1
|
Lan Y, Nie P, Yuan H, Xu H. Adolescent F-53B exposure induces ovarian toxicity in rats: Autophagy-apoptosis interplay. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175609. [PMID: 39163935 DOI: 10.1016/j.scitotenv.2024.175609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/27/2024] [Accepted: 08/15/2024] [Indexed: 08/22/2024]
Abstract
As a substitute for perfluorooctane sulfonates, F-53B has permeated into the environment and can reach the human body through the food chain. Adolescent individuals are in a critical stage of development and may be more sensitive to the impacts of F-53B. In the present study, we modeled the exposure of adolescent female rats by allowing them free access to F-53B at concentrations of 0 mg/L, 0.125 mg/L, and 6.25 mg/L in drinking water, aiming to simulate the exposure in the adolescent population. Using the ovary as the focal point, we investigated the impact of developmental exposure to F-53B on female reproduction. The results indicated that F-53B induced reproductive toxicity in adolescent female rats, including ovarian lesions, follicular dysplasia and hormonal disorders. In-depth investigations revealed that F-53B induced ovarian oxidative stress, triggering autophagy within the ovaries, and the autophagy exhibited the interplay with apoptosis in turn, collectively leading to significant ovarian toxicity. Our findings provided deeper insights into the roles of the autophagy-apoptosis interplay in ovarian toxicity, and offered a new perspective on the developmental toxicity inflicted by adolescent F-53B exposure.
Collapse
Affiliation(s)
- Yuzhi Lan
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Penghui Nie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Hongbin Yuan
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; International Institute of Food Innovation Co., Ltd., Nanchang University, Nanchang 330200, China.
| |
Collapse
|
2
|
Berkel C. Inducers and Inhibitors of Pyroptotic Death of Granulosa Cells in Models of Premature Ovarian Insufficiency and Polycystic Ovary Syndrome. Reprod Sci 2024; 31:2972-2992. [PMID: 39026050 PMCID: PMC11438836 DOI: 10.1007/s43032-024-01643-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/01/2024] [Indexed: 07/20/2024]
Abstract
Granulosa cells (GCs), the largest cell population and primary source of steroid hormones in the ovary, are the important somatic ovarian components. They have critical roles in folliculogenesis by supporting oocyte, facilitating its growth, and providing a microenvironment suitable for follicular development and oocyte maturation, thus having essential functions in maintaining female fertility and in reproductive health in general. Pyroptotic death of GCs and associated inflammation have been implicated in the pathogenesis of several reproductive disorders in females including Premature Ovarian Insufficiency (POI) and Polycystic Ovary Syndrome (PCOS). Here, I reviewed factors, either intrinsic or extrinsic, that induce or inhibit pyroptosis in GCs in various models of these disorders, both in vitro and in vivo, and also covered associated molecular mechanisms. Most of these studied factors influence NLRP3 inflammasome- and GSDMD (Gasdermin D)-mediated pyroptosis in GCs, compared to other inflammasomes and gasdermins (GSDMs). I conclude that a more complete mechanistic understanding of these factors in terms of GC pyroptosis is required to be able to develop novel strategies targeting inflammatory cell death in the ovary.
Collapse
Affiliation(s)
- Caglar Berkel
- Department of Molecular Biology and Genetics, Tokat Gaziosmanpasa University, Tokat, Türkiye.
| |
Collapse
|
3
|
Scudieri A, Valbonetti L, Peric T, Cotticelli A, Ramal-Sánchez M, Loi P, Gioia L. Autophagy is involved in granulosa cell death and follicular atresia in ewe ovaries. Theriogenology 2024; 226:236-242. [PMID: 38941949 DOI: 10.1016/j.theriogenology.2024.06.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 06/30/2024]
Abstract
In mammalian ovaries, most follicles do not ovulate and are eliminated by atresia, which primarily depends on granulosa cell (GC) apoptosis. Autophagy is an alternative mechanism involved in follicle depletion in mammals through independent or tandem action with apoptosis. However, follicular autophagy has not yet been investigated in sheep; therefore, the present study aimed to investigate the involvement of autophagy in atresia among a pool of growing antral follicles in ewe ovaries. The abundance of the autophagic marker LC3B-II was determined using western blotting in GCs collected from ewe antral follicles. The antral follicles were classified as healthy or atretic based on morphological criteria and steroid measurements in follicular fluid (FF). Immunofluorescence and confocal microscopy analyses were performed on GCs to evaluate the presence of autophagic proteins and their subcellular localisation. Caspase-3 and DNA fragmentation were assessed using western blotting and TUNEL assays, respectively, in the same GC population to investigate the simultaneous apoptosis. The novel results of this study demonstrated enhanced LC3B-II protein expression in GCs of atretic follicles compared to that of healthy ones (1.3-fold increase; P = 0.0001, ANOVA), indicating a correlation between autophagy enhancement in GCs and antral follicular atresia. Autophagy, either functioning independently or in tandem with apoptosis, may be involved in the atresia of growing antral follicles in ewe ovaries because atretic GCs also showed high levels of apoptotic markers. The findings of this study might have important implication on scientific understanding of ovarian follicle dynamics.
Collapse
Affiliation(s)
- Aurora Scudieri
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via Renato Balzarini 1, 64100, Teramo, Italy
| | - Luca Valbonetti
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via Renato Balzarini 1, 64100, Teramo, Italy
| | - Tanja Peric
- Department of Agricultural, Environmental and Animal Science, University of Udine, 33100, Udine, Italy
| | - Alessio Cotticelli
- Department of Veterinary Medicine and Animal Production, University of Napoli Federico II, 80138, Napoli, Italy
| | - Marina Ramal-Sánchez
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via Renato Balzarini 1, 64100, Teramo, Italy
| | - Pasqualino Loi
- Department of Veterinary Medicine, University of Teramo, Loc. Piano D'Accio, 64100, Teramo, Italy
| | - Luisa Gioia
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via Renato Balzarini 1, 64100, Teramo, Italy.
| |
Collapse
|
4
|
Peiyin F, Yuxian W, Jiali Z, Jian X. Research progress of ferroptosis in female infertility. J Ovarian Res 2024; 17:183. [PMID: 39267109 PMCID: PMC11391650 DOI: 10.1186/s13048-024-01508-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 08/30/2024] [Indexed: 09/14/2024] Open
Abstract
Ferroptosis is a novel type of programmed cell death dependent on iron and characterized by the accumulation of lipid peroxides in cells and is closely related to various diseases. Female infertility is a global health concern, which is associated with a variety of factors. The etiology remains unknown in many women with infertility. With further investigation into the pathogenesis of infertility, a growing number of studies have demonstrated the close connections between infertility and ferroptosis. Through a literature review, it is found that ferroptosis is closely involved in endometriosis- and polycystic ovarian syndrome (PCOS)-associated infertility and tubal factor infertility. Iron overload increases the resistance to ferroptosis, and ferroptosis in some cells accelerates endometrial lesion growth. Moreover, iron overload may be hazardous to oocytes. This review may shed some light on the diagnosis and treatment of female infertility.
Collapse
Affiliation(s)
- Fan Peiyin
- Reproductive Medicine Center, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, China
| | - Wang Yuxian
- Reproductive Medicine Center, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, China
| | - Zhang Jiali
- Reproductive Medicine Center, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, China
| | - Xu Jian
- Reproductive Medicine Center, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, China.
| |
Collapse
|
5
|
Zhang Y, Han Y, Yang R, Zhang BY, Zhao YS, Wang YQ, Jiang DZ, Wang AT, Zhang XM, Tang B. Effect of Serotonin (5-Hydroxytryptamine) on Follicular Development in Porcine. Int J Mol Sci 2024; 25:9596. [PMID: 39273540 PMCID: PMC11395334 DOI: 10.3390/ijms25179596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
5-Hydroxytryptamine (5-HT) is an inhibitory neurotransmitter widely distributed in mammalian tissues, exerting its effects through binding to various receptors. It plays a crucial role in the proliferation of granulosa cells (GCs) and the development of follicles in female animals, however, its effect on porcine follicle development is not clear. The aim of this study is to investigate the expression of 5-HT and its receptors in various parts of the pig ovary, as well as the effect of 5-HT on porcine follicular development by using ELISA, quantitative real-time PCR (qPCR) and EdU assays. Firstly, we examined the levels of 5-HT and its receptors in porcine ovaries, follicles, and GCs. The findings revealed that the expression of different 5-HT receptors varied among follicles of different sizes. To investigate the relationship between 5-HT and its receptors, we exposed the GCs to 5-HT and found a decrease in 5-HT receptor expression compared to the control group. Subsequently, the treatment of GCs with 0.5 μM, 5 μM, and 50 μM 5-HT showed an increase in the expression of cell cycle-related genes, and EdU results indicated cell proliferation after the 0.5 μM 5-HT treatment. Additionally, the expression of genes involved in E2 synthesis was examined after the treatment of granulosa cells with 0.5 μM 5-HT. The results showed that CYP19A1 and HSP17β1 expression was decreased. These results suggest that 5-HT might affect the development of porcine follicle by promoting the proliferation of GCs and inhibiting the synthesis of estrogen. This provides a new finding for exploring the effect of 5-HT on follicular development, and lays a foundation for further research on the mechanism of 5-HT in follicles.
