoplasia of the epithelium. Together our results indicate that the ciliary GTPase, ARL13B, participates in the transduction of the Hedgehog signaling pathway to maintain basal cell stemness needed for tissue regeneration. These findings provide new insights into the role of basal cell primary cilia as safeguards of pseudostratified epithelia.
Collapse
Affiliation(s)
- Laura Girardet
- Faculty of Medicine, Department of Obstetrics, Gynecology and Reproduction, Université Laval, CHU de Québec Research Center (CHUL), Quebec City, QC, Canada
| | - Daniel G Cyr
- Faculty of Medicine, Department of Obstetrics, Gynecology and Reproduction, Université Laval, CHU de Québec Research Center (CHUL), Quebec City, QC, Canada.,Laboratory for Reproductive Toxicology, INRS-Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Laval, QC, Canada
| | - Clémence Belleannée
- Faculty of Medicine, Department of Obstetrics, Gynecology and Reproduction, Université Laval, CHU de Québec Research Center (CHUL), Quebec City, QC, Canada.
| |
Collapse
|
7
|
HajiEsmailPoor Z, Tabnak P, Ahmadzadeh B, Ebrahimi SS, Faal B, Mashatan N. Role of hedgehog signaling related non-coding RNAs in developmental and pathological conditions. Biomed Pharmacother 2022; 153:113507. [DOI: 10.1016/j.biopha.2022.113507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/23/2022] [Accepted: 07/30/2022] [Indexed: 11/02/2022] Open
|
8
|
Chen H, Alves MBR, Belleannée C. Contribution of epididymal epithelial cell functions to sperm epigenetic changes and the health of progeny. Hum Reprod Update 2021; 28:51-66. [PMID: 34618012 DOI: 10.1093/humupd/dmab029] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/19/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Spermatozoa acquire their motility and fertilizing abilities during their maturation through the epididymis. This process is controlled by epididymal epithelial cells that possess features adapted to sense and respond to their surrounding environment and to communicate with spermatozoa. During the past decade, new intercellular communication processes have been discovered, including the secretion and transport of molecules from the epithelium to spermatozoa via extracellular vesicles (EVs), as well as sensing of the intraluminal milieu by cellular extensions. OBJECTIVE AND RATIONALE This review addresses recent findings regarding epididymal epithelial cell features and interactions between spermatozoa and the epididymal epithelium as well as epigenetic modifications undergone by spermatozoa during transit through the epididymal microenvironment. SEARCH METHODS A systematic search was conducted in Pubmed with the keyword 'epididymis'. Results were filtered on original research articles published from 2009 to 2021 and written in the English language. One hundred fifteen original articles presenting recent advancements on the epididymis contribution to sperm maturation were selected. Some additional papers cited in the primary reference were also included. A special focus was given to higher mammalian species, particularly rodents, bovines and humans, that are the most studied in this field. OUTCOMES This review provides novel insights into the contribution of epididymal epithelium and EVs to post-testicular sperm maturation. First, new immune cell populations have been described in the epididymis, where they are proposed to play a role in protecting the environment surrounding sperm against infections or autoimmune responses. Second, novel epididymal cell extensions, including dendrites, axopodia and primary cilia, have been identified as sensors of the environment surrounding sperm. Third, new functions have been outlined for epididymal EVs, which modify the sperm epigenetic profile and participate in transgenerational epigenetic inheritance of paternal traits. WIDER IMPLICATIONS Although the majority of these findings result from studies in rodents, this fundamental research will ultimately improve our knowledge of human reproductive physiopathologies. Recent discoveries linking sperm epigenetic modifications with paternal environmental exposure and progeny outcome further stress the importance of advancing fundamental research on the epididymis. From this, new therapeutic options for infertile couples and better counseling strategies may arise to increase positive health outcomes in children conceived either naturally or with ART.
Collapse
Affiliation(s)
- Hong Chen
- Department of Obstetrics, Gynecology and Reproduction, Université Laval, Quebec, Canada
| | | | - Clémence Belleannée
- Department of Obstetrics, Gynecology and Reproduction, Université Laval, Quebec, Canada
| |
Collapse
|
9
|
Girardet L, Bernet A, Calvo E, Soulet D, Joly-Beauparlant C, Droit A, Cyr DG, Belleannée C. Hedgehog signaling pathway regulates gene expression profile of epididymal principal cells through the primary cilium. FASEB J 2020; 34:7593-7609. [DOI: 10.1096/fj.202000328r] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/18/2020] [Accepted: 03/23/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Laura Girardet
- Faculty of Medicine Department of Obstetrics, Gynecology and Reproduction Université Laval, CHU de Québec Research Center (CHUL) Quebec City QC Canada
| | - Agathe Bernet
- Faculty of Medicine Department of Obstetrics, Gynecology and Reproduction Université Laval, CHU de Québec Research Center (CHUL) Quebec City QC Canada
| | - Ezéquiel Calvo
- Faculty of Medicine Department of Obstetrics, Gynecology and Reproduction Université Laval, CHU de Québec Research Center (CHUL) Quebec City QC Canada
| | - Denis Soulet
- Faculty of Pharmacy Université Laval, CHU de Québec Research Center (CHUL) Quebec City QC Canada
| | - Charles Joly-Beauparlant
- Computational Biology Laboratory Research Centre Faculty of Medicine Laval University Quebec City QC Canada
| | - Arnaud Droit
