1
|
Jankovičová J, Michalková K, Sečová P, Horovská Ľ, Antalíková J. The extracellular vesicle tetraspanin CD63 journey from the testis through the epididymis to mature bull sperm. Sci Rep 2024; 14:29449. [PMID: 39604592 PMCID: PMC11603341 DOI: 10.1038/s41598-024-81021-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 11/24/2024] [Indexed: 11/29/2024] Open
Abstract
The important role of extracellular vesicles, which are considered key mediators of intercellular communication under physiological and pathological conditions, in various cellular processes, including those crucial for mammalian reproduction, has been increasingly studied. Tetraspanins, including CD63, are widely used as markers of extracellular vesicles, but they may also play a role in their biogenesis, cargo selection, cell targeting, and uptake. This study aimed to map the journey of the extracellular vesicle protein tetraspanin CD63 from the testis through the epididymis into mature bull sperm via an approach that included immunohistochemistry (immunofluorescence and immunoperoxidase staining), Western blot analysis, and immunoprecipitation analysis. We described the presence of CD63 in bull testicular and epididymal tissues, extracellular vesicles produced in these organs and spermatozoa during epididymal transit and after ejaculation. In addition, we revealed the nonuniform distribution of potential CD63 partners, such as CD9, integrin αV and syntenin-1, in the sperm head and tail and in extracellular vesicles. These findings contribute to understanding the complex mechanisms underlying sperm maturation and point to the possible involvement of tetraspanins and their associated partners, either as part of extracellular vesicles or sperm membranes, in these processes.
Collapse
Grants
- VEGA-2/0074/24 Scientific Grant Agency of the Ministry of Education, Science, Research and Sport of the Slovak Republic and the Slovak Academy of Sciences
- VEGA-2/0074/24 Scientific Grant Agency of the Ministry of Education, Science, Research and Sport of the Slovak Republic and the Slovak Academy of Sciences
- VEGA-2/0074/24 Scientific Grant Agency of the Ministry of Education, Science, Research and Sport of the Slovak Republic and the Slovak Academy of Sciences
- VEGA-2/0074/24 Scientific Grant Agency of the Ministry of Education, Science, Research and Sport of the Slovak Republic and the Slovak Academy of Sciences
- VEGA-2/0074/24 Scientific Grant Agency of the Ministry of Education, Science, Research and Sport of the Slovak Republic and the Slovak Academy of Sciences
- APVV-19-0111 Slovak Research and Development Agency
- APVV-19-0111 Slovak Research and Development Agency
- APVV-19-0111 Slovak Research and Development Agency
- APVV-19-0111 Slovak Research and Development Agency
- APVV-19-0111 Slovak Research and Development Agency
Collapse
Affiliation(s)
- Jana Jankovičová
- Laboratory of Reproductive Physiology, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava, 840 05, Slovak Republic.
| | - Katarína Michalková
- Laboratory of Reproductive Physiology, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava, 840 05, Slovak Republic
| | - Petra Sečová
- Laboratory of Reproductive Physiology, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava, 840 05, Slovak Republic
| | - Ľubica Horovská
- Laboratory of Reproductive Physiology, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava, 840 05, Slovak Republic
| | - Jana Antalíková
- Laboratory of Reproductive Physiology, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava, 840 05, Slovak Republic
| |
Collapse
|
2
|
Pan Y, Pan C, Zhang C. Unraveling the complexity of follicular fluid: insights into its composition, function, and clinical implications. J Ovarian Res 2024; 17:237. [PMID: 39593094 PMCID: PMC11590415 DOI: 10.1186/s13048-024-01551-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/31/2024] [Indexed: 11/28/2024] Open
Abstract
Follicular fluid (FF) plays a vital role in the bidirectional communication between oocytes and granulosa cells (GCs), regulating and promoting oocyte growth and development. This fluid constitutes a complex microenvironment, rich in various molecules including hormones, growth factors, cytokines, lipids, proteins, and extracellular vesicles. Understanding the composition and metabolic profile of follicular fluid is important for investigating ovarian pathologies such as polycystic ovary syndrome (PCOS) and endometriosis. Additionally, analyzing follicular fluid can offer valuable insights into oocyte quality, aiding in optimal oocyte selection for in vitro fertilization (IVF). This review provides an overview of follicular fluid composition, classification of its components and discusses the influential components of oocyte development. It also highlights the role of follicular fluid in the pathogenesis and diagnosis of ovarian diseases, along with potential follicular fluid biomarkers for assessing oocyte quality. By understanding the intricate relationship between follicular fluid and oocyte development, we can advance fertility research and improve clinical outcomes for infertility patients.
Collapse
Affiliation(s)
- Yurong Pan
- Nanchang University Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Chenyu Pan
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Chunping Zhang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330019, China.
| |
Collapse
|
3
|
Cui X, Lei X, Huang T, Mao X, Shen Z, Yang X, Peng W, Yu J, Zhang S, Huo P. Follicular fluid-derived extracellular vesicles miR-34a-5p regulates granulosa cell glycolysis in polycystic ovary syndrome by targeting LDHA. J Ovarian Res 2024; 17:223. [PMID: 39538292 PMCID: PMC11562512 DOI: 10.1186/s13048-024-01542-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is highly prevalent in women of reproductive age worldwide, exhibits highly heterogeneous clinical presentation and biochemical parameters, and has no cure. This study aimed to investigate the role of miR-34a-5p in PCOS, its effect on glycolysis in granulosa cells (GCs), and its potential contribution to follicular dysregulation. METHODS Herein, Follicular follicular fluid (FF) samples were collected from six patients with PCOS and six healthy controls undergoing in vitro fertilization-embryo transfer. The isolated extracellular vesicles were characterized by transmission electron microscopy, nanoparticle tracking analysis, and western blotting. Additionally, miRNA sequencing was performed to identify differentially expressed microRNAs, and their functions were analyzed through transcriptomics. The In vitro effects of miR-34a-5p on glycolysis, cell proliferation, and apoptosis were assessed in human ovarian granulosa tumour cell line (KGN cells). Targets of miR-34a-5p were identified by dual-luciferase reporter assays, and quantitative real-time polymerase chain reaction and western blotting were performed to determine gene and protein expression. RESULTS The level of miR-34a-5p in FF-derived extracellular vesicles derived from patients with PCOS was significantly higher than that of the control group. Transcriptomic analysis highlighted miR-34a-5p as a key regulator of glycolysis and apoptosis. Furthermore, in vitro analysis showed that miR-34a-5p targeted lactate dehydrogenase A (LDHA), inhibited glycolysis, reduced energy supply to GCs, and promoted apoptosis of KGN cells. Conversely, miR-34a-5p inhibition restored glycolysis function and cell viability. CONCLUSION The findings of this study show that miR-34a-5p mediates GC apoptosis in PCOS by targeting LDHA and inhibiting glycolysis, suggesting its crucial role in PCOS pathophysiology, and offering potential therapeutic targets for improving follicular development and fertility outcomes in patients with PCOS. Further research is needed to explore the clinical implications of miR-34a-5p and its use as a biomarker for early diagnosis and prognosis of PCOS.
Collapse
Affiliation(s)
- Xueying Cui
- Department of Reproductive Medical Center, The Affiliated Hospital of Guilin Medical University, Guilin, 541004, Guangxi, China
| | - Xiaocan Lei
- Clinical Anatomy and Reproductive Medicine Application Institute, Department of Histology and Embryology, University of South China, Hengyang, 421001, Hunan, China
| | - Tao Huang
- The Second Affiliated Hospital of Guilin Medical University, Guilin, 541100, Guangxi, China
| | - Xueyan Mao
- Clinical Anatomy and Reproductive Medicine Application Institute, Department of Histology and Embryology, University of South China, Hengyang, 421001, Hunan, China
| | - Zhiwei Shen
- Clinical Anatomy and Reproductive Medicine Application Institute, Department of Histology and Embryology, University of South China, Hengyang, 421001, Hunan, China
| | - Xiuli Yang
- Department of Reproductive Medical Center, The Affiliated Hospital of Guilin Medical University, Guilin, 541004, Guangxi, China
| | - Wanting Peng
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin, 541004, Guangxi, China
| | - Jingjing Yu
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin, 541004, Guangxi, China
| | - Shun Zhang
- Department of Reproductive Medical Center, The Affiliated Hospital of Guilin Medical University, Guilin, 541004, Guangxi, China.
| | - Peng Huo
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin, 541004, Guangxi, China.
| |
Collapse
|
4
|
Martínez-Díaz P, Parra A, Montesdeoca M, Barranco I, Roca J. Updating Research on Extracellular Vesicles of the Male Reproductive Tract in Farm Animals: A Systematic Review. Animals (Basel) 2024; 14:3135. [PMID: 39518859 PMCID: PMC11545059 DOI: 10.3390/ani14213135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
This systematic review examined research studies on extracellular vesicles (EVs) of the male reproductive tract in livestock species to summarize the research topics and methodologies used, key findings, and future directions. PubMed and Scopus were searched for time ranges up to 1 September 2024, and 1383 articles were identified. The application of screening and eligibility criteria resulted in the selection of 79 articles focusing on male reproductive EVs in livestock. Porcine and bovine male reproductive EVs were the most studied. A variety of EV isolation techniques were used, with ultracentrifugation being the most common. Characterization of male reproductive EVs in livestock was a weak point, with only 24.05% of the articles characterizing EVs according to MISEV guidelines. Inadequate characterization of EVs compromises the reliability of results. The results of 19 articles that provided a good characterization of EVs showed that male reproductive EVs from livestock species are phenotypically and compositionally heterogeneous. These papers also showed that these EVs would be involved in the regulation of sperm functionality. Research on male reproductive EVs in livestock species remains scarce, and further research is needed, which should include appropriate characterization of EVs and aim to find efficient methods to isolate them and assess their involvement in the functionality of spermatozoa and the cells of the female genital tract.