Collapse
Affiliation(s)
- Yan Zhang
- State Key Laboratory for Zoonotic Diseases, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yu Han
- State Key Laboratory for Zoonotic Diseases, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Rui Yang
- State Key Laboratory for Zoonotic Diseases, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Bo-Yang Zhang
- State Key Laboratory for Zoonotic Diseases, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yan-Sen Zhao
- State Key Laboratory for Zoonotic Diseases, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yue-Qi Wang
- State Key Laboratory for Zoonotic Diseases, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Dao-Zhen Jiang
- State Key Laboratory for Zoonotic Diseases, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - An-Tong Wang
- State Key Laboratory for Zoonotic Diseases, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xue-Ming Zhang
- State Key Laboratory for Zoonotic Diseases, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Bo Tang
- State Key Laboratory for Zoonotic Diseases, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| |
Collapse
|
6
|
Xu M, Liu D, Wang L. Role of oxylipins in ovarian function and disease: A comprehensive review. Biomed Pharmacother 2024; 178:117242. [PMID: 39094547 DOI: 10.1016/j.biopha.2024.117242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/22/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024] Open
Abstract
Ovaries are essential for healthy female reproduction, with the follicles as their fundamental functional units, which consist of an oocyte and surrounding granulosa cells. The development and formation of follicles in the ovaries are closely linked to reproductive health. Oxylipins refer to oxidative metabolites produced from the oxidation of polyunsaturated fatty acids, either through automatic oxidation or with the help of specific enzymes. They play crucial regulatory roles in the immune system, oxidative stress, and inflammatory reactions and are intimately linked to the development of numerous illnesses, such as diabetes, heart disease, asthma, and Alzheimer's disease. Furthermore, oxylipins have a complex relationship with ovarian function, and both prostaglandins and leukotrienes produced by arachidonic acid affect processes such as follicle growth and development, ovulation, and hormone regulation. The synthesis and metabolism of oxylipins in the ovaries are finely regulated. Oxylipin dysregulation has been linked to various ovarian diseases, including endometriosis, polycystic ovary syndrome, ovarian cancer, and premature ovarian insufficiency. In addition, potential therapeutic targets and interventions targeting the oxylipin pathway for the treatment of ovarian diseases have become a prominent research focus, including regulating the enzymes responsible for oxylipin synthesis, using anti-inflammatory agents, and regulating lipid metabolism. Recent research has been directed towards improving the reproductive outcomes of women with ovarian diseases through this series of interventions. An overview of the role of oxylipins in ovarian function and disease is provided in this article, which will aid researchers in understanding the current state of the field and in identifying future directions.
Collapse
Affiliation(s)
- Mengting Xu
- Department of Obstetrics and Gynecology, Shengjing Hospital, China Medical University, Shenyang, 110004, China; Medical Research Center of Shengjing Hospital, China Medical University, Shenyang 110004, China; Key Laboratory of Research and Application of Animal Model for Environmental and Metabolic Diseases, Liaoning Province, China
| | - Dan Liu
- Finance Department of Shengjing Hospital, China Medical University, Shenyang 110004, China.
| | - Lili Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital, China Medical University, Shenyang, 110004, China; Medical Research Center of Shengjing Hospital, China Medical University, Shenyang 110004, China; Key Laboratory of Research and Application of Animal Model for Environmental and Metabolic Diseases, Liaoning Province, China.
| |
Collapse
|
7
|
Pan Y, Gan M, Wu S, He Y, Feng J, Jing Y, Li J, Chen Q, Tong J, Kang L, Chen L, Zhao Y, Niu L, Zhang S, Wang Y, Zhu L, Shen L. tRF-Gly-GCC in Atretic Follicles Promotes Ferroptosis in Granulosa Cells by Down-Regulating MAPK1. Int J Mol Sci 2024; 25:9061. [PMID: 39201747 PMCID: PMC11354299 DOI: 10.3390/ijms25169061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/13/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
Follicle development refers to the process in which the follicles in the ovary gradually develop from the primary stage to a mature state, and most primary follicles fail to develop normally, without forming a dense granular cell layer and cell wall, which is identified as atretic follicles. Granulosa cells assist follicle development by producing hormones and providing support, and interference in the interaction between granulosa cells and oocytes may lead to the formation of atretic follicles. Ferroptosis, as a non-apoptotic form of death, is caused by cells accumulating lethal levels of iron-dependent phospholipid peroxides. Healthy follicles ranging from 4 to 5 mm were randomly divided into two groups: a control group (DMSO) and treatment group (10 uM of ferroptosis inducer erastin). Each group was sequenced after three repeated cultures for 24 h. We found that ferroptosis was associated with atretic follicles and that the in vitro treatment of healthy follicles with the ferroptosis inducer erastin produced a phenotype similar to that of atretic follicles. Overall, our study elucidates that tRF-1:30-Gly-GCC-2 is involved in the apoptosis and ferroptosis of GCs. Mechanistically, tRF-1:30-Gly-GCC-2 inhibits granulosa cell proliferation and promotes ferroptosis by inhibiting Mitogen-activated protein kinase 1 (MAPK1). tRF-1:30-Gly-GCC-2 may be a novel molecular target for improving the development of atretic follicles in ovarian dysfunction. In conclusion, our study provides a new perspective on the pathogenesis of granulosa cell dysfunction and follicular atresia.
Collapse
Affiliation(s)
- Yuheng Pan
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.P.); (M.G.); (S.W.); (Y.H.); (J.F.); (Y.J.); (J.L.); (Q.C.); (J.T.); (L.K.); (L.C.); (Y.Z.); (L.N.); (S.Z.); (Y.W.)
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Mailin Gan
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.P.); (M.G.); (S.W.); (Y.H.); (J.F.); (Y.J.); (J.L.); (Q.C.); (J.T.); (L.K.); (L.C.); (Y.Z.); (L.N.); (S.Z.); (Y.W.)
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Shuang Wu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.P.); (M.G.); (S.W.); (Y.H.); (J.F.); (Y.J.); (J.L.); (Q.C.); (J.T.); (L.K.); (L.C.); (Y.Z.); (L.N.); (S.Z.); (Y.W.)
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuxu He
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.P.); (M.G.); (S.W.); (Y.H.); (J.F.); (Y.J.); (J.L.); (Q.C.); (J.T.); (L.K.); (L.C.); (Y.Z.); (L.N.); (S.Z.); (Y.W.)
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Jinkang Feng
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.P.); (M.G.); (S.W.); (Y.H.); (J.F.); (Y.J.); (J.L.); (Q.C.); (J.T.); (L.K.); (L.C.); (Y.Z.); (L.N.); (S.Z.); (Y.W.)
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yunhong Jing
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.P.); (M.G.); (S.W.); (Y.H.); (J.F.); (Y.J.); (J.L.); (Q.C.); (J.T.); (L.K.); (L.C.); (Y.Z.); (L.N.); (S.Z.); (Y.W.)
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiaxin Li
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.P.); (M.G.); (S.W.); (Y.H.); (J.F.); (Y.J.); (J.L.); (Q.C.); (J.T.); (L.K.); (L.C.); (Y.Z.); (L.N.); (S.Z.); (Y.W.)
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Qian Chen
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.P.); (M.G.); (S.W.); (Y.H.); (J.F.); (Y.J.); (J.L.); (Q.C.); (J.T.); (L.K.); (L.C.); (Y.Z.); (L.N.); (S.Z.); (Y.W.)
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiang Tong
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.P.); (M.G.); (S.W.); (Y.H.); (J.F.); (Y.J.); (J.L.); (Q.C.); (J.T.); (L.K.); (L.C.); (Y.Z.); (L.N.); (S.Z.); (Y.W.)
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Lingfan Kang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.P.); (M.G.); (S.W.); (Y.H.); (J.F.); (Y.J.); (J.L.); (Q.C.); (J.T.); (L.K.); (L.C.); (Y.Z.); (L.N.); (S.Z.); (Y.W.)
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Lei Chen
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.P.); (M.G.); (S.W.); (Y.H.); (J.F.); (Y.J.); (J.L.); (Q.C.); (J.T.); (L.K.); (L.C.); (Y.Z.); (L.N.); (S.Z.); (Y.W.)
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Ye Zhao
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.P.); (M.G.); (S.W.); (Y.H.); (J.F.); (Y.J.); (J.L.); (Q.C.); (J.T.); (L.K.); (L.C.); (Y.Z.); (L.N.); (S.Z.); (Y.W.)
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Lili Niu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.P.); (M.G.); (S.W.); (Y.H.); (J.F.); (Y.J.); (J.L.); (Q.C.); (J.T.); (L.K.); (L.C.); (Y.Z.); (L.N.); (S.Z.); (Y.W.)