- Computational Biology Laboratory Research Centre Faculty of Medicine Laval University Quebec City QC Canada
| | - Daniel G. Cyr
- Faculty of Medicine Department of Obstetrics, Gynecology and Reproduction Université Laval, CHU de Québec Research Center (CHUL) Quebec City QC Canada
- Laboratory for Reproductive Toxicology INRS‐Institut Armand‐Frappier Université du Québec Laval QC Canada
| | - Clémence Belleannée
- Faculty of Medicine Department of Obstetrics, Gynecology and Reproduction Université Laval, CHU de Québec Research Center (CHUL) Quebec City QC Canada
| |
Collapse
|
10
|
Sterpka A, Yang J, Strobel M, Zhou Y, Pauplis C, Chen X. Diverged morphology changes of astrocytic and neuronal primary cilia under reactive insults. Mol Brain 2020; 13:28. [PMID: 32122360 PMCID: PMC7053156 DOI: 10.1186/s13041-020-00571-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 02/24/2020] [Indexed: 12/13/2022] Open
Abstract
Primary cilia are centriole-derived sensory organelles that are present in most mammalian cells, including astrocytes and neurons. Evidence is emerging that astrocyte and neuronal primary cilia demonstrate a dichotomy in the mature mouse brain. However, it is unknown how astrocytic and neuronal primary cilia change their morphology and ciliary proteins when exposed to reactive insults including epilepsy and traumatic brain injury. We used a double transgenic mouse strain (Arl13b-mCherry; Centrin2-GFP), in which we found spontaneous seizures, and a cortical injury model to examine the morphological changes of astrocytic and neuronal primary cilia under reactive conditions. Transgenic overexpression of Arl13b drastically increases the length of astrocytic and neuronal primary cilia in the hippocampus, as well as the cilia lengths of cultured astrocytes and neurons. Spontaneous seizures shorten Arl13b-positive astrocytic cilia and AC3-positive neuronal cilia in the hippocampus. In a cortical injury model, Arl13b is not detectable in primary cilia, but Arl13b protein relocates to the cell body and has robust expression in the proximity of injured tissues. In contrast, the number of AC3-positive cilia near injured tissues remains unchanged, but their lengths become shorter. These results on astrocytic cilia implicate Arl13b in regulating astrocyte proliferation and tissue regeneration, while the shortening of AC3-positive cilia suggests adaptive changes of neuronal primary cilia under excitotoxicity.
Collapse
Affiliation(s)
- Ashley Sterpka
- Department of Molecular, Cellular and Biomedical Sciences, College of Life Sciences and Agriculture, University of New Hampshire, 389 Rudman Hall, 46 College Road, Durham, NH, 03824, USA
| | - Juan Yang
- Department of Molecular, Cellular and Biomedical Sciences, College of Life Sciences and Agriculture, University of New Hampshire, 389 Rudman Hall, 46 College Road, Durham, NH, 03824, USA
| | - Matthew Strobel
- Department of Molecular, Cellular and Biomedical Sciences, College of Life Sciences and Agriculture, University of New Hampshire, 389 Rudman Hall, 46 College Road, Durham, NH, 03824, USA
| | - Yuxin Zhou
- Department of Molecular, Cellular and Biomedical Sciences, College of Life Sciences and Agriculture, University of New Hampshire, 389 Rudman Hall, 46 College Road, Durham, NH, 03824, USA
| | - Connor Pauplis
- Department of Molecular, Cellular and Biomedical Sciences, College of Life Sciences and Agriculture, University of New Hampshire, 389 Rudman Hall, 46 College Road, Durham, NH, 03824, USA
| | - Xuanmao Chen
- Department of Molecular, Cellular and Biomedical Sciences, College of Life Sciences and Agriculture, University of New Hampshire, 389 Rudman Hall, 46 College Road, Durham, NH, 03824, USA.
| |
Collapse
|
11
|
Girardet L, Augière C, Asselin MP, Belleannée C. Primary cilia: biosensors of the male reproductive tract. Andrology 2019; 7:588-602. [PMID: 31131532 DOI: 10.1111/andr.12650] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 04/16/2019] [Accepted: 04/17/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND The primary cilium is a microtubule-based organelle that extends transiently from the apical cell surface to act as a sensory antenna. Initially viewed as a cellular appendage of obscure significance, the primary cilium is now acknowledged as a key coordinator of signaling pathways during development and in tissue homeostasis. OBJECTIVES The aim of this review was to present the structure and function of this overlooked organelle,with an emphasis on its epididymal context and contribution to male infertility issues. MATERIALS AND METHODS A systematic review has been performed in order to include main references relevant to the aforementioned topic. RESULTS Increasing evidence demonstrates that primary cilia dysfunctions are associated with impaired male reproductive system development and male infertility issues. DISCUSSION While a large amount of data exists regarding the role of primary cilia in most organs and tissues, few studies investigated the contribution of these organelles to male reproductive tract development and homeostasis. CONCLUSION Functional studies of primary cilia constitute an emergent and exciting new area in reproductive biology research.
Collapse
Affiliation(s)
- Laura Girardet
- Department of Obstetrics, Gynecology and Reproduction, Université Laval, CHU de Québec Research Center (CHUL), Quebec City, QC, Canada
| | - Céline Augière
- Department of Obstetrics, Gynecology and Reproduction, Université Laval, CHU de Québec Research Center (CHUL), Quebec City, QC, Canada
| | - Marie-Pier Asselin
- Department of Obstetrics, Gynecology and Reproduction, Université Laval, CHU de Québec Research Center (CHUL), Quebec City, QC, Canada
| | - Clémence Belleannée
- Department of Obstetrics, Gynecology and Reproduction, Université Laval, CHU de Québec Research Center (CHUL), Quebec City, QC, Canada
| |
Collapse
|