Collapse
Affiliation(s)
| | | | | | | | - Jordi Roca
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, 30100 Murcia, Spain; (P.M.-D.); (A.P.); (M.M.); (I.B.)
| |
Collapse
|
5
|
Couty N, Estienne A, Le Lay S, Rame C, Chevaleyre C, Allard-Vannier E, Péchoux C, Guerif F, Vasseur C, Aboulouard S, Salzet M, Dupont J, Froment P. Human ovarian extracellular vesicles proteome from polycystic ovary syndrome patients associate with follicular development alterations. FASEB J 2024; 38:e70113. [PMID: 39436214 DOI: 10.1096/fj.202400521rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 09/18/2024] [Accepted: 10/07/2024] [Indexed: 10/23/2024]
Abstract
The development of the ovarian follicle requires the presence of several factors that come from the blood and follicular cells. Among these factors, extracellular vesicles (EVs) represent an original communication pathway inside the ovarian follicle. Recently, EVs have been shown to play potential roles in follicular development and reproduction-related disorders, including the polycystic ovary syndrome (PCOS). The proteomic analysis of sEVs isolated from FF in comparison to sEVs purified from plasma has shown a specific pattern of proteins secreted by ovarian steroidogenic cells such as granulosa cells. Thus, a human granulosa cell line exposed to sEVs from FF of normal patients increased their progesterone, estradiol, and testosterone secretion. However, if the sEVs were derived from FF of PCOS patients, the activity of stimulating progesterone production was lost. Stimulation of steroidogenesis by sEVs was associated with an increase in the expression of the StAR gene. In addition, sEVs from FF increased cell proliferation and migration of granulosa cells, and this phenomenon was amplified if sEVs were derived from PCOS patients. Interestingly, STAT3 is a protein overexpressed in sEVs from PCOS patients interacting with most of the cluster of proteins involved in the phenotype observed (cell proliferation, migration, and steroid production) in granulosa cells. In conclusion, this study has demonstrated that sEVs derived from FF could regulate directly the granulosa cell activity. The protein content in sEVs from FF is different in the case of PCOS syndrome and could perturb the granulosa cell functions, including inflammation, steroidogenesis, and cytoskeleton architecture.
Collapse
Affiliation(s)
- Noemie Couty
- INRAE, CNRS, Université de Tours, PRC, Nouzilly, France
| | | | - Soazig Le Lay
- L'Institut du Thorax, CNRS, INSERM, Nantes Université, Nantes, France
- Université Angers, SFR ICAT, Angers, France
| | | | | | | | - Christine Péchoux
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | | | - Claudine Vasseur
- Centre de fertilité, Pôle Santé Léonard de Vinci, Chambray-lès-Tours, France
| | - Soulaimane Aboulouard
- INSERM U1192 - Protéomique Réponse Inflammatoire Spectrométrie de Masse (PRISM), Université Lille 1, Villeneuve d'Ascq, France
| | - Michel Salzet
- INSERM U1192 - Protéomique Réponse Inflammatoire Spectrométrie de Masse (PRISM), Université Lille 1, Villeneuve d'Ascq, France
| | - Joelle Dupont
- INRAE, CNRS, Université de Tours, PRC, Nouzilly, France
| | | |
Collapse
|
6
|
Lin J, Zhao D, Liang Y, Liang Z, Wang M, Tang X, Zhuang H, Wang H, Yin X, Huang Y, Yin L, Shen L. Proteomic analysis of plasma total exosomes and placenta-derived exosomes in patients with gestational diabetes mellitus in the first and second trimesters. BMC Pregnancy Childbirth 2024; 24:713. [PMID: 39478498 PMCID: PMC11523606 DOI: 10.1186/s12884-024-06919-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/22/2024] [Indexed: 11/03/2024] Open
Abstract
Gestational diabetes mellitus (GDM) is the first spontaneous hyperglycemia during pregnancy. Early diagnosis and intervention are important for the management of the disease. This study compared and analyzed the proteins of total plasma exosomes (T-EXO) and placental-derived exosomes (PLAP-EXO) in pregnant women who subsequently developed GDM (12-16 weeks), GDM patients (24-28 weeks) and their corresponding controls to investigate the pathogenesis and biomarkers of GDM associated with exosomes. The exosomal proteins were extracted and studied by proteomics approach, then bioinformatics analysis was applied to the differentially expressed proteins (DEPs) between the groups. At 12-16 and 24-28 weeks of gestation, 36 and 21 DEPs were identified in T-EXO, while 34 and 20 DEPs were identified in PLAP-EXO between GDM and controls, respectively. These proteins are mainly involved in complement pathways, immunity, inflammation, coagulation and other pathways, most of them have been previously reported as blood or exosomal proteins associated with GDM. The findings suggest that the development of GDM is a progressive process and that early changes promote the development of the disease. Maternal and placental factors play a key role in the pathogenesis of GDM. These proteins especially Hub proteins have the potential to become predictive and diagnostic biomarkers for GDM.
Collapse
Affiliation(s)
- Jing Lin
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, P. R. China
| | - Danqing Zhao
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, P. R. China
| | - Yi Liang
- Department of Clinical Nutrition, Affiliated Hospital of Guizhou Medical University, Guiyang, P.R. China
| | - Zhiyuan Liang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, P. R. China
| | - Mingxian Wang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, P. R. China
| | - Xiaoxiao Tang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, P. R. China
| | - Hongbin Zhuang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, P. R. China
| | - Hanghang Wang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, P. R. China
| | - Xiaoping Yin
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, P. R. China
| | - Yuhan Huang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, P. R. China
| | - Li Yin
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, P. R. China
| | - Liming Shen
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, P. R. China.
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, P. R. China.
| |
Collapse
|
7
|
Xiong J, Wang Y, Wang H, Luo J, Chen T, Sun J, Xi Q, Zhang Y. GHRH-stimulated pituitary small extracellular vesicles inhibit hepatocyte proliferation and IGF-1 expression by its cargo miR-375-3p. J Nanobiotechnology 2024; 22:649. [PMID: 39438882 PMCID: PMC11494759 DOI: 10.1186/s12951-024-02857-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 09/14/2024] [Indexed: 10/25/2024] Open
Abstract
Small extracellular vesicles (sEV) have emerged as a novel mode of intercellular material transport and information transmission. It has been suggested hormones may regulate the production and function of sEV. However, the specific impact of growth hormone-releasing hormone (GHRH) on pituitary sEV production and the role of sEV in the regulation of the GHRH-GH-IGF axis has not been previously reported. The results of the present study demonstrated that GHRH increased the production of pituitary sEV by promoting the expression of Rab27a. More importantly, GHRH induced alterations in protein and miRNA levels within GH3-sEV components. Notably, GH3-sEV with GHRH treatment exhibited the enhanced ability to impede BRL 3A cell proliferation and the expression of IGF-1. Conclusively, for the first time, we corroborate the influence of GHRH on pituitary sEV, thereby presenting novel evidence for how sEV participates in the balance of the GHRH-GH-IGF axis. Importantly, this study provides new insight into a novel balance mechanism mediated by sEV within the endocrine system.
Collapse
Affiliation(s)
- Jiali Xiong
- College of Medicine, Jiaxing University, Jiaxing, 314000, Zhejiang, China
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Yuxuan Wang
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Hailong Wang
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Junyi Luo
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Ting Chen
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Jiajie Sun
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Qianyun Xi
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Yongliang Zhang
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
| |
Collapse
|
8
|
Guan X, Fan Y, Six R, Benedetti C, Raes A, Fernandez Montoro A, Cui X, Azari Dolatabad N, Van Soom A, Pavani KC, Peelman L. Bta-miR-665 improves bovine blastocyst development through its influence on microtubule dynamics and apoptosis. Front Genet 2024; 15:1437695. [PMID: 39479397 PMCID: PMC11521815 DOI: 10.3389/fgene.2024.1437695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/01/2024] [Indexed: 11/02/2024] Open
Abstract
Extracellular vesicles (EVs) contain microRNAs (miRNAs), which are important regulators of embryonic development. Nevertheless, little is known about the precise molecular processes controlling blastocyst development and quality. In a previous study, we identified bta-miR-665 as one of the miRNAs more abundantly present in extracellular vesicles of embryo-conditioned culture media of blastocysts compared to degenerate ones. Here, we investigated the effect and regulatory roles of bta-miR-665 in blastocyst development by supplementation of bta-miR-665 mimics or inhibitors to the culture media. Supplementation of bta-miR-665 mimics improved cleavage and blastocyst rate (P < 0.01), and blastocyst quality as indicated by increased inner cell mass rates and reduced apoptotic cell ratios (P < 0.01). Furthermore, supplementation of bta-miR-665 inhibitors had the opposite effect on these phenotypes. Low input transcriptome analysis and RT-qPCR revealed that bta-miR-665 acts on genes linked to microtubule formation and apoptosis/cell proliferation. These insights not only elucidate the important role of bta-miR-665 in embryo development, but also underscore its potential in improving reproductive efficiency in bovine embryo culture.