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Shunhua Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.P.); (M.G.); (S.W.); (Y.H.); (J.F.); (Y.J.); (J.L.); (Q.C.); (J.T.); (L.K.); (L.C.); (Y.Z.); (L.N.); (S.Z.); (Y.W.)
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.P.); (M.G.); (S.W.); (Y.H.); (J.F.); (Y.J.); (J.L.); (Q.C.); (J.T.); (L.K.); (L.C.); (Y.Z.); (L.N.); (S.Z.); (Y.W.)
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Li Zhu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.P.); (M.G.); (S.W.); (Y.H.); (J.F.); (Y.J.); (J.L.); (Q.C.); (J.T.); (L.K.); (L.C.); (Y.Z.); (L.N.); (S.Z.); (Y.W.)
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Linyuan Shen
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.P.); (M.G.); (S.W.); (Y.H.); (J.F.); (Y.J.); (J.L.); (Q.C.); (J.T.); (L.K.); (L.C.); (Y.Z.); (L.N.); (S.Z.); (Y.W.)
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
8
|
Harrath AH, Rahman MA, Bhajan SK, Bishwas AK, Rahman MDH, Alwasel S, Jalouli M, Kang S, Park MN, Kim B. Autophagy and Female Fertility: Mechanisms, Clinical Implications, and Emerging Therapies. Cells 2024; 13:1354. [PMID: 39195244 DOI: 10.3390/cells13161354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/06/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024] Open
Abstract
Autophagy, an evolutionarily conserved cellular mechanism essential for maintaining internal stability, plays a crucial function in female reproductive ability. In this review, we discuss the complex interplay between autophagy and several facets of female reproductive health, encompassing pregnancy, ovarian functions, gynecologic malignancies, endometriosis, and infertility. Existing research emphasizes the crucial significance of autophagy in embryo implantation, specifically in the endometrium, highlighting its necessity in ensuring proper fetal development. Although some knowledge has been gained, there is still a lack of research on the specific molecular impacts of autophagy on the quality of oocytes, the growth of follicles, and general reproductive health. Autophagy plays a role in the maturation, quality, and development of oocytes. It is also involved in reproductive aging, contributing to reductions in reproductive function that occur with age. This review explores the physiological functions of autophagy in the female reproductive system, its participation in reproductive toxicity, and its important connections with the endometrium and embryo. In addition, this study investigates the possibility of emerging treatment approaches that aim to modify autophagy, using both natural substances and synthetic molecules, to improve female fertility and reproductive outcomes. Additionally, this review intends to inspire future exploration into the intricate role of autophagy in female reproductive health by reviewing recent studies and pinpointing areas where current knowledge is lacking. Subsequent investigations should prioritize the conversion of these discoveries into practical uses in the medical field, which could potentially result in groundbreaking therapies for infertility and other difficulties related to reproduction. Therefore, gaining a comprehensive understanding of the many effects of autophagy on female fertility would not only further the field of reproductive biology but also open new possibilities for diagnostic and treatment methods.
Collapse
Affiliation(s)
- Abdel Halim Harrath
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Md Ataur Rahman
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sujay Kumar Bhajan
- Department of Biotechnology and Genetic Engineering, Faculty of Life Sciences, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Anup Kumar Bishwas
- Department of Biotechnology and Genetic Engineering, Faculty of Life Sciences, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - M D Hasanur Rahman
- Department of Biotechnology and Genetic Engineering, Faculty of Life Sciences, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Saleh Alwasel
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Maroua Jalouli
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Sojin Kang
- Department of Pathology, College of Korean Medicine, Kyung Hee University, 1-5 Hoegidong Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Moon Nyeo Park
- Department of Pathology, College of Korean Medicine, Kyung Hee University, 1-5 Hoegidong Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, 1-5 Hoegidong Dongdaemun-gu, Seoul 02447, Republic of Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
9
|
Wang X, Yuan Q, Xiao Y, Cai X, Yang Z, Zeng W, Mi Y, Zhang C. Pterostilbene, a Resveratrol Derivative, Improves Ovary Function by Upregulating Antioxidant Defenses in the Aging Chickens via Increased SIRT1/Nrf2 Expression. Antioxidants (Basel) 2024; 13:935. [PMID: 39199181 PMCID: PMC11351833 DOI: 10.3390/antiox13080935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 09/01/2024] Open
Abstract
Oxidative stress is recognized as a prominent factor contributing to follicular atresia and ovarian aging, which leads to decreased laying performance in hens. Reducing oxidative stress can improve ovarian function and prolong the laying period in poultry. This study investigates the impact of Pterostilbene (PTS), a natural antioxidant, on ovarian oxidative stress in low-laying chickens. Thirty-six Hy-Line White laying chickens were evenly divided into four groups and fed diets containing varying doses of PTS for 15 consecutive days. The results showed that dietary supplementation with PTS significantly increased the laying rate, with the most effective group exhibiting a remarkable 42.7% increase. Furthermore, PTS significantly enhanced the antioxidant capacity of aging laying hens, as evidenced by increased levels of glutathione, glutathione peroxidase, superoxide dismutase, catalase, and total antioxidant capacity in the ovaries, livers, and serum. Subsequent experiments revealed decreased expressions of Bax, Caspase-3, and γ-H2AX, along with an increased expression of BCL-2 in the ovaries and livers of laying hens. PTS supplementation also positively affects fat metabolism by reducing abdominal fat accumulation and promoting fat transfer from the liver to the ovary. To elucidate the mechanism underlying the effects of PTS on ovarian function, a series of in vitro experiments were conducted. These in vitro experiments revealed that PTS pretreatment restored the antioxidant capacity of D-galactose-induced small white follicles by upregulating SIRT1/Nrf2 expression. This protective effect was inhibited by EX-527, a specific inhibitor of SIRT1. These findings suggest that the natural antioxidant PTS has the potential to regulate cell apoptosis and fat metabolism in laying chickens by ameliorating oxidative stress, thereby enhancing laying performance.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yuling Mi
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (X.W.); (Q.Y.); (Y.X.); (X.C.); (Z.Y.); (W.Z.)
| | - Caiqiao Zhang
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (X.W.); (Q.Y.); (Y.X.); (X.C.); (Z.Y.); (W.Z.)
| |
Collapse
|
10
|
Li F, Zhu F, Wang S, Hu H, Zhang D, He Z, Chen J, Li X, Cheng L, Zhong F. Icariin alleviates cisplatin-induced premature ovarian failure by inhibiting ferroptosis through activation of the Nrf2/ARE pathway. Sci Rep 2024; 14:17318. [PMID: 39068256 PMCID: PMC11283570 DOI: 10.1038/s41598-024-67557-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 07/12/2024] [Indexed: 07/30/2024] Open
Abstract
Cisplatin is a widely used chemotherapeutic drug that can induce ovarian damage. Icariin (ICA), a natural antioxidant derived from Epimedium brevicornum Maxim., has been found to protect against organ injury. The aim of the present study was to investigate whether ICA can exert an ovarian-protective effect on cisplatin induced premature ovarian failure (POF) and the underlying mechanism involved. The preventive effect of ICA was evaluated using body weight, the oestrous cycle, ovarian histological analysis, and follicle counting. ICA treatment increased body weight, ovarian weight, and the number of follicles and improved the oestrous cycle in POF mice. ICA reduced cisplatin-induced oxidative damage and upregulated the protein expression levels of Nrf2, GPX4 and HO-1. Moreover, ICA reduced the expression levels of Bax and γH2AX and inhibited ovarian apoptosis. In addition, ICA activated the Nrf2 pathway in vitro and reversed changes in the viability of cisplatin-induced KGN cells, reactive oxygen species (ROS) levels, lipid peroxidation, and apoptosis, and these effects were abrogated when Nrf2 was knocked down or inhibited. Molecular docking confirmed that ICA promotes the release of Nrf2 by competing with Nrf2 for binding to Keap1. The inhibitory effects of ICA on cisplatin-induced oxidative stress, ferroptosis, and apoptosis may be mediated by its modulatory effects on the Nrf2 pathway, providing a novel perspective on the potential mechanisms by which ICA prevents POF.
Collapse
Affiliation(s)
- Fangfang Li
- Department of Oncology, Fuyang Hospital of Anhui Medical University, Fuyang, 236000, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Fengyu Zhu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Shushan District, Hefei, 230022, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China
- Ministry of Education of the People's Republic of China, Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Siyuan Wang
- Department of Oncology, Fuyang Hospital of Anhui Medical University, Fuyang, 236000, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Huiqing Hu
- Department of Oncology, Fuyang Hospital of Anhui Medical University, Fuyang, 236000, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Di Zhang
- Department of Oncology, Fuyang Hospital of Anhui Medical University, Fuyang, 236000, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Zhouying He
- Department of Oncology, Fuyang Hospital of Anhui Medical University, Fuyang, 236000, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Jiaqi Chen
- Department of Oncology, Fuyang Hospital of Anhui Medical University, Fuyang, 236000, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Xuqing Li
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Shushan District, Hefei, 230022, Anhui, China.