Collapse
Affiliation(s)
- Xuefeng Guan
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Yuan Fan
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Rani Six
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Camilla Benedetti
- Department of Internal Medicine, Reproduction and Population Health, Faculty of Veterinary Medicine, University of Ghent, Merelbeke, Belgium
| | - Annelies Raes
- Department of Internal Medicine, Reproduction and Population Health, Faculty of Veterinary Medicine, University of Ghent, Merelbeke, Belgium
| | - Andrea Fernandez Montoro
- Department of Internal Medicine, Reproduction and Population Health, Faculty of Veterinary Medicine, University of Ghent, Merelbeke, Belgium
| | - Xiaole Cui
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Nima Azari Dolatabad
- Department of Internal Medicine, Reproduction and Population Health, Faculty of Veterinary Medicine, University of Ghent, Merelbeke, Belgium
| | - Ann Van Soom
- Department of Internal Medicine, Reproduction and Population Health, Faculty of Veterinary Medicine, University of Ghent, Merelbeke, Belgium
| | - Krishna Chaitanya Pavani
- Department of Internal Medicine, Reproduction and Population Health, Faculty of Veterinary Medicine, University of Ghent, Merelbeke, Belgium
- Department for Reproductive Medicine, Ghent University Hospital, Gent, Belgium
| | - Luc Peelman
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
9
|
Feugang JM, Gad A, Menjivar NG, Ishak GM, Gebremedhn S, Gastal MO, Dlamini NH, Prochazka R, Gastal EL, Tesfaye D. Seasonal influence on miRNA expression dynamics of extracellular vesicles in equine follicular fluid. J Anim Sci Biotechnol 2024; 15:137. [PMID: 39380110 PMCID: PMC11462823 DOI: 10.1186/s40104-024-01097-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/27/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Ovarian follicular fluid (FF) is a dynamic environment that changes with the seasons, affecting follicle development, ovulation, and oocyte quality. Cells in the follicles release tiny particles called extracellular vesicles (EVs) containing vital regulatory molecules, such as microRNAs (miRNAs). These miRNAs are pivotal in facilitating communication within the follicles through diverse signaling and information transfer forms. EV-coupled miRNA signaling is implicated to be associated with ovarian function, follicle and oocyte growth and response to various environmental insults. Herein, we investigated how seasonal variations directly influence the ovulatory and anovulatory states of ovarian follicles and how are they associated with follicular fluid EV-coupled miRNA dynamics in horses. RESULTS Ultrasonographic monitoring and follicular fluid aspiration of preovulatory follicles in horses during the anovulatory (spring: non-breeding) and ovulatory (spring, summer, and fall: breeding) seasons and subsequent EV isolation and miRNA profiling identified significant variation in EV-miRNA cargo content. We identified 97 miRNAs with differential expression among the groups and specific clusters of miRNAs involved in the spring transition (miR-149, -200b, -206, -221, -328, and -615) and peak breeding period (including miR-143, -192, -451, -302b, -100, and let-7c). Bioinformatic analyses showed enrichments in various biological functions, e.g., transcription factor activity, transcription and transcription regulation, nucleic acid binding, sequence-specific DNA binding, p53 signaling, and post-translational modifications. Cluster analyses revealed distinct sets of significantly up- and down-regulated miRNAs associated with spring anovulatory (Cluster 1) and summer ovulation-the peak breeding season (Clusters 4 and 6). CONCLUSIONS The findings from the current study shed light on the dynamics of FF-EV-coupled miRNAs in relation to equine ovulatory and anovulatory seasons, and their roles in understanding the mechanisms involved in seasonal shifts and ovulation during the breeding season warrant further investigation.
Collapse
Affiliation(s)
- Jean M Feugang
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS, 39762, USA.
| | - Ahmed Gad
- Animal Reproduction and Biotechnology Laboratory (ARBL), Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
| | - Nico G Menjivar
- Animal Reproduction and Biotechnology Laboratory (ARBL), Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Ghassan M Ishak
- Department of Surgery and Obstetrics, College of Veterinary Medicine, University of Baghdad, Baghdad, 10011, Iraq
- Animal Science, School of Agricultural Sciences, Southern Illinois University, Carbondale, IL, 62901, USA
| | | | - Melba O Gastal
- Animal Science, School of Agricultural Sciences, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Notsile H Dlamini
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Radek Prochazka
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, 27721, Czech Republic
| | - Eduardo L Gastal
- Animal Science, School of Agricultural Sciences, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Dawit Tesfaye
- Animal Reproduction and Biotechnology Laboratory (ARBL), Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| |
Collapse
|
10
|
Chauhan V, Kashyap P, Chera JS, Pal A, Patel A, Karanwal S, Badrhan S, Josan F, Solanki S, Bhakat M, Datta TK, Kumar R. Differential abundance of microRNAs in seminal plasma extracellular vesicles (EVs) in Sahiwal cattle bull related to male fertility. Front Cell Dev Biol 2024; 12:1473825. [PMID: 39411484 PMCID: PMC11473417 DOI: 10.3389/fcell.2024.1473825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/18/2024] [Indexed: 10/19/2024] Open
Abstract
Sahiwal cattle, known for their high milk yield, are propagated through artificial insemination (AI) using male germplasm, largely contingent on semen quality. Spermatozoa, produced in the testes, carry genetic information and molecular signals essential for successful fertilization. Seminal plasma, in addition to sperm, contains nano-sized lipid-bound extracellular vesicles (SP-EVs) that carry key biomolecules, including fertility-related miRNAs, which are essential for bull fertility. The current study focused on miRNA profiling of SP-EVs from high-fertile (HF) and low-fertile (LF) Sahiwal bulls. SP-EVs were isolated using size exclusion chromatography (SEC) and characterized by dynamic light scattering (DLS) and nanoparticle tracking analysis (NTA). Western blotting detected the EV-specific protein markers TSG101 and CD63. The DLS analysis showed SP-EV sizes of 170-180 nm in HF and 130-140 nm in LF samples. The NTA revealed particle concentrations of 5.76 × 1010 to 5.86 × 1011 particles/mL in HF and 5.31 × 1010 to 2.70 × 1011 particles/mL in LF groups, with no significant differences in size and concentration between HF and LF. High-throughput miRNA sequencing identified 310 miRNAs in SP-EVs from both groups, with 61 upregulated and 119 downregulated in HF bull. Further analysis identified 41 miRNAs with significant fold changes and p-values, including bta-miR-1246, bta-miR-195, bta-miR-339b, and bta-miR-199b, which were analyzed for target gene prediction. Gene Ontology (GO) and KEGG pathway analyses indicated that these miRNAs target genes involved in transcription regulation, ubiquitin-dependent endoplasmic reticulum-associated degradation (ERAD) pathways, and signalling pathways. Functional exploration revealed that these genes play roles in spermatogenesis, motility, acrosome reactions, and inflammatory responses. qPCR analysis showed that bta-miR-195 had 80% higher expression in HF spermatozoa compared to LF, suggesting its association with fertility status (p < 0.05). In conclusion, this study elucidates the miRNA cargoes in SP-EVs as indicators of Sahiwal bull fertility, highlighting bta-miR-195 as a potential fertility factor among the various miRNAs identified.
Collapse
Affiliation(s)
- Vitika Chauhan
- Animal Genomics Laboratory, Animal Biotechnology Division, National Dairy Research Institute, Karnal, India
| | - Poonam Kashyap
- Animal Genomics Laboratory, Animal Biotechnology Division, National Dairy Research Institute, Karnal, India
| | - Jatinder Singh Chera
- Animal Genomics Laboratory, Animal Biotechnology Division, National Dairy Research Institute, Karnal, India
| | - Ankit Pal
- Animal Genomics Laboratory, Animal Biotechnology Division, National Dairy Research Institute, Karnal, India
| | - Aditya Patel
- Animal Genomics Laboratory, Animal Biotechnology Division, National Dairy Research Institute, Karnal, India
| | - Seema Karanwal
- Animal Genomics Laboratory, Animal Biotechnology Division, National Dairy Research Institute, Karnal, India
| | - Shiva Badrhan
- Animal Genomics Laboratory, Animal Biotechnology Division, National Dairy Research Institute, Karnal, India
| | - Fanny Josan
- Animal Genomics Laboratory, Animal Biotechnology Division, National Dairy Research Institute, Karnal, India
| | - Subhash Solanki
- Animal Genomics Laboratory, Animal Biotechnology Division, National Dairy Research Institute, Karnal, India
| | - Mukesh Bhakat
- Livestock Production and Management Division, ICAR- Central Institute of Research on Goat, Mathura, Uttar Pradesh, India
| | | | - Rakesh Kumar
- Animal Genomics Laboratory, Animal Biotechnology Division, National Dairy Research Institute, Karnal, India
| |
Collapse
|
11
|
Tang C, Hu W. Biomarkers and diagnostic significance of non-coding RNAs in extracellular vesicles of pathologic pregnancy. J Assist Reprod Genet 2024; 41:2569-2584. [PMID: 39316328 PMCID: PMC11534934 DOI: 10.1007/s10815-024-03268-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/16/2024] [Indexed: 09/25/2024] Open
Abstract
Intercellular communication is an important mechanism for the development and maintenance of normal biological processes in all organs, including the female reproductive system. Extracellular vesicles, as important carriers of intercellular communication, contain a variety of biologically active molecules, such as mRNAs, miRNAs, lncRNAs, and circRNAs, which are involved in cell-to-cell exchanges as well as in many physiological and pathological processes in the body. Compared with biomarkers found in tissues or body fluids, extracellular vesicles show better stability due to the presence of their envelope membrane which prevents the degradation of the RNA message in their vesicles. Therefore, the genomic and proteomic information contained in extracellular vesicles can serve as important markers and potential therapeutic targets for female reproductive system-related diseases or placental function. Moreover, changes in the expression of non-coding RNAs (mainly miRNAs, lncRNAs, and circRNAs) in maternal extracellular vesicles can accurately and promptly reflect the progress of female reproductive system diseases. The aim of this review is to collect information on different types of non-coding RNAs with key molecular carriers in female pathologic pregnancies (preeclampsia and recurrent spontaneous abortion), so as to explore the relevant molecular mechanisms in female pathologic pregnancies and provide a theoretical basis for clinical research on the pathogenesis and therapeutic approaches of reproductive system diseases. The current state of the art of exosome isolation and extraction is also summarized.