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China.
- Ministry of Education of the People's Republic of China, Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China.
| | - Linghui Cheng
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Shushan District, Hefei, 230022, Anhui, China.
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China.
- Ministry of Education of the People's Republic of China, Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China.
| | - Fei Zhong
- Department of Oncology, Fuyang Hospital of Anhui Medical University, Fuyang, 236000, China.
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China.
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China.
| |
Collapse
|
11
|
Xu K, Shao J, Cai K, Liu Q, Li X, Yan F, Huang R, Hou Y, Shi Y. Abnormalities in copper status associated with diminished ovarian reserve: A case-control and cross-sectional study. Int J Gynaecol Obstet 2024. [PMID: 39056541 DOI: 10.1002/ijgo.15798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/02/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024]
Abstract
OBJECTIVE This study aimed to illustrate the copper status of diminished ovarian reserve in Chinese women, especially the effects of copper, ceruloplasmin, non-ceruloplasmin-bound copper (NCC) and CuZn superoxide dismutase (SOD1). METHODS This case-control, cross-sectional investigation included women with diminished ovarian reserve (DOR group, n = 35) and matched normal ovarian reserve (NOR group, n = 35). The serum levels of copper, ceruloplasmin, NCC, SOD1, follicle-stimulating hormone, luteinizing hormone, estradiol, testosterone, and anti-Müllerian hormone were tested and analyzed. RESULTS The serum copper concentrations (60.88%), NCC (54.75%) and SOD1 (54.75%) in the DOR group were significantly higher than those in the NOR group (all P < 0.001), and the concentrations of the three markers were higher in most subgroups (P < 0.001). The correlation analysis verified the correlation between copper status and impaired ovarian function. Additionally, linear regression analysis showed that NCC and SOD1 levels were negatively correlated with anti-Müllerian hormone (P < 0.05 or 0.001). CONCLUSION Our exploration found significant increases in copper, NCC and SOD1 levels in DOR and suggests a possible link. Copper status is expected to serve as the predictive marker for DOR.
Collapse
Affiliation(s)
- Ke Xu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jingyi Shao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Kaixuan Cai
- Shenzhen Bao'an Authentic TCM Therapy Hospital, Shenzhen, China
| | - Qinyang Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xiyu Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Fei Yan
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Rong Huang
- Beijing University of Chinese Medicine, Beijing, China
| | - Yao Hou
- School of Automation Science and Engineering, South China University of Technology, Guangzhou, China
| | - Yun Shi
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
12
|
El Fouikar S, Van Acker N, Héliès V, Frenois FX, Giton F, Gayrard V, Dauwe Y, Mselli-Lakhal L, Rousseau-Ralliard D, Fournier N, Léandri R, Gatimel N. Folliculogenesis and steroidogenesis alterations after chronic exposure to a human-relevant mixture of environmental toxicants spare the ovarian reserve in the rabbit model. J Ovarian Res 2024; 17:134. [PMID: 38943138 PMCID: PMC11214233 DOI: 10.1186/s13048-024-01457-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/16/2024] [Indexed: 07/01/2024] Open
Abstract
BACKGROUND Industrial progress has led to the omnipresence of chemicals in the environment of the general population, including reproductive-aged and pregnant women. The reproductive function of females is a well-known target of endocrine-disrupting chemicals. This function holds biological processes that are decisive for the fertility of women themselves and for the health of future generations. However, insufficient research has evaluated the risk of combined mixtures on this function. This study aimed to assess the direct impacts of a realistic exposure to eight combined environmental toxicants on the critical process of folliculogenesis. METHODS Female rabbits were exposed daily and orally to either a mixture of eight environmental toxicants (F group) or the solvent mixture (NE group, control) from 2 to 19 weeks of age. The doses were computed from previous toxicokinetic data to reproduce steady-state serum concentrations in rabbits in the range of those encountered in pregnant women. Ovarian function was evaluated through macroscopic and histological analysis of the ovaries, serum hormonal assays and analysis of the expression of steroidogenic enzymes. Cellular dynamics in the ovary were further investigated with Ki67 staining and TUNEL assays. RESULTS F rabbits grew similarly as NE rabbits but exhibited higher total and high-density lipoprotein (HDL) cholesterol levels in adulthood. They also presented a significantly elevated serum testosterone concentrations, while estradiol, progesterone, AMH and DHEA levels remained unaffected. The measurement of gonadotropins, androstenedione, pregnenolone and estrone levels yielded values below the limit of quantification. Among the 7 steroidogenic enzymes tested, an isolated higher expression of Cyp19a1 was measured in F rabbits ovaries. Those ovaries presented a significantly greater density/number of antral and atretic follicles and larger antral follicles without any changes in cellular proliferation or DNA fragmentation. No difference was found regarding the count of other follicle stages notably the primordial stage, the corpora lutea or AMH serum levels. CONCLUSION Folliculogenesis and steroidogenesis seem to be subtly altered by exposure to a human-like mixture of environmental toxicants. The antral follicle growth appears promoted by the mixture of chemicals both in their number and size, potentially explaining the increase in atretic antral follicles. Reassuringly, the ovarian reserve estimated through primordial follicles number/density and AMH is spared from any alteration. The consequences of these changes on fertility and progeny health have yet to be investigated.
Collapse
Affiliation(s)
- Sara El Fouikar
- ToxAlim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Nathalie Van Acker
- Plateforme Imag'IN, Service d'anatomopathologie, CHU Toulouse, Institut Universitaire du Cancer-Oncopole de Toulouse, Toulouse, France
| | - Virginie Héliès
- GenPhySE (Génétique Physiologie et Système d'Elevage), INRAE, Université de Toulouse, INPT, ENVT, Castanet-Tolosan, France
| | - François-Xavier Frenois
- Plateforme Imag'IN, Service d'anatomopathologie, CHU Toulouse, Institut Universitaire du Cancer-Oncopole de Toulouse, Toulouse, France
| | - Frank Giton
- Pôle Biologie-Pathologie Henri Mondor, AP-HP, Inserm IMRB U955, Créteil, France
| | - Véronique Gayrard
- ToxAlim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Yannick Dauwe
- ToxAlim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Laila Mselli-Lakhal
- ToxAlim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Delphine Rousseau-Ralliard
- Université Paris-Saclay, UVSQ, INRAE, Jouy-en-Josas, 78350, BREED, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort, 94700, France
| | - Natalie Fournier
- Athérosclérose et macrophages: impact des phospholipides et des fonctions mitochondriales sur l'efflux du cholestérol, Lip(Sys) Université Paris Saclay, UFR de Pharmacie, Orsay, EA, 7357, 91400, France
- Laboratoire de Biochimie, AP-HP (Assistance Publique-Hôpitaux de Paris), Hôpital Européen Georges Pompidou, Paris, 75015, France
| | - Roger Léandri
- ToxAlim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France.
- Médecine de la Reproduction, Hôpital Paule de Viguier, Centre Hospitalier Universitaire de Toulouse, Toulouse, France.
| | - Nicolas Gatimel
- Médecine de la Reproduction, Hôpital Paule de Viguier, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
- DEFE (Développement Embryonnaire, Fertilité et Environnement) UMR1203 Inserm, Universités Toulouse et Montpellier, CHU Toulouse, Toulouse, France
| |
Collapse
|
13
|
Chen H, Nie P, Li J, Wu Y, Yao B, Yang Y, Lash GE, Li P. Cyclophosphamide induces ovarian granulosa cell ferroptosis via a mechanism associated with HO-1 and ROS-mediated mitochondrial dysfunction. J Ovarian Res 2024; 17:107. [PMID: 38762721 PMCID: PMC11102268 DOI: 10.1186/s13048-024-01434-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 05/07/2024] [Indexed: 05/20/2024] Open
Abstract
Abnormal granulosa cell (GC) death contributes to cyclophosphamide (CTX) induced primary ovarian insufficiency (POI). To investigate the contribution of GCs to POI, gene profiles of GCs exposed to CTX were assessed using RNA-Seq and bioinformatics analysis. The results showed the differentially expressed genes (DEGs) were enriched in the ferroptosis-related pathway, which is correlated with upregulated heme oxygenase 1 (HO-1) and downregulated glutathione peroxidase-4 (GPX4). Using CTX-induced cell culture (COV434 and KGN cells), the levels of iron, reactive oxygen species (ROS), lipid peroxide, mitochondrial superoxide, mitochondrial morphology and mitochondrial membrane potential (MMP) were detected by DCFDA, MitoSOX, C11-BODIPY, MitoTracker, Nonylacridine Orange (NAO), JC-1 and transmission electron microscopy respectively. The results showed iron overload and disrupted ROS, including cytoROS, mtROS and lipROS homeostasis, were associated with upregulation of HO-1 and could induce ferroptosis via mitochondrial dysfunction in CTX-induced GCs. Moreover, HO-1 inhibition could suppress ferroptosis induced GPX4 depletion. This implies a role for ROS in CTX-induced ferroptosis and highlights the effect of HO-1 modulators in improving CTX-induced ovarian damage, which may provide a theoretical basis for preventing or restoring GC and ovarian function in patients with POI.