Collapse
Affiliation(s)
- Cen Tang
- Obstetrics Department, Kunming Medical University Second Affiliated Hospital, Kunming, 650101, Yunnan, China
| | - Wanqin Hu
- Obstetrics Department, Kunming Medical University Second Affiliated Hospital, Kunming, 650101, Yunnan, China.
| |
Collapse
|
12
|
Xue Y, Zheng H, Xiong Y, Li K. Extracellular vesicles affecting embryo development in vitro: a potential culture medium supplement. Front Pharmacol 2024; 15:1366992. [PMID: 39359245 PMCID: PMC11445000 DOI: 10.3389/fphar.2024.1366992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 09/05/2024] [Indexed: 10/04/2024] Open
Abstract
Extracellular vesicles (EVs) are nanometer-sized lipid bilayer vesicles released by cells, playing a crucial role in mediating cellular communication. This review evaluates the effect of EVs on early embryonic development in vitro by systematically searching the literature across three databases, Embase, PubMed, and Scopus, from inception (Embase, 1947; PubMed, 1996; and Scopus, 2004) to 30 June 2024. A total of 28 studies were considered relevant and included in this review. The EVs included in these investigations have been recovered from a range of sources, including oviduct fluid, follicular fluid, uterine fluid, seminal plasma, embryos, oviduct epithelial cells, endometrial epithelial cells, amniotic cells, and endometrial-derived mesenchymal stem cells collected primarily from mice, rabbits, cattle and pigs. This diversity in EV sources highlights the broad interest and potential applications of EVs in embryo culture systems. These studies have demonstrated that supplementation with EVs derived from physiologically normal biofluids and cells to the embryo culture medium system has positive effects on embryonic development. Conversely, EVs derived from cells under pathological conditions have shown a negative impact. This finding underscores the importance of the source and condition of EVs used in culture media. Further, the addition of EVs as a culture medium supplement holds significant therapeutic potential for optimizing in vitro embryo culture systems. In conclusion, this evaluation offers a thorough assessment of the available data on the role of EVs in embryo culture media and highlights the potential and challenges of using EVs in vitro embryo production.
Collapse
Affiliation(s)
- Yamei Xue
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Haixia Zheng
- Institute for Reproductive Health, School of Pharmacy, Hangzhou Medical College, Hangzhou, China
| | - Yuping Xiong
- Institute for Reproductive Health, School of Pharmacy, Hangzhou Medical College, Hangzhou, China
| | - Kun Li
- Institute for Reproductive Health, School of Pharmacy, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
13
|
Zhang Y, Ding N, Cao J, Zhang J, Liu J, Zhang C, Jiang L. Proteomics and Metabolic Characteristics of Boar Seminal Plasma Extracellular Vesicles Reveal Biomarker Candidates Related to Sperm Motility. J Proteome Res 2024; 23:3764-3779. [PMID: 39067049 PMCID: PMC11385425 DOI: 10.1021/acs.jproteome.4c00060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Although seminal plasma extracellular vesicles (SPEVs) play important roles in sperm function, little is known about their metabolite compositions and roles in sperm motility. Here, we performed metabolomics and proteomics analysis of boar SPEVs with high or low sperm motility to investigate specific biomarkers affecting sperm motility. In total, 140 proteins and 32 metabolites were obtained through differentially expressed analysis and weighted gene coexpression network analysis (WGCNA). Seven differentially expressed proteins (DEPs) (ADIRF, EPS8L1, PRCP, CD81, PTPRD, CSK, LOC100736569) and six differentially expressed metabolites (DEMs) (adenosine, beclomethasone, 1,2-benzenedicarboxylic acid, urea, 1-methyl-l-histidine, and palmitic acid) were also identified in WGCNA significant modules. Joint pathway analysis revealed that three DEPs (GART, ADCY7, and NTPCR) and two DEMs (urea and adenosine) were involved in purine metabolism. Our results suggested that there was significant correlation between proteins and metabolites, such as IL4I1 and urea (r = 0.86). Furthermore, we detected the expression level of GART, ADCY7, and CDC42 in sperm of two groups, which further verified the experimental results. This study revealed that several proteins and metabolites in SPEVs play important roles in sperm motility. Our results offered new insights into the complex mechanism of sperm motility and identified potential biomarkers for male reproductive diseases.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory of Animal Biotech Breeding, College of Animal Science & Technology, China Agricultural University, Beijing 100193, P. R. China
| | - Ning Ding
- State Key Laboratory of Animal Biotech Breeding, College of Animal Science & Technology, China Agricultural University, Beijing 100193, P. R. China
| | - Jinkang Cao
- State Key Laboratory of Animal Biotech Breeding, College of Animal Science & Technology, China Agricultural University, Beijing 100193, P. R. China
| | - Jing Zhang
- State Key Laboratory of Animal Biotech Breeding, College of Animal Science & Technology, China Agricultural University, Beijing 100193, P. R. China
| | - Jianfeng Liu
- State Key Laboratory of Animal Biotech Breeding, College of Animal Science & Technology, China Agricultural University, Beijing 100193, P. R. China
| | - Chun Zhang
- State Key Laboratory of Animal Biotech Breeding, College of Animal Science & Technology, China Agricultural University, Beijing 100193, P. R. China
| | - Li Jiang
- State Key Laboratory of Animal Biotech Breeding, College of Animal Science & Technology, China Agricultural University, Beijing 100193, P. R. China
| |
Collapse
|
14
|
Franko R, de Almeida Monteiro Melo Ferraz M. Exploring the potential of in vitro extracellular vesicle generation in reproductive biology. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e70007. [PMID: 39238549 PMCID: PMC11375532 DOI: 10.1002/jex2.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 07/11/2024] [Accepted: 08/15/2024] [Indexed: 09/07/2024]
Abstract
The interest in the growing field of extracellular vesicle (EV) research highlights their significance in intercellular signalling and the selective transfer of biological information between donor and recipient cells. EV studies have provided valuable insights into intercellular communication mechanisms, signal identification and their involvement in disease states, offering potential avenues for manipulating pathological conditions, detecting biomarkers and developing drug-delivery systems. While our understanding of EV functions in reproductive tissues has significantly progressed, exploring their potential as biomarkers for infertility, therapeutic interventions and enhancements in assisted reproductive technologies remains to be investigated. This knowledge gap stems partly from the difficulties associated with large-scale EV production relevant to clinical applications. Most existing studies on EV production rely on conventional 2D cell culture systems, characterized by suboptimal EV yields and a failure to replicate in vivo conditions. This results in the generation of EVs that differ from their in vivo counterparts. Hence, this review firstly delves into the importance of EVs in reproduction to then expand on current techniques for in vitro EV production, specifically examining diverse methods of culture and the potential of bioengineering technologies to establish innovative systems for enhanced EV production.
Collapse
Affiliation(s)
- Roksan Franko
- Clinic of Ruminants, Faculty of Veterinary Medicine Ludwig-Maximilians-Universität München Oberschleißheim Germany
- Gene Center Ludwig-Maximilians-Universität München Munich Germany
| | - Marcia de Almeida Monteiro Melo Ferraz
- Clinic of Ruminants, Faculty of Veterinary Medicine Ludwig-Maximilians-Universität München Oberschleißheim Germany
- Gene Center Ludwig-Maximilians-Universität München Munich Germany
| |
Collapse
|
15
|
Fazzio A, Caponnetto A, Ferrara C, Purrello M, Di Pietro C, Battaglia R. From Germ Cells to Implantation: The Role of Extracellular Vesicles. J Dev Biol 2024; 12:22. [PMID: 39311117 PMCID: PMC11417829 DOI: 10.3390/jdb12030022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/09/2024] [Accepted: 08/22/2024] [Indexed: 09/26/2024] Open
Abstract
Extracellular vesicles represent a large heterogeneous class of near and long-distance intercellular communication mediators, released by both prokaryotic and eukaryotic cells. Specifically, the scientific community has shown growing interest in exosomes, which are nano-sized vesicles with an endosomal origin. Not so long ago, the physiological goal of exosome generation was largely unknown and required more investigation; at first, it was hypothesized that exosomes are able to remove excess, reject and unnecessary constituents from cells to preserve cellular homeostasis. However, thanks to recent studies, the central role of exosomes in regulating cellular communication has emerged. Exosomes act as vectors in cell-cell signaling by their cargo, proteins, lipids, and nucleic acids, and influence physiological and pathological processes. The findings on exosomes are widespread in a large spectrum of biomedical applications from diagnosis and prognosis to therapies. In this review, we describe exosome biogenesis and the current methods for their isolation and characterization, emphasizing the role of their cargo in female reproductive processes, from gametogenesis to implantation, and the potential involvement in human female disorders.
Collapse
Affiliation(s)
- Anna Fazzio
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics “G. Sichel”, University of Catania, 95123 Catania, Italy; (A.F.); (A.C.); (C.F.); (M.P.); (R.B.)
- Department of Physics and Astronomy “Ettore Majorana”, University of Catania, 95123 Catania, Italy
| | - Angela Caponnetto
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics “G. Sichel”, University of Catania, 95123 Catania, Italy; (A.F.); (A.C.); (C.F.); (M.P.); (R.B.)
| | - Carmen Ferrara
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics “G. Sichel”, University of Catania, 95123 Catania, Italy; (A.F.); (A.C.); (C.F.); (M.P.); (R.B.)
| | - Michele Purrello
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics “G. Sichel”, University of Catania, 95123 Catania, Italy; (A.F.); (A.C.); (C.F.); (M.P.); (R.B.)
| | - Cinzia Di Pietro
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics “G. Sichel”, University of Catania, 95123 Catania, Italy; (A.F.); (A.C.); (C.F.); (M.P.); (R.B.)
| | - Rosalia Battaglia
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics “G. Sichel”, University of Catania, 95123 Catania, Italy; (A.F.); (A.C.); (C.F.); (M.P.); (R.B.)
| |
Collapse
|
16
|
Gu Y, Feng J, Shi J, Xiao G, Zhang W, Shao S, Liu B, Guo H. Global Research Trends on Exosome in Cardiovascular Diseases: A Bibliometric-Based Visual Analysis. Vasc Health Risk Manag 2024; 20:377-402. [PMID: 39188326 PMCID: PMC11346494 DOI: 10.2147/vhrm.s473520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/10/2024] [Indexed: 08/28/2024] Open
Abstract
Background Exosomes in cardiovascular diseases (CVDs) have attracted huge attention with substantial value and potential. Our bibliometrics is based on literature from the field of cardiovascular exosomes over the past 30 years, which has been visualized to display the development process, research hotspots, and cutting-edge trends of clinical practices, mechanisms, and management strategies related to psych cardiology. Methods We selected articles and reviews on exosomes in CVDs from the core collection of Web of Science, and generated visual charts by using CiteSpace and VOSviewer software. Results Our research included 1613 publications. The number of exosome articles in CVD fluctuates slightly, but overall shows an increasing trend. The main research institutions were Tongji University and Nanjing Medical University. The International Journal of Molecular Sciences has the highest publication volume, while the Journal of Cellular and Molecular Medicine has the highest citation count. Among all the authors, Eduardo Marban ranks first in terms of publication volume and H-index. The most common keywords are exosome, extracellular vesicles, and angiogenesis. Conclusion This is a bibliometric study on the research hotspots and trends of exosomes in CVD. Exosome research in the field of cardiovascular medicine is on the rise. Some exosome treatment methods may become the focus of future research.