Collapse
Affiliation(s)
- Hui Chen
- Department of Pathology, Jinan University School of Medicine, Guangzhou, 510632, China
| | - Ping Nie
- Department of Pathology, Jinan University School of Medicine, Guangzhou, 510632, China
| | - Jingling Li
- Department of Pathology, Jinan University School of Medicine, Guangzhou, 510632, China
| | - Yongqi Wu
- Department of Pathology, Jinan University School of Medicine, Guangzhou, 510632, China
| | - Bo Yao
- Department of Pathology, Jinan University School of Medicine, Guangzhou, 510632, China
| | - Yabing Yang
- Guangdong Second Provincial General Hospital, Postdoctoral Research Station of Basic Medicine, Jinan University School of Medicine, Guangzhou, 510317, China
| | - Gendie E Lash
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Ping Li
- Department of Pathology, Jinan University School of Medicine, Guangzhou, 510632, China.
| |
Collapse
|
14
|
Caram DA, Inserra PIF, Vitullo AD, Leopardo NP. Autophagy favors survival of corpora lutea during the long-lasting pregnancy of the South American plains vizcacha, Lagostomus maximus (Rodentia, Caviomorpha). Sci Rep 2024; 14:11220. [PMID: 38755206 PMCID: PMC11099099 DOI: 10.1038/s41598-024-61478-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 05/06/2024] [Indexed: 05/18/2024] Open
Abstract
The corpus luteum (CL) is a transient endocrine gland that plays a crucial role in establishing and maintaining pregnancy. Although autophagy and apoptosis have been suggested as cooperative mechanisms, their interaction within the CL of pregnant mammals has not been thoroughly investigated. To understand the collaborative function of autophagy and apoptosis in the CL, we analyzed both mechanisms during pregnancy in the South American plains vizcacha, Lagostomus maximus. This rodent undergoes a decline in progesterone levels during mid-gestation, a reactivation of the hypothalamus-hypophysis-gonadal axis, and the incorporation of new functional secondary CL. Our analysis of autophagy markers BECLIN 1 (BECN1), SEQUESTOSOME1 (SQSTM1), Microtubule-associated protein light chain 3 (LC3B), and lysosomal-associated membrane protein 1 (LAMP1) and anti- and pro-apoptotic markers BCL2 and ACTIVE CASPASE 3 (A-C3) revealed interactive behaviors between both processes. Healthy primary and secondary CL exhibited positive expression of BECN1, SQSTM1, LC3B, and LAMP1, while regressed CL displayed enhanced expression of these autophagy markers along with nuclear A-C3. Transmission electron microscopy revealed a significant formation of autophagic vesicles in regressed CL during full-term pregnancy, whereas healthy CL exhibited a low number of autophagy vesicles. The co-localization between LC3B and SQSTM1 and LC3B with LAMP1 was observed in both healthy and regressed CL during pregnancy, while co-localization of BECN1 and BCL2 was only detected in healthy CL. LC3B and ACTIVE CASPASE 3 co-localization were detected in a subset of luteal cells within the regressing CL. We propose that autophagy could act as a survival mechanism in the CL, allowing the pregnancy to progress until full-term, while also serving as a mechanism to eliminate remnants of regressed CL, thereby providing the necessary space for subsequent follicular maturation.
Collapse
Affiliation(s)
- Daira A Caram
- Centro de Estudios Biomédicos, Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Pablo I F Inserra
- Centro de Estudios Biomédicos, Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Alfredo D Vitullo
- Centro de Estudios Biomédicos, Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Noelia P Leopardo
- Centro de Estudios Biomédicos, Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
15
|
Zhang J, Hu X, Geng Y, Xiang L, Wu Y, Li Y, Yang L, Zhou K. Exploring the role of parthanatos in CNS injury: Molecular insights and therapeutic approaches. J Adv Res 2024:S2090-1232(24)00174-7. [PMID: 38704090 DOI: 10.1016/j.jare.2024.04.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Central nervous system (CNS) injury causes severe organ damage due to both damage resulting from the injury and subsequent cell death. However, there are currently no effective treatments for countering the irreversible loss of cell function. Parthanatos is a poly (ADP-ribose) polymerase 1 (PARP-1)-dependent form of programmed cell death that is partly responsible for neural cell death. Consequently, the mechanism by which parthanatos promotes CNS injury has attracted significant scientific interest. AIM OF REVIEW Our review aims to summarize the potential role of parthanatos in CNS injury and its molecular and pathophysiological mechanisms. Understanding the role of parthanatos and related molecules in CNS injury is crucial for developing effective treatment strategies and identifying important directions for future in-depth research. KEY SCIENTIFIC CONCEPTS OF REVIEW Parthanatos (from Thanatos, the personification of death according to Greek mythology) is a type of programmed cell death that is initiated by the overactivation of PARP-1. This process triggers a cascade of reactions, including the accumulation of poly(ADP-ribose) (PAR), the nuclear translocation of apoptosis-inducing factor (AIF) after its release from mitochondria, and subsequent massive DNA fragmentation caused by migration inhibitory factor (MIF) forming a complex with AIF. Secondary molecular mechanisms, such as excitotoxicity and oxidative stress-induced overactivation of PARP-1, significantly exacerbate neuronal damage following initial mechanical injury to the CNS. Furthermore, parthanatos is not only associated with neuronal damage but also interacts with various other types of cell death. This review focuses on the latest research concerning the parthanatos cell death pathway, particularly considering its regulatory mechanisms and functions in CNS damage. We highlight the associations between parthanatos and different cell types involved in CNS damage and discuss potential therapeutic agents targeting the parthanatos pathway.
Collapse
Affiliation(s)
- Jiacheng Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
| | - Xinli Hu
- Department of Orthopedics, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Yibo Geng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
| | - Linyi Xiang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
| | - Yuzhe Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
| | - Yao Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China.
| | - Liangliang Yang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325027, China.
| | - Kailiang Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China.
| |
Collapse
|
16
|
Pandey AN, Yadav PK, Premkumar KV, Tiwari M, Pandey AK, Chaube SK. Reactive oxygen species signalling in the deterioration of quality of mammalian oocytes cultured in vitro: Protective effect of antioxidants. Cell Signal 2024; 117:111103. [PMID: 38367792 DOI: 10.1016/j.cellsig.2024.111103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 02/19/2024]
Abstract
The in vitro fertilization (IVF) is the first choice of infertile couples worldwide to plan for conception. Besides having a significant advancement in IVF procedure, the success rate is still poor. Although several approaches have been tested to improve IVF protocol, minor changes in culture conditions, physical factors and/or drug treatment generate reactive oxygen species (ROS) in oocytes. Due to large size and huge number of mitochondria, oocyte is more susceptible towards ROS-mediated signalling under in vitro culture conditions. Elevation of ROS levels destabilize maturation promoting factor (MPF) that results in meiotic exit from diplotene as well as metaphase-II (M-II) arrest in vitro. Once meiotic exit occurs, these oocytes get further arrested at metaphase-I (M-I) stage or metaphase-III (M-III)-like stage under in vitro culture conditions. The M-I as well as M-III arrested oocytes are not fit for fertilization and limits IVF outcome. Further, the generation of excess levels of ROS cause oxidative stress (OS) that initiate downstream signalling to initiate various death pathways such as apoptosis, autophagy, necroptosis and deteriorates oocyte quality under in vitro culture conditions. The increase of cellular enzymatic antioxidants and/or supplementation of exogenous antioxidants in culture medium protect ROS-induced deterioration of oocyte quality in vitro. Although a growing body of evidence suggests the ROS and OS-mediated deterioration of oocyte quality in vitro, their downstream signalling and related mechanisms remain poorly understood. Hence, this review article summarizes the existing evidences concerning ROS and OS-mediated downstream signalling during deterioration of oocyte quality in vitro. The use of various antioxidants against ROS and OS-mediated impairment of oocyte quality in vitro has also been explored in order to increase the success rate of IVF during assisted reproductive health management.