Collapse
Affiliation(s)
- Yunxiao Gu
- Department of Anatomy, School of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Jiaming Feng
- Department of Anatomy, School of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Jiayi Shi
- Department of Anatomy, School of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Guanyi Xiao
- Department of Anatomy, School of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Weiwei Zhang
- Department of Anatomy, School of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Shuijin Shao
- Department of Anatomy, School of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Baonian Liu
- Department of Anatomy, School of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Haidong Guo
- Department of Anatomy, School of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| |
Collapse
|
17
|
Duval C, Wyse BA, Tsang BK, Librach CL. Extracellular vesicles and their content in the context of polycystic ovarian syndrome and endometriosis: a review. J Ovarian Res 2024; 17:160. [PMID: 39103867 DOI: 10.1186/s13048-024-01480-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/18/2024] [Indexed: 08/07/2024] Open
Abstract
Extracellular vesicles (EVs), particles enriched in bioactive molecules like proteins, nucleic acids, and lipids, are crucial mediators of intercellular communication and play key roles in various physiological and pathological processes. EVs have been shown to be involved in ovarian follicular function and to be altered in two prevalent gynecological disorders; polycystic ovarian syndrome (PCOS) and endometriosis.Ovarian follicles are complex microenvironments where folliculogenesis takes place with well-orchestrated interactions between granulosa cells, oocytes, and their surrounding stromal cells. Recent research unveiled the presence of EVs, including exosomes and microvesicles, in the follicular fluid (FFEVs), which constitutes part of the developing oocyte's microenvironment. In the context of PCOS, a multifaceted endocrine, reproductive, and metabolic disorder, studies have explored the dysregulation of these FFEVs and their cargo. Nine PCOS studies were included in this review and two miRNAs were commonly reported in two different studies, miR-379 and miR-200, both known to play a role in female reproduction. Studies have also demonstrated the potential use of EVs as diagnostic tools and treatment options.Endometriosis, another prevalent gynecological disorder characterized by ectopic growth of endometrial-like tissue, has also been linked to aberrant EV signaling. EVs in the peritoneal fluid of women with endometriosis carry molecules that modulate the immune response and promote the establishment and maintenance of endometriosis lesions. EVs derived from endometriosis lesions, serum and peritoneal fluid obtained from patients with endometriosis showed no commonly reported biomolecules between the eleven reviewed studies. Importantly, circulating EVs have been shown to be potential biomarkers, also reflecting the severity of the pathology.Understanding the interplay of EVs within human ovarian follicles may provide valuable insights into the pathophysiology of both PCOS and endometriosis. Targeting EV-mediated communication may open avenues for novel diagnostic and therapeutic approaches for these common gynecological disorders. More research is essential to unravel the mechanisms underlying EV involvement in folliculogenesis and its dysregulation in PCOS and endometriosis, ultimately leading to more effective and personalized interventions.
Collapse
Affiliation(s)
- Cyntia Duval
- CReATe Fertility Center, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | | | - Benjamin K Tsang
- Inflammation and Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Departments of Obstetrics and Gynecology & Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Clifford L Librach
- CReATe Fertility Center, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
- Department of Obstetrics and Gynecology, University of Toronto, Toronto, ON, Canada
- Sunnybrook Research Institute, Toronto, ON, Canada
| |
Collapse
|
18
|
Zang X, Gu S, Wang W, Shi J, Gan J, Hu Q, Zhou C, Ding Y, He Y, Jiang L, Gu T, Xu Z, Huang S, Yang H, Meng F, Li Z, Cai G, Hong L, Wu Z. Dynamic intrauterine crosstalk promotes porcine embryo implantation during early pregnancy. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1676-1696. [PMID: 38748354 DOI: 10.1007/s11427-023-2557-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 02/21/2024] [Indexed: 08/09/2024]
Abstract
Dynamic crosstalk between the embryo and mother is crucial during implantation. Here, we comprehensively profile the single-cell transcriptome of pig peri-implantation embryos and corresponding maternal endometrium, identifying 4 different lineages in embryos and 13 cell types in the endometrium. Cell-specific gene expression characterizes 4 distinct trophectoderm subpopulations, showing development from undifferentiated trophectoderm to polar and mural trophectoderm. Dynamic expression of genes in different types of endometrial cells illustrates their molecular response to embryos during implantation. Then, we developed a novel tool, ExtraCellTalk, generating an overall dynamic map of maternal-foetal crosstalk using uterine luminal proteins as bridges. Through cross-species comparisons, we identified a conserved RBP4/STRA6 pathway in which embryonic-derived RBP4 could target the STRA6 receptor on stromal cells to regulate the interaction with other endometrial cells. These results provide insight into the maternal-foetal crosstalk during embryo implantation and represent a valuable resource for further studies to improve embryo implantation.
Collapse
Affiliation(s)
- Xupeng Zang
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Shengchen Gu
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Wenjing Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Junsong Shi
- Yunfu Subcenter of Guangdong Laboratory for Lingnan Modern Agriculture, Yunfu, 527300, China
| | - Jianyu Gan
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Qun Hu
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Chen Zhou
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Yue Ding
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Yanjuan He
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Lei Jiang
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Ting Gu
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
- Key Laboratory of South China Modern Biological Seed Industry, Ministry of Agriculture and Rural Affairs, Guangzhou, 510520, China
| | - Zheng Xu
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
- Key Laboratory of South China Modern Biological Seed Industry, Ministry of Agriculture and Rural Affairs, Guangzhou, 510520, China
| | - Sixiu Huang
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
- Key Laboratory of South China Modern Biological Seed Industry, Ministry of Agriculture and Rural Affairs, Guangzhou, 510520, China
| | - Huaqiang Yang
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
- Key Laboratory of South China Modern Biological Seed Industry, Ministry of Agriculture and Rural Affairs, Guangzhou, 510520, China
| | - Fanming Meng
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Zicong Li
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
- Key Laboratory of South China Modern Biological Seed Industry, Ministry of Agriculture and Rural Affairs, Guangzhou, 510520, China
| | - Gengyuan Cai
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
- Key Laboratory of South China Modern Biological Seed Industry, Ministry of Agriculture and Rural Affairs, Guangzhou, 510520, China
| | - Linjun Hong
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China.
- Key Laboratory of South China Modern Biological Seed Industry, Ministry of Agriculture and Rural Affairs, Guangzhou, 510520, China.
| | - Zhenfang Wu
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China.
- Yunfu Subcenter of Guangdong Laboratory for Lingnan Modern Agriculture, Yunfu, 527300, China.
- Key Laboratory of South China Modern Biological Seed Industry, Ministry of Agriculture and Rural Affairs, Guangzhou, 510520, China.
| |
Collapse
|
19
|
Liao H, Zhang C, Wang F, Jin F, Zhao Q, Wang X, Wang S, Gao J. Tumor-derived extracellular vesicle proteins as new biomarkers and targets in precision oncology. J Mol Med (Berl) 2024; 102:961-971. [PMID: 38814362 PMCID: PMC11269371 DOI: 10.1007/s00109-024-02452-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 04/09/2024] [Accepted: 04/25/2024] [Indexed: 05/31/2024]
Abstract
Extracellular vesicles (EVs) are important carriers of signaling molecules, such as nucleic acids, proteins, and lipids, and have become a focus of increasing interest due to their numerous physiological and pathological functions. For a long time, most studies on EV components focused on noncoding RNAs; however, in recent years, extracellular vesicle proteins (EVPs) have been found to play important roles in diagnosis, treatment, and drug resistance and thus have been considered favorable biomarkers and therapeutic targets for various tumors. In this review, we describe the general protocols of research on EVPs and summarize their multifaceted roles in precision medicine applications, including cancer diagnosis, dynamic monitoring of therapeutic efficacy, drug resistance research, tumor microenvironment interaction research, and anticancer drug delivery.
Collapse
Affiliation(s)
- Haiyan Liao
- Department of Oncology, Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen-Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Cheng Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Fen Wang
- Department of Oncology, Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen-Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Feng Jin
- Department of Oncology, Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen-Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Qiqi Zhao
- Chi Biotech Co., Ltd., Shenzhen, China
| | | | - Shubin Wang
- Department of Oncology, Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen-Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, China.
| | - Jing Gao
- Department of Oncology, Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen-Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, China.
| |
Collapse
|
20
|
Fazeli A, Godakumara K. The evolving roles of extracellular vesicles in embryo-maternal communication. Commun Biol 2024; 7:754. [PMID: 38906986 PMCID: PMC11192758 DOI: 10.1038/s42003-024-06442-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 06/12/2024] [Indexed: 06/23/2024] Open
Abstract
Mammalian reproduction relies on precise maternal-fetal communication, wherein immune modifications foster tolerance toward the semi-allogeneic embryo. Extracellular vesicles (EVs), including exosomes and microvesicles, have emerged as crucial mediators, transporting molecules like microRNAs securely. EVs influence various reproductive stages, from gamete maturation to implantation, and impact pathologies like pregnancy loss. In the embryo-maternal dialogue, EVs notably affect oviductal interactions, gene expression, and the embryo-endometrial interface, crucial for successful implantation. Key queries persist about EV uptake, cargo delivery, and the specific biomolecules driving communication. Their potential in diagnostics, therapeutics, and understanding environmental impacts on fertility signals an exciting future, reliant on collaborative efforts for transformative strides in reproductive health.