Collapse
Affiliation(s)
- Ashutosh N Pandey
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Pramod K Yadav
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Karuppanan V Premkumar
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Meenakshi Tiwari
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Ajai K Pandey
- Department of Kayachikitsa, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Shail K Chaube
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
17
|
Chesnokov MS, Mamedova AR, Zhivotovsky B, Kopeina GS. A matter of new life and cell death: programmed cell death in the mammalian ovary. J Biomed Sci 2024; 31:31. [PMID: 38509545 PMCID: PMC10956231 DOI: 10.1186/s12929-024-01017-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/27/2024] [Indexed: 03/22/2024] Open
Abstract
BACKGROUND The mammalian ovary is a unique organ that displays a distinctive feature of cyclic changes throughout the entire reproductive period. The estrous/menstrual cycles are associated with drastic functional and morphological rearrangements of ovarian tissue, including follicular development and degeneration, and the formation and subsequent atrophy of the corpus luteum. The flawless execution of these reiterative processes is impossible without the involvement of programmed cell death (PCD). MAIN TEXT PCD is crucial for efficient and careful clearance of excessive, depleted, or obsolete ovarian structures for ovarian cycling. Moreover, PCD facilitates selection of high-quality oocytes and formation of the ovarian reserve during embryonic and juvenile development. Disruption of PCD regulation can heavily impact the ovarian functions and is associated with various pathologies, from a moderate decrease in fertility to severe hormonal disturbance, complete loss of reproductive function, and tumorigenesis. This comprehensive review aims to provide updated information on the role of PCD in various processes occurring in normal and pathologic ovaries. Three major events of PCD in the ovary-progenitor germ cell depletion, follicular atresia, and corpus luteum degradation-are described, alongside the detailed information on molecular regulation of these processes, highlighting the contribution of apoptosis, autophagy, necroptosis, and ferroptosis. Ultimately, the current knowledge of PCD aberrations associated with pathologies, such as polycystic ovarian syndrome, premature ovarian insufficiency, and tumors of ovarian origin, is outlined. CONCLUSION PCD is an essential element in ovarian development, functions and pathologies. A thorough understanding of molecular mechanisms regulating PCD events is required for future advances in the diagnosis and management of various disorders of the ovary and the female reproductive system in general.
Collapse
Affiliation(s)
- Mikhail S Chesnokov
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, Russia
- Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| | - Aygun R Mamedova
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Boris Zhivotovsky
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, Russia.
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.
- Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden.
| | - Gelina S Kopeina
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, Russia.
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
18
|
Alharbi KS. Noncoding RNAs in hepatitis: Unraveling the apoptotic pathways. Pathol Res Pract 2024; 255:155170. [PMID: 38324964 DOI: 10.1016/j.prp.2024.155170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/09/2024]
Abstract
Hepatitis is a worldwide health issue that causes inflammation of the liver and is frequently brought on by viral infections, specifically those caused by the hepatitis B and C viruses. Although the pathophysiological causes of hepatitis are complex, recent research indicates that noncoding RNAs (ncRNAs) play a crucial role in regulating apoptosis, an essential process for maintaining liver homeostasis and advancing the illness. Noncoding RNAs have been linked to several biological processes, including apoptosis. These RNAs include microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs). Distinct expression patterns characterising different stages of the disease have been discovered, indicating dysregulation of these non-coding RNAs in liver tissues infected with hepatitis. The complex interplay that exists between these noncoding RNAs and apoptotic effectors, including caspases and members of the Bcl-2 family, plays a role in the precarious equilibrium that regulates cell survival and death during hepatitis. The purpose of this review is to provide an overview of ncRNA-mediated apoptosis in hepatitis, as well as insights into possible therapeutic targets and diagnostic indicators.
Collapse
Affiliation(s)
- Khalid Saad Alharbi
- Department of Pharmacology and Toxicology, Unaizah College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia.
| |
Collapse
|
19
|
Liu K, Wu Y, Yang W, Li T, Wang Z, Xiao S, Peng Z, Li M, Xiong W, Li M, Chen X, Zhang S, Lei X. α-Ketoglutarate Improves Ovarian Reserve Function in Primary Ovarian Insufficiency by Inhibiting NLRP3-Mediated Pyroptosis of Granulosa Cells. Mol Nutr Food Res 2024; 68:e2300784. [PMID: 38314939 DOI: 10.1002/mnfr.202300784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/14/2023] [Indexed: 02/07/2024]
Abstract
SCOPE Premature ovarian insufficiency (POI) is a common female infertility problem, with its pathogenesis remains unknown. The NOD-like receptor family pyrin domain-containing 3 (NLRP3)-mediated pyroptosis has been proposed as a possible mechanism in POI. This study investigates the therapeutic effect of α-ketoglutarate (AKG) on ovarian reserve function in POI rats and further explores the potential molecular mechanisms. METHODS AND RESULTS POI rats are caused by administration of cyclophosphamide (CTX) to determine whether AKG has a protective effect. AKG treatment increases the ovarian index, maintains both serum hormone levels and follicle number, and improves the ovarian reserve function in POI rats, as evidence by increased the level of lactate and the expression of rate-limiting enzymes of glycolysis in the ovaries, additionally reduced the expression of NLRP3, Gasdermin D (GSDMD), Caspase-1, Interleukin-18 (IL-18), and Interleukin-1 beta (IL-1β). In vitro, KGN cells are treated with LPS and nigericin to mimic pyroptosis, then treated with AKG and MCC950. AKG inhibits inflammatory and pyroptosis factors such as NLRP3, restores the glycolysis process in vitro, meanwhile inhibition of NLRP3 has the same effect. CONCLUSION AKG ameliorates CTX-induced POI by inhibiting NLRP3-mediated pyroptosis, which provides a new therapeutic strategy and drug target for clinical POI patients.
Collapse
Affiliation(s)
- Ke Liu
- Institute of Clinical Anatomy & Reproductive Medicine, Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Yafei Wu
- Institute of Clinical Anatomy & Reproductive Medicine, Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Wenqin Yang
- Institute of Clinical Anatomy & Reproductive Medicine, Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Tianlong Li
- Institute of Clinical Anatomy & Reproductive Medicine, Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Zhongxu Wang
- Institute of Clinical Anatomy & Reproductive Medicine, Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Shu Xiao
- Institute of Clinical Anatomy & Reproductive Medicine, Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Zhenghua Peng
- Institute of Clinical Anatomy & Reproductive Medicine, Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Meng Li
- Institute of Clinical Anatomy & Reproductive Medicine, Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Wenhao Xiong
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, University of South China, Hengyang, Hunan, 421001, China
| | - Meixiang Li
- Institute of Clinical Anatomy & Reproductive Medicine, Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Xi Chen
- Institute of Clinical Anatomy & Reproductive Medicine, Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Shun Zhang
- Department of Reproductive Medical Center, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, 541001, China
| | - Xiaocan Lei
- Institute of Clinical Anatomy & Reproductive Medicine, Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| |
Collapse
|
20
|
Szukiewicz D. Current Insights in Prolactin Signaling and Ovulatory Function. Int J Mol Sci 2024; 25:1976. [PMID: 38396659 PMCID: PMC10889014 DOI: 10.3390/ijms25041976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 01/31/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
Prolactin (PRL) is a pleiotropic hormone released from lactotrophic cells of the anterior pituitary gland that also originates from extrapituitary sources and plays an important role in regulating lactation in mammals, as well as other actions. Acting in an endocrine and paracrine/autocrine manner, PRL regulates the hypothalamic-pituitary-ovarian axis, thus influencing the maturation of ovarian follicles and ovulation. This review provides a detailed discussion of the current knowledge on the role of PRL in the context of ovulation and ovulatory disorders, particularly with regard to hyperprolactinemia, which is one of the most common causes of infertility in women. Much attention has been given to the PRL structure and the PRL receptor (PRLR), as well as the diverse functions of PRLR signaling under normal and pathological conditions. The hormonal regulation of the menstrual cycle in connection with folliculogenesis and ovulation, as well as the current classifications of ovulation disorders, are also described. Finally, the state of knowledge regarding the importance of TIDA (tuberoinfundibular dopamine), KNDγ (kisspeptin/neurokinin B/dynorphin), and GnRH (gonadotropin-releasing hormone) neurons in PRL- and kisspeptin (KP)-dependent regulation of the hypothalamic-pituitary-gonadal (HPG) axis in women is reviewed. Based on this review, a rationale for influencing PRL signaling pathways in therapeutic activities accompanying ovulation disorders is presented.