Collapse
Affiliation(s)
- Alireza Fazeli
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia.
- Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, Faculty of Medicine, Tartu University, Tartu, Estonia.
- Division of Clinical Medicine, School of Medicine & Population Health, University of Sheffield, Sheffield, UK.
| | - Kasun Godakumara
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
| |
Collapse
|
21
|
Huang X, Zhao J, Zhang Q, Wang Y, Li Y. Ovarian Stimulation Altered Uterine Fluid Extracellular Vesicles miRNA Affecting Implantation in Rats. Reprod Sci 2024; 31:1683-1694. [PMID: 38216776 DOI: 10.1007/s43032-023-01448-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 12/18/2023] [Indexed: 01/14/2024]
Abstract
Uterine fluid (UF) extracellular vesicle (EV) miRNA may affect implantation and could be the potential biomarker of endometrial receptivity (ER). Ovarian stimulation (OS) could damage the ER but its mechanism is still unclear. Here, we evaluate the affections of OS on UF EV miRNA expression and implantation. Female rats were divided into three groups: natural cycle or injection with GnRH-a following HP-HMG or u-FSH. UF was collected on the 5th day of gestation. Affinity membrane columns were utilized to isolate EVs from UF, obtained during implantation flushing. The EV miRNAs were sequenced, and five of them were validated by qRT-PCR. HTR-8/Svneo cells were transfected with miR-223-3p mimic and inhibitor, followed by conducting colony formation, invasion, migration, and adhesion assays to assess the cellular functions. In OS groups, the implantation rate decreased (p < 0.05), and the pinopode was damaged in the OS groups. The EVs were isolated from UF, and the differential expression key miRNAs were involved in several regulation pathways, such as cancer, endocrine, and cell cycles, which were correlated with ER and implantation. Among the miRNAs, miR-223-5p greatly differed and was most consistent with the sequencing results, followed by miR-223-3p and miR-98-5P. miR-223-3p promoted HTR-8/SVneo cells grow and ability of invasion, migration, and adhesion. OS altered UF EVs miRNAs affecting implantation in rats, and miR-223-3p might be the key molecule.
Collapse
Affiliation(s)
- Xi Huang
- Department of Reproductive Medicine, Xiangya Hospital, Central South University, NO.87, Xiangya Road, Kaifu District, Changsha, Hunan, China
- Clinical Research Center for Women's Reproductive Health in Hunan Province, NO.87, Xiangya Road, Kaifu District, Changsha, Hunan, China
| | - Jing Zhao
- Department of Reproductive Medicine, Xiangya Hospital, Central South University, NO.87, Xiangya Road, Kaifu District, Changsha, Hunan, China
- Clinical Research Center for Women's Reproductive Health in Hunan Province, NO.87, Xiangya Road, Kaifu District, Changsha, Hunan, China
| | - Qiong Zhang
- Department of Reproductive Medicine, Xiangya Hospital, Central South University, NO.87, Xiangya Road, Kaifu District, Changsha, Hunan, China
- Clinical Research Center for Women's Reproductive Health in Hunan Province, NO.87, Xiangya Road, Kaifu District, Changsha, Hunan, China
| | - Yonggang Wang
- Department of Reproductive Medicine, Xiangya Hospital, Central South University, NO.87, Xiangya Road, Kaifu District, Changsha, Hunan, China
- Clinical Research Center for Women's Reproductive Health in Hunan Province, NO.87, Xiangya Road, Kaifu District, Changsha, Hunan, China
| | - Yanping Li
- Department of Reproductive Medicine, Xiangya Hospital, Central South University, NO.87, Xiangya Road, Kaifu District, Changsha, Hunan, China.
- Clinical Research Center for Women's Reproductive Health in Hunan Province, NO.87, Xiangya Road, Kaifu District, Changsha, Hunan, China.
| |
Collapse
|
22
|
Javadi M, Gholami Farashah MS, Roshangar L, Soleimani JR. Plasma-derived extracellular vesicles improve mice embryo development. Mol Biol Rep 2024; 51:621. [PMID: 38709430 DOI: 10.1007/s11033-024-09500-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 03/28/2024] [Indexed: 05/07/2024]
Abstract
BACKGROUND To investigate the effect of plasma-derived extracellular vesicles (EVs) or conventional medium in fertilization and early embryo development rate in mice. METHODS AND RESULTS MII oocytes (matured in vivo or in vitro conditions) were obtained from female mice. The extracellular vesicles were isolated by ultracentrifugation of plasma and were analyzed and measured for size and morphology by dynamic light scattering (DLS) and transmission electron microscopy (TEM). By western blotting analysis, the EVs proteins markers such as CD82 protein and heat shock protein 90 (HSP90) were investigated. Incorporating DiI-labeled EVs within the oocyte cytoplasm was visible at 23 h in oocyte cytoplasm. Also, the effective proteins in the early reproductive process were determined in isolated EVs by western blotting. These EVs had a positive effect on the fertilization rate (P < 0.05). The early embryo development (8 cell, morula and blastocyst stages) was higher in groups supplemented with EVs (P < 0.01). CONCLUSION Our findings showed that supplementing in vitro maturation media with EVs derived- plasma was beneficial for mice's embryo development.
Collapse
Affiliation(s)
- Maryam Javadi
- Department of Anatomical Sciences, Faculty of Medicine, Zanjan University of Medical Sciences (ZUMS), Zanjan, Iran.
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Sadegh Gholami Farashah
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biology and Anatomical Sciences, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Leila Roshangar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Rad Soleimani
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
23
|
Deng R, Wu Z, He C, Lu C, He D, Li X, Duan Z, Zhao H. Exosomes from uterine fluid promote capacitation of human sperm. PeerJ 2024; 12:e16875. [PMID: 38680889 PMCID: PMC11056104 DOI: 10.7717/peerj.16875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 01/11/2024] [Indexed: 05/01/2024] Open
Abstract
Background Extracellular vesicles (EVs) are membrane-bound vesicles containing various proteins, lipids, and nucleic acids. EVs are found in many body fluids, such as blood and urine. The release of EVs can facilitate intercellular communication through fusion with the plasma membrane or endocytosis into the recipient cell or through internalization of the contents. Recent studies have reported that EVs isolated from human endometrial epithelial cells (EECs) promote sperm fertilization ability. EVs from uterine flushing fluid more closely resemble the physiological condition of the uterus. However, it is unclear whether EVs derived directly from uterine flushing fluid have the same effect on sperm. This study aimed to research the effect of EVs from uterine flushing fluid on sperm. Methods EVs were isolated from the uterine flushing fluid. The presence of EVs was confirmed by nanoparticle tracking analysis (NTA), Western blot, and transmission electron microscopy (TEM). EVs were incubated with human sperm for 2 h and 4 h. The effects of EVs on sperm were evaluated by analyzing acrosome reaction, sperm motility, and reactive oxygen species (ROS). Results The EVs fractions isolated from the uterine fluid were observed in cup-shaped vesicles of different sizes by TEM. All isolated vesicles contained similar numbers of vesicles in the expected size range (30-200 nm) by NTA. CD9 and CD63 were detected in EVs by western blot. Comparing the motility of the two groups incubated sperm motility significantly differed at 4 h. The acrosome reactions were promoted by incubating with EVs significantly. ROS were increased in sperm incubated with EVs. Conclusion Our results showed EVs present in the uterine fluid. Acrosome reactions and ROS levels increased in human sperm incubated with EVs. EVs from uterine fluid can promote the capacitation of human sperm. The increased capacitation after sperm interaction with EVs suggests a possible physiological effect during the transit of the uterus.
Collapse
Affiliation(s)
- Renbin Deng
- Department of Urology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Zhao Wu
- Department of Genetics, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Chaoyong He
- Department of Urology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Chuncheng Lu
- Department of Urology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Danpeng He
- Department of Urology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Xi Li
- Department of Urology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Zhenling Duan
- Department of Gynecology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Hui Zhao
- Department of Urology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
24
|
Homobono BP, das Mercês MO, Nogueira LHDS, de Souza EB, Cardoso APL, Santos ABS, Ramos ADS, Costa MHP, Santana PDPB, de Almeida NNDC, Cordeiro MS, Santos SDSD. Fertilization with follicular fluid reduces HSP70 and BAX expression on bovine in vitro embryos. Reprod Domest Anim 2024; 59:e14548. [PMID: 38459830 DOI: 10.1111/rda.14548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/02/2024] [Accepted: 02/21/2024] [Indexed: 03/10/2024]
Abstract
The in vivo fertilization process occurs in the presence of follicular fluid (FF). The aim of this study was to evaluate the effect of in vitro fertilization medium supplementation with 5% or 10% bovine follicular fluid (BFF) on the production of in vitro bovine embryos. FF was collected from ovarian follicles with a diameter of 8-10 mm, and cumulus-oocyte complexes (COCs) were co-incubated with sperm for 24 h in the commercial medium BotuFIV® (BotuPharma©), being distributed among the experimental groups: oocytes fertilized in a control medium; oocytes fertilized in a medium supplemented with 5% BFF; and oocytes fertilized in a medium supplemented with 10% BFF. After fertilization, the zygotes were cultured in vitro for 8 days. Embryo development was assessed through cleavage rates (day 2) and blastocyst formation rates (day 8). The relative expression of the genes OCT4, IFNT2, BAX, HSP70 and SOD2 was measured using the real-time polymerase chain reaction method. There was no difference (p > .05) among the different experimental groups in terms of cleavage rates and blastocyst formation rates. Regarding the gene expression results, only the blastocysts from oocytes fertilized with 10% BFF showed significantly lower expression of IFNT2 (p = .003) and SOD2 (p = .01) genes compared to blastocysts from oocytes fertilized in control medium alone, while there was no difference between blastocyst from oocytes fertilized in control medium and the ones from oocytes fertilized with 5% BFF. In addition to this, the blastocysts from oocytes fertilized with 5% BFF showed significantly reduced levels of expression of the heat shock protein HSP70 (p < .001) and the pro-apoptotic protein BAX (p = .015) compared to blastocysts from oocytes fertilized with control medium. This may indicate that lower supplementation of BFF to the IVF medium creates a more suitable environment for fertilization and is less stressful for the zygote.