Collapse
Affiliation(s)
- Dariusz Szukiewicz
- Department of Biophysics, Physiology & Pathophysiology, Faculty of Health Sciences, Medical University of Warsaw, 02-004 Warsaw, Poland
| |
Collapse
|
21
|
Rosario R, Stewart HL, Spears N, Telfer EE, Anderson RA. Anti-Mullerian hormone attenuates both cyclophosphamide-induced damage and PI3K signalling activation, while rapamycin attenuates only PI3K signalling activation, in human ovarian cortex in vitro. Hum Reprod 2024; 39:382-392. [PMID: 38070496 PMCID: PMC10833070 DOI: 10.1093/humrep/dead255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 11/13/2023] [Indexed: 02/02/2024] Open
Abstract
STUDY QUESTION What are the effects of cyclophosphamide exposure on the human ovary and can anti-Mullerian hormone (AMH) and rapamycin protect against these? SUMMARY ANSWER Exposure to cyclophosphamide compromises the health of primordial and transitional follicles in the human ovarian cortex and upregulates PI3K signalling, indicating both direct damage and increased follicular activation; AMH attenuates both of these chemotherapy-induced effects, while rapamycin attenuates only PI3K signalling upregulation. WHAT IS KNOWN ALREADY Studies primarily in rodents demonstrate that cyclophosphamide causes direct damage to primordial follicles or that the primordial follicle pool is depleted primarily through excessive initiation of follicle growth. This increased follicular activation is mediated via upregulated PI3K signalling and/or reduced local levels of AMH production due to lost growing follicles. Furthermore, while rodent data show promise regarding the potential benefits of inhibitors/protectants alongside chemotherapy treatment to preserve female fertility, there is no information about the potential for this in humans. STUDY DESIGN, SIZE, DURATION Fresh ovarian cortical biopsies were obtained from 17 healthy women aged 21-41 years (mean ± SD: 31.8 ± 4.9 years) at elective caesarean section. Biopsies were cut into small fragments and cultured for 24 h with either vehicle alone (DMSO), the active cyclophosphamide metabolite 4-hydroperoxycyclophosphamide (4-HC) alone, 4-HC + rapamycin or 4-HC+AMH. Two doses of 4-HC were investigated, 0.2 and 2 μM in separate experiments, using biopsies from seven women (aged 27-41) and six women (aged 21-34), respectively. Biopsies from four women (aged 28-38) were used to investigate the effect of rapamycin or AMH only. PARTICIPANTS/MATERIALS, SETTING, METHODS Histological analysis of ovarian tissue was undertaken for follicle staging and health assessment. Western blotting and immunostaining were used to assess activation of PI3K signalling by measuring phosphorylation of AKT and phosphorylated FOXO3A staining intensity, respectively. MAIN RESULTS AND THE ROLE OF CHANCE Exposure to either dose of 4-HC caused an increase in the proportion of unhealthy primordial (P < 0.0001, both doses) and transitional follicles (P < 0.01 for low dose and P < 0.01 for high dose) compared to vehicle. AMH significantly reduced follicle damage by approximately half in both of the investigated doses of 4-HC (P < 0.0001), while rapamycin had no protective effect on the health of the follicles. Culture with AMH or rapamycin alone had no effect on follicle health. Activation of PI3K signalling following 4-HC exposure was demonstrated by both Western blotting data showing that 4-HC increased in AKT phosphorylation and immunostaining showing increased phosphorylated FOXO3A staining of non-growing oocytes. Treatment with rapamycin reduced the activation of PI3K signalling in experiments with low doses of 4-HC while culture with AMH reduced PI3K activation (both AKT phosphorylation and phosphorylated FOXO3A staining intensity) across both doses investigated. LIMITATIONS, REASONS FOR CAUTION These in vitro studies may not replicate in vivo exposures. Furthermore, longer experiment durations are needed to determine whether the effects observed translate into irreparable deficits of ovarian follicles. WIDER IMPLICATIONS OF THE FINDINGS These data provide a solid foundation on which to explore the efficacy of AMH in protecting non-growing ovarian follicles from gonadotoxic chemotherapies. Future work will require consideration of the sustained effects of chemotherapy treatment and potential protectants to ensure these agents do not impair the developmental competence of oocytes or lead to the survival of oocytes with accumulated DNA damage, which could have adverse consequences for potential offspring. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by grants from TENOVUS Scotland, the Academy of Medical Sciences (to R.R.), the Medical Research Council (G1100357 to R.A.A., MR/N022556/1 to the MRC Centre for Reproductive Health), and Merck Serono UK (to R.A.A.). R.R., H.L.S., N.S., and E.E.T. declare no conflicts of interest. R.A.A. reports grants and personal fees from Roche Diagnostics and Ferring Pharmaceuticals, and personal fees from IBSA and Merck outside the submitted work. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Roseanne Rosario
- Biomedical Sciences, University of Edinburgh, Edinburgh, UK
- Centre for Reproductive Health, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Hazel L Stewart
- Centre for Reproductive Health, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Norah Spears
- Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | - Evelyn E Telfer
- Biomedical Sciences, University of Edinburgh, Edinburgh, UK
- Institute of Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Richard A Anderson
- Centre for Reproductive Health, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
22
|
Zhang Y, Xu M, Guo Y, Chen L, Vongsangnak W, Xu Q, Lu L. Programmed cell death and Salmonella pathogenesis: an interactive overview. Front Microbiol 2024; 14:1333500. [PMID: 38249488 PMCID: PMC10797706 DOI: 10.3389/fmicb.2023.1333500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/12/2023] [Indexed: 01/23/2024] Open
Abstract
Programmed cell death (PCD) is the collective term for the intrinsically regulated death of cells. Various types of cell death are triggered by their own programmed regulation during the growth and development of organisms, as well as in response to environmental and disease stresses. PCD encompasses apoptosis, pyroptosis, necroptosis, autophagy, and other forms. PCD plays a crucial role not only in the growth and development of organisms but also in serving as a component of the host innate immune defense and as a bacterial virulence strategy employed by pathogens during invasion. The zoonotic pathogen Salmonella has the ability to modulate multiple forms of PCD, including apoptosis, pyroptosis, necroptosis, and autophagy, within the host organism. This modulation subsequently impacts the bacterial infection process. This review aims to consolidate recent findings regarding the mechanisms by which Salmonella initiates and controls cell death signaling, the ways in which various forms of cell death can impede or restrict bacterial proliferation, and the interplay between cell death and innate immune pathways that can counteract Salmonella-induced suppression of host cell death. Ultimately, these insights may contribute novel perspectives for the diagnosis and treatment of clinical Salmonella-related diseases.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Maodou Xu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yujiao Guo
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Li Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Wanwipa Vongsangnak
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Qi Xu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Lizhi Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| |
Collapse
|
23
|
Abudureyimu G, Wu Y, Chen Y, Wang L, Hao G, Yu J, Wang J, Lin J, Huang J. MiR-134-3p targets HMOX1 to inhibit ferroptosis in granulosa cells of sheep follicles. J Ovarian Res 2024; 17:3. [PMID: 38166987 PMCID: PMC10763389 DOI: 10.1186/s13048-023-01328-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 12/17/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND The intricate interplay of gene expression within ovarian granulosa cells (GCs) is not fully understood. This study aimed to investigate the miRNA regulatory mechanisms of ferroptosis during the process of follicle development in lamb GCs. METHODS Employing transcriptome sequencing, we compared differentially expressed mRNAs (DE-mRNAs) and miRNAs (DE-miRNAs) in GCs from lambs treated with follicle-stimulating hormone (FL) to untreated controls (CL). We further screened differentially expressed ferroptosis-related genes and identified potential miRNA regulatory factors. The expression patterns of HMOX1 and miRNAs in GCs were validated using qRT‒PCR and Western blotting. Additionally, we investigated the regulatory effect of oar-miR-134-3p on HMOX1 and its function in ferroptosis through cell transfection and erastin treatment. RESULTS We identified a total of 4,184 DE-mRNAs and 304 DE-miRNAs. The DE-mRNAs were mainly enriched in ferroptosis, insulin resistance, and the cell cycle. Specifically, we focused on the differential expression of ferroptosis-related genes. Notably, the ferroptosis-related genes HMOX1 and SLC3A2, modulated by DE-miRNAs, were markedly suppressed in FLs. Experimental validation revealed that HMOX1 was significantly downregulated in FL and large follicles, while oar-miR-134-3p was significantly upregulated compared to that in the CLs. HMOX1 expression was regulated by the targeting effect of oar-miR-134-3p. Functional assays further revealed that modulation of oar-miR-134-3p influenced HMOX1 expression and altered cellular responses to ferroptosis induction by erastin. CONCLUSION This study suggested that oar-miR-134-3p and HMOX1 may be one of the pathways regulating ferroptosis in GCs. This finding provides new clues to understanding the development and regulatory process of follicles.
Collapse
Affiliation(s)
- Gulimire Abudureyimu
- Key Laboratory of Genetics, Breeding and Reproduction of Grass-Feeding Livestock, Ministry of Agriculture (MOA), Urumqi, 830026, Xinjiang, China
- Key Laboratory of Animal Biotechnology of Xinjiang, Urumqi, 830026, Xinjiang, China
- Institute of AnimalBiotechnology, Xinjiang Academy of Animal Science, Urumqi, 830026, Xinjiang, China
| | - Yangsheng Wu
- Key Laboratory of Genetics, Breeding and Reproduction of Grass-Feeding Livestock, Ministry of Agriculture (MOA), Urumqi, 830026, Xinjiang, China
- Key Laboratory of Animal Biotechnology of Xinjiang, Urumqi, 830026, Xinjiang, China
- Institute of AnimalBiotechnology, Xinjiang Academy of Animal Science, Urumqi, 830026, Xinjiang, China
| | - Ying Chen
- Key Laboratory of Genetics, Breeding and Reproduction of Grass-Feeding Livestock, Ministry of Agriculture (MOA), Urumqi, 830026, Xinjiang, China
- Key Laboratory of Animal Biotechnology of Xinjiang, Urumqi, 830026, Xinjiang, China
- Institute of AnimalBiotechnology, Xinjiang Academy of Animal Science, Urumqi, 830026, Xinjiang, China
| | - Liqin Wang
- Key Laboratory of Genetics, Breeding and Reproduction of Grass-Feeding Livestock, Ministry of Agriculture (MOA), Urumqi, 830026, Xinjiang, China
- Key Laboratory of Animal Biotechnology of Xinjiang, Urumqi, 830026, Xinjiang, China
- Institute of AnimalBiotechnology, Xinjiang Academy of Animal Science, Urumqi, 830026, Xinjiang, China
| | - Geng Hao
- Institute of Animal Sciences, Xinjiang Academy of Animal Science, Urumqi, 830000, Xinjiang, China
| | - Jianguo Yu
- Institute of Animal Sciences, Xinjiang Academy of Animal Science, Urumqi, 830000, Xinjiang, China
| | - Jianguo Wang
- Key Laboratory of Genetics, Breeding and Reproduction of Grass-Feeding Livestock, Ministry of Agriculture (MOA), Urumqi, 830026, Xinjiang, China
- Key Laboratory of Animal Biotechnology of Xinjiang, Urumqi, 830026, Xinjiang, China
- Institute of AnimalBiotechnology, Xinjiang Academy of Animal Science, Urumqi, 830026, Xinjiang, China
| | - Jiapeng Lin
- Key Laboratory of Genetics, Breeding and Reproduction of Grass-Feeding Livestock, Ministry of Agriculture (MOA), Urumqi, 830026, Xinjiang, China.