Collapse
|
25
|
Muraoka A, Yokoi A, Yoshida K, Kitagawa M, Asano-Inami E, Murakami M, Bayasula, Miyake N, Nakanishi N, Nakamura T, Osuka S, Iwase A, Kajiyama H. Small extracellular vesicles in follicular fluids for predicting reproductive outcomes in assisted reproductive technology. COMMUNICATIONS MEDICINE 2024; 4:33. [PMID: 38418565 PMCID: PMC10902298 DOI: 10.1038/s43856-024-00460-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/14/2024] [Indexed: 03/01/2024] Open
Abstract
BACKGROUND Assisted reproductive technology accounts for an increasing proportion of infertility treatments, and assessments to predict clinical pregnancy outcomes are desired. Extracellular vesicles exist in follicular fluid, and small non coding RNAs in extracellular vesicles underline the possibility of reflecting pregnancy potential. METHODS Follicular fluid samples are collected from 20 ovarian follicles of 15 infertile patients undergoing assisted reproductive technology. Extracellular vesicles are isolated by serial centrifugation and small RNA sequencing is performed to investigate the profiles of microRNAs and P-element-induced wimpy testis-interacting RNAs. RESULTS Small extracellular vesicles with a size range of approximately 100 nm are successfully isolated, and the small non coding RNA profiles of pregnant samples (n = 8) are different from those of non-pregnant samples (n = 12). Fourteen dysregulated small non coding RNAs are selected to identify the independent candidates [mean read count >100, area under the curve >0.8]. Among them, we find that a specific combination of small non coding RNAs (miR-16-2-3p, miR-378a-3p, and miR-483-5p) can predict the pregnant samples more precisely using a receiver operating characteristics curves analysis (area under the curve: 0.96). Furthermore, even in the same patients, the three microRNAs are differentially expressed between pregnant and non-pregnant samples. CONCLUSIONS Our results demonstrate that small non coding RNAs derived from small extracellular vesicles in follicular fluid can be potential non-invasive biomarkers for predicting pregnancy, leading to their probable application in assisted reproductive technology. Further large-scale studies are required to validate the clinical usefulness of these small non coding RNAs.
Collapse
Affiliation(s)
- Ayako Muraoka
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Akira Yokoi
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan.
- Nagoya University Institute for Advanced Research, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan.
- Japan Science and Technology Agency (JST), FOREST, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan.
| | - Kosuke Yoshida
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
- Nagoya University Institute for Advanced Research, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Masami Kitagawa
- Bell Research Center for Reproductive Health and Cancer, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Eri Asano-Inami
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Mayuko Murakami
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Bayasula
- Bell Research Center for Reproductive Health and Cancer, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Natsuki Miyake
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Natsuki Nakanishi
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Tomoko Nakamura
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Satoko Osuka
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Akira Iwase
- Department of Obstetrics and Gynecology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, 371-8511, Japan
| | - Hiroaki Kajiyama
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| |
Collapse
|
26
|
Gu Y, Zhang X, Wang R, Wei Y, Peng H, Wang K, Li H, Ji Y. Metabolomic profiling of exosomes reveals age-related changes in ovarian follicular fluid. Eur J Med Res 2024; 29:4. [PMID: 38173013 PMCID: PMC10762974 DOI: 10.1186/s40001-023-01586-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Female fertility declines with increased maternal age, and this decline is even more rapid after the age of 35 years. Follicular fluid (FF) is a crucial microenvironment that plays a significant role in the development of oocytes, permits intercellular communication, and provides the oocytes with nutrition. Exosomes have emerged as being important cell communication mediators that are linked to age-related physiological and pathological conditions. However, the metabolomic profiling of FF derived exosomes from advanced age females are still lacking. METHODS The individuals who were involved in this study were separated into two different groups: young age with a normal ovarian reserve and advanced age. The samples were analysed by using gas chromatography-time of flight mass spectrometry (GC-TOFMS) analysis. The altered metabolites were analysed by using Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis to identify the functions and pathways that were involved. RESULTS Our data showed that metabolites in exosomes from FF were different between women of young age and women of advanced age. The set of 17 FF exosomal metabolites (P ≤ 0.05) may be biomarkers to differentiate between the two groups. Most of these differentially expressed metabolites in FF were closely involved in the regulation of oocyte number and hormone levels. CONCLUSIONS In this study, we identified differences in the metabolites of exosomes from FF between women of young age and women of advanced age. These different metabolites were tightly related to oocyte count and hormone levels. Importantly, these findings elucidate the metabolites of the FF exosomes and provide a better understanding of the nutritional profiles of the follicles with age.
Collapse
Affiliation(s)
- Yanqiong Gu
- Clinical and Translational Research Center, Shanghai Key Laboratory of Maternal-Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, No. 2699, West Gaoke Road, Shanghai, 201204, China
| | - Xunyi Zhang
- Reproductive Medicine Center, Tongji Hospital Affiliated to Tongji University, Shanghai, , No. 389 Xincun Road, Shanghai, 200065, China
| | - Ruixue Wang
- Clinical and Translational Research Center, Shanghai Key Laboratory of Maternal-Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, No. 2699, West Gaoke Road, Shanghai, 201204, China
| | - Yingying Wei
- Clinical and Translational Research Center, Shanghai Key Laboratory of Maternal-Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, No. 2699, West Gaoke Road, Shanghai, 201204, China
| | - Hao Peng
- Clinical and Translational Research Center, Shanghai Key Laboratory of Maternal-Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, No. 2699, West Gaoke Road, Shanghai, 201204, China
| | - Kai Wang
- Clinical and Translational Research Center, Shanghai Key Laboratory of Maternal-Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, No. 2699, West Gaoke Road, Shanghai, 201204, China
| | - Han Li
- Clinical and Translational Research Center, Shanghai Key Laboratory of Maternal-Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, No. 2699, West Gaoke Road, Shanghai, 201204, China.
| | - Yazhong Ji
- Reproductive Medicine Center, Tongji Hospital Affiliated to Tongji University, Shanghai, , No. 389 Xincun Road, Shanghai, 200065, China.
| |
Collapse
|
27
|
Aoki S, Inoue Y, Hara S, Itou J, Shirasuna K, Iwata H. microRNAs associated with the quality of follicular fluids affect oocyte and early embryonic development. Reprod Med Biol 2024; 23:e12559. [PMID: 38239486 PMCID: PMC10795439 DOI: 10.1002/rmb2.12559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/10/2023] [Accepted: 12/26/2023] [Indexed: 01/22/2024] Open
Abstract
Purpose Oocyte and embryo quality differs significantly among individuals. Follicular fluid (FF) is a solo environment of oocyte maturation and may flux into the oviduct. Supplementation of in vitro maturation (IVM) and culture (IVC) medium with extracellular vesicles of FFs supports oocyte maturation and embryonic development. We addressed a hypothesis that miRNA profiles in FFs are crucial background of oocyte maturation and embryonic development. Methods FFs were collected from the ovaries of individual cows, and the FFs were classified into Good or Poor FF based on the developmental rate to the blastocyst stage of enclosed oocytes. miRNAs associated with the Good FFs were explored using small RNA sequencing. In addition, FFs were classified using the concentration of Good-FF-associated miRNAs. These classified FFs or miRNA were added to the IVM or IVC mediums. Results Supplementation of IVM and IVC medium with Good FF improved embryonic development. Good FFs contained miR-151-3p and miR-425-5p at a high concentration compared with those in Poor FFs. FFs selected by the concentration of miR-151-3p and miR-425-5p improved oocyte maturation and embryonic development. Supplementation of IVM or IVC medium with either miR-151-3p or miR-425-5p improved embryonic development to the blastocyst stage. Conclusion miRNAs were associated with the Good FFs determined oocyte maturation and embryonic development.
Collapse
Affiliation(s)
- Sogo Aoki
- Department of Animal Science, Graduate School of AgricultureTokyo University of AgricultureAtsugi CityKanagawaJapan
| | - Yuki Inoue
- Department of Animal Science, Graduate School of AgricultureTokyo University of AgricultureAtsugi CityKanagawaJapan
| | - Shunsuke Hara
- Department of Animal Science, Graduate School of AgricultureTokyo University of AgricultureAtsugi CityKanagawaJapan
| | - Jun Itou
- Department of Animal Science, Graduate School of AgricultureTokyo University of AgricultureAtsugi CityKanagawaJapan
| | - Koumei Shirasuna
- Department of Animal Science, Graduate School of AgricultureTokyo University of AgricultureAtsugi CityKanagawaJapan
| | - Hisataka Iwata
- Department of Animal Science, Graduate School of AgricultureTokyo University of AgricultureAtsugi CityKanagawaJapan
| |
Collapse
|
28
|
Koprivec S, Majdič G. Extracellular Vesicles in Domestic Animals: Cellular Communication in Health and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1450:39-57. [PMID: 37421538 DOI: 10.1007/5584_2023_779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2023]
Abstract
Apoptotic and healthy cells of domestic animals release membrane-enclosed particles from their plasma membrane. These special structures, called extracellular vesicles, play an important role in intercellular communication. In the past, it was believed that their function was mainly to dispose unwanted cell contents and to help maintain cell homeostasis. However, we now know that they have important roles in health and disease and have diagnostic value as well as great potential for therapy in veterinary medicine. Extracellular vesicles facilitate cellular exchanges by delivering functional cargo molecules to nearby or distant tissues. They are produced by various cell types and are found in all body fluids. Their cargo reflects the state of the releasing parent cell, and despite their small size, this cargo is extraordinarily complex. Numerous different types of molecules contained in vesicles make them an extremely promising tool in the field of regenerative veterinary medicine. To further increase research interest and discover their full potential, some of the basic biological mechanisms behind their function need to be better understood. Only then will we be able to maximize the clinical relevance for targeted diagnostic and therapeutic purposes in various domestic animal species.