- Key Laboratory of Animal Biotechnology of Xinjiang, Urumqi, 830026, Xinjiang, China.
- Institute of AnimalBiotechnology, Xinjiang Academy of Animal Science, Urumqi, 830026, Xinjiang, China.
| | - Juncheng Huang
- Institute of Animal Sciences, Xinjiang Academy of Animal Science, Urumqi, 830000, Xinjiang, China.
| |
Collapse
|
24
|
Li Y, Zhang Z, Wang S, Du X, Li Q. miR-423 sponged by lncRNA NORHA inhibits granulosa cell apoptosis. J Anim Sci Biotechnol 2023; 14:154. [PMID: 38053184 DOI: 10.1186/s40104-023-00960-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 11/06/2023] [Indexed: 12/07/2023] Open
Abstract
BACKGROUND Atresia and degeneration, a follicular developmental fate that reduces female fertility and is triggered by granulosa cell (GC) apoptosis, have been induced by dozens of miRNAs. Here, we report a miRNA, miR-423, that inhibits the initiation of follicular atresia (FA), and early apoptosis of GCs. RESULTS We showed that miR-423 was down-regulated during sow FA, and its levels in follicles were negatively correlated with the GC density and the P4/E2 ratio in the follicular fluid in vivo. The in vitro gain-of-function experiments revealed that miR-423 suppresses cell apoptosis, especially early apoptosis in GCs. Mechanically speaking, the miR-423 targets and interacts with the 3'-UTR of the porcine SMAD7 gene, which encodes an apoptosis-inducing factor in GCs, and represses its expression and pro-apoptotic function. Interestingly, FA and the GC apoptosis-related lncRNA NORHA was demonstrated as a ceRNA of miR-423. Additionally, we showed that a single base deletion/insertion in the miR-423 promoter is significantly associated with the number of stillbirths (NSB) trait of sows. CONCLUSION These results demonstrate that miR-423 is a small molecule for inhibiting FA initiation and GC early apoptosis, suggesting that treating with miR-423 may be a novel approach for inhibiting FA initiation and improving female fertility.
Collapse
Affiliation(s)
- Yuqi Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhuofan Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Siqi Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xing Du
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qifa Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
25
|
Xu X, Sun B, Zhao C. Poly (ADP-Ribose) polymerase 1 and parthanatos in neurological diseases: From pathogenesis to therapeutic opportunities. Neurobiol Dis 2023; 187:106314. [PMID: 37783233 DOI: 10.1016/j.nbd.2023.106314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/04/2023] Open
Abstract
Poly (ADP-ribose) polymerase-1 (PARP-1) is the most extensively studied member of the PARP superfamily, with its primary function being the facilitation of DNA damage repair processes. Parthanatos is a type of regulated cell death cascade initiated by PARP-1 hyperactivation, which involves multiple subroutines, including the accumulation of ADP-ribose polymers (PAR), binding of PAR and apoptosis-inducing factor (AIF), release of AIF from the mitochondria, the translocation of the AIF/macrophage migration inhibitory factor (MIF) complex, and massive MIF-mediated DNA fragmentation. Over the past few decades, the role of PARP-1 in central nervous system health and disease has received increasing attention. In this review, we discuss the biological functions of PARP-1 in neural cell proliferation and differentiation, memory formation, brain ageing, and epigenetic regulation. We then elaborate on the involvement of PARP-1 and PARP-1-dependant parthanatos in various neuropathological processes, such as oxidative stress, neuroinflammation, mitochondrial dysfunction, excitotoxicity, autophagy damage, and endoplasmic reticulum (ER) stress. Additional highlight contains PARP-1's implications in the initiation, progression, and therapeutic opportunities for different neurological illnesses, including neurodegenerative diseases, stroke, autism spectrum disorder (ASD), multiple sclerosis (MS), epilepsy, and neuropathic pain (NP). Finally, emerging insights into the repurposing of PARP inhibitors for the management of neurological diseases are provided. This review aims to summarize the exciting advancements in the critical role of PARP-1 in neurological disorders, which may open new avenues for therapeutic options targeting PARP-1 or parthanatos.
Collapse
Affiliation(s)
- Xiaoxue Xu
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, China; Key Laboratory of Neurological Disease Big Data of Liaoning Province, Shenyang, China.
| | - Bowen Sun
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, China; Key Laboratory of Neurological Disease Big Data of Liaoning Province, Shenyang, China
| | - Chuansheng Zhao
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, China; Key Laboratory of Neurological Disease Big Data of Liaoning Province, Shenyang, China.
| |
Collapse
|
26
|
Telfer EE, Grosbois J, Odey YL, Rosario R, Anderson RA. Making a good egg: human oocyte health, aging, and in vitro development. Physiol Rev 2023; 103:2623-2677. [PMID: 37171807 PMCID: PMC10625843 DOI: 10.1152/physrev.00032.2022] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 05/03/2023] [Accepted: 05/06/2023] [Indexed: 05/13/2023] Open
Abstract
Mammalian eggs (oocytes) are formed during fetal life and establish associations with somatic cells to form primordial follicles that create a store of germ cells (the primordial pool). The size of this pool is influenced by key events during the formation of germ cells and by factors that influence the subsequent activation of follicle growth. These regulatory pathways must ensure that the reserve of oocytes within primordial follicles in humans lasts for up to 50 years, yet only approximately 0.1% will ever be ovulated with the rest undergoing degeneration. This review outlines the mechanisms and regulatory pathways that govern the processes of oocyte and follicle formation and later growth, within the ovarian stroma, through to ovulation with particular reference to human oocytes/follicles. In addition, the effects of aging on female reproductive capacity through changes in oocyte number and quality are emphasized, with both the cellular mechanisms and clinical implications discussed. Finally, the details of current developments in culture systems that support all stages of follicle growth to generate mature oocytes in vitro and emerging prospects for making new oocytes from stem cells are outlined.
Collapse
Affiliation(s)
- Evelyn E Telfer
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Johanne Grosbois
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Yvonne L Odey
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Roseanne Rosario
- Centre for Discovery Brain Sciences, Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
- MRC Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Richard A Anderson
- MRC Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
27
|
Shi YQ, Zhu XT, Zhang SN, Ma YF, Han YH, Jiang Y, Zhang YH. Premature ovarian insufficiency: a review on the role of oxidative stress and the application of antioxidants. Front Endocrinol (Lausanne) 2023; 14:1172481. [PMID: 37600717 PMCID: PMC10436748 DOI: 10.3389/fendo.2023.1172481] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 07/03/2023] [Indexed: 08/22/2023] Open
Abstract
Normal levels of reactive oxygen species (ROS) play an important role in regulating follicular growth, angiogenesis and sex hormone synthesis in ovarian tissue. When the balance between ROS and antioxidants is disrupted, however, it can cause serious consequences of oxidative stress (OS), and the quantity and quality of oocytes will decline. Therefore, this review discusses the interrelationship between OS and premature ovarian insufficiency (POI), the potential mechanisms and the methods by which antioxidants can improve POI through controlling the level of OS. We found that OS can mediate changes in genetic materials, signal pathways, transcription factors and ovarian microenvironment, resulting in abnormal apoptosis of ovarian granulosa cells (GCs) and abnormal meiosis as well as decreased mitochondrial Deoxyribonucleic Acid(mtDNA) and other changes, thus accelerating the process of ovarian aging. However, antioxidants, mesenchymal stem cells (MSCs), biological enzymes and other antioxidants can delay the disease process of POI by reducing the ROS level in vivo.
Collapse
Affiliation(s)
- Yu-Qian Shi
- Department of First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xi-Ting Zhu
- Department of First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Su-Na Zhang
- Department of First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yi-Fu Ma
- Department of First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yan-Hua Han
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yue Jiang
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yue-Hui Zhang
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|