Collapse
Affiliation(s)
- Saša Koprivec
- Veterinary Faculty, Institute of Preclinical Sciences, University of Ljubljana, Ljubljana, Slovenia
| | - Gregor Majdič
- Veterinary Faculty, Institute of Preclinical Sciences, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
29
|
Liu L, Guo J, Gao W, Gao M, Ma X. Research progress in the role of non-coding RNAs and embryo implantation. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2023; 48:1377-1387. [PMID: 38044649 PMCID: PMC10929864 DOI: 10.11817/j.issn.1672-7347.2023.220485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Indexed: 12/05/2023]
Abstract
Non-coding RNA (ncRNA) refers to RNA that lack the ability to encode protein. Based on their distinct biological characteristics, ncRNA are mainly classified into microRNA (miRNA), long non-coding RNA (lncRNA), and circular RNA (circRNA). NcRNA plays a crucial regulatory role in various biological processes. Pregnancy is a highly intricate physiological process that requires successful completion of multiple steps. Embryo implantation, as a key event of pregnancy, which is regulated by numerous factors, including embryo development, endometrial changes, and the maternal-embryo crosstalk. A diverse array of regulatory mechanisms ensures the accomplishment of embryo localization, adhesion, invasion, and ultimately successful implantation. MiRNA, lncRNA, and circRNA are extensively studied ncRNA molecules at present, which play an important role in the physiological and pathological processes associated with embryo implantation through targeting and regulating the expression of multiple cytokine and genes. With advancements in molecular biology technology, it is anticipated that ncRNA will contribute to the prediction and enhancement of clinical pregnancy outcomes from a molecular perspective.
Collapse
Affiliation(s)
- Lin Liu
- Reproductive Center, First Hospital, Lanzhou University, Lanzhou 730000.
| | - Jiayi Guo
- Department of Ultrasound Diagnosis, Tongji Medical College, Southern Medical University, Guangzhou 510280
| | - Wenxin Gao
- Reproductive Center, First Hospital, Lanzhou University, Lanzhou 730000
| | - Mengmeng Gao
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaoling Ma
- Reproductive Center, First Hospital, Lanzhou University, Lanzhou 730000.
| |
Collapse
|
30
|
Hou Y, Wen X, Zhou L, Fang X. The value of platelet-rich plasma-derived extracellular vesicles in modern medicine. Ann Med 2023; 55:2287705. [PMID: 38065677 PMCID: PMC10880568 DOI: 10.1080/07853890.2023.2287705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
Platelet-rich plasma (PRP) has been widely used in clinical practice. The mechanism by which PRP promotes tissue repair lies in the release of multiple growth factors upon platelet activation, which accelerates the proliferation and differentiation of repair cells and the synthesis of extracellular matrix. In recent years, as extracellular vesicles (EVs) research has increased and intensified, it has been found that EVs also play an important role in tissue repair. This article provides a comprehensive review of the role of PRP and PRP-derived extracellular vesicles (PRP-EVs) in tissue repair. It discusses the biological characteristics, extraction, identification, activation, and preservation of PRP-EVs. It also reviews their applications in orthopedics and wound repair. The article highlights the importance of PRP-EVs in modern medicine and suggests that they could be a promising natural nanocarrier.
Collapse
Affiliation(s)
- Ya Hou
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xiaoyun Wen
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Liang Zhou
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xiansong Fang
- Blood Transfusion Department, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
31
|
Zhang Z, Shi C, Wang Z. The physiological functions and therapeutic potential of exosomes during the development and treatment of polycystic ovary syndrome. Front Physiol 2023; 14:1279469. [PMID: 38028777 PMCID: PMC10657906 DOI: 10.3389/fphys.2023.1279469] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Polycystic ovary syndrome is a very common disease of gynecological endocrine, accompanied by irregular menstruation, hyperandrogenism, metabolic abnormalities, reproductive disorders and other clinical symptoms, which seriously endangers women's physical and mental health, but its etiology and pathogenesis are not completely clear. Recently, the contribution of exosomes to the diagnosis and treatment of various diseases in the biomedical field has attracted much attention, including PCOS. Exosomes are extracellular vesicles secreted by cells, containing various biologically active molecules such as cell-specific proteins, lipids, and nucleic acids. They are important signaling regulators in vivo and widely participate in various physiopathological processes. They are new targets for disease diagnosis and treatment. Considering the important role of non-coding RNAs during the development and treatment of PCOS, this article takes exosomal miRNAs as the breakthrough point for elucidating the physiological functions and therapeutic potential of exosomes during the development and treatment of PCOS through analyzing the effects of exosomal miRNAs on ovarian follicle development, hormone secretion, oxidative stress, inflammatory response and insulin resistance, thus providing new research directions and theoretical basis for PCOS pathogenesis, clinical diagnosis and prognosis improvement.
Collapse
Affiliation(s)
| | | | - Zhengchao Wang
- Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou, China
| |
Collapse
|
32
|
Toledo-Guardiola SM, Luongo C, Abril-Parreño L, Soriano-Úbeda C, Matás C. Different seminal ejaculated fractions in artificial insemination condition the protein cargo of oviductal and uterine extracellular vesicles in pig. Front Cell Dev Biol 2023; 11:1231755. [PMID: 37868907 PMCID: PMC10587466 DOI: 10.3389/fcell.2023.1231755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/21/2023] [Indexed: 10/24/2023] Open
Abstract
The seminal plasma (SP) is the liquid component of semen that facilitates sperm transport through the female genital tract. SP modulates the activity of the ovary, oviductal environment and uterine function during the periovulatory and early pregnancy period. Extracellular vesicles (EVs) secreted in the oviduct (oEVs) and uterus (uEVs) have been shown to influence the expression of endometrial genes that regulate fertilization and early embryo development. In some species, semen is composed of well-separated fractions that vary in concentration of spermatozoa and SP composition and volume. This study aimed to investigate the impact of different accumulative fractions of the porcine ejaculate (F1, composed of the sperm-rich fraction, SRF; F2, composed of F1 plus the intermediate fraction; F3, composed of F2 plus the post-SRF) on oEVs and uEVs protein cargo. Six days after the onset of estrus, we determined the oEVs and uEVs size and protein concentration in pregnant sows by artificial insemination (AI-sows) and in non-inseminated sows as control (C-sows). We also identified the main proteins in oEVs and uEVs, in AI-F1, AI-F2, AI-F3, and C-sows. Our results indicated that although the size of EVs is similar between AI- and C-sows, the protein concentration of both oEVs and uEVs was significantly lower in AI-sows (p < 0.05). Proteomic analysis identified 38 unique proteins in oEVs from AI-sows, mainly involved in protein stabilization, glycolytic and carbohydrate processes. The uEVs from AI-sows showed the presence of 43 unique proteins, including already-known fertility-related proteins (EZR, HSPAA901, PDS). We also demonstrated that the protein composition of oEVs and uEVs differed depending on the seminal fraction(s) inseminated (F1, F2, or F3). In conclusion, we found specific protein cargo in oEVs and uEVs according to the type of semen fraction the sow was inseminated with and whose functions these specific EVs proteins are closely associated with reproductive processes.
Collapse
Affiliation(s)
- S. M. Toledo-Guardiola
- Departamento de Fisiología, Facultad de Veterinaria, Campus de Excelencia Mare Nostrum Universidad de Murcia, Murcia, Spain
| | - C. Luongo
- Departamento de Fisiología, Facultad de Veterinaria, Campus de Excelencia Mare Nostrum Universidad de Murcia, Murcia, Spain
| | - L. Abril-Parreño
- Departamento de Fisiología, Facultad de Veterinaria, Campus de Excelencia Mare Nostrum Universidad de Murcia, Murcia, Spain
| | - C. Soriano-Úbeda
- Departamento de Medicina, Cirugía y Anatomía Veterinaria, Universidad de Léon, León, Spain
| | - C. Matás
- Departamento de Fisiología, Facultad de Veterinaria, Campus de Excelencia Mare Nostrum Universidad de Murcia, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria Pascual Parrilla (IMIB-Arrixaca), Murcia, Spain
| |
Collapse
|
33
|
Mohammadipoor A, Hershfield MR, Linsenbardt HR, Smith J, Mack J, Natesan S, Averitt DL, Stark TR, Sosanya NM. Biological function of Extracellular Vesicles (EVs): a review of the field. Mol Biol Rep 2023; 50:8639-8651. [PMID: 37535245 DOI: 10.1007/s11033-023-08624-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 06/22/2023] [Indexed: 08/04/2023]
Abstract
Extracellular vesicles (EVs) theranostic potential is under intense investigation. There is a wealth of information highlighting the role that EVs and the secretome play in disease and how these are being utilized for clinical trials and novel therapeutic possibilities. However, understanding of the physiological and pathological roles of EVs remain incomplete. The challenge lies in reaching a consensus concerning standardized quality-controlled isolation, storage, and sample preparation parameters. Interest in circulating EV cargo as diagnostic and prognostic biomarkers is steadily growing. Though promising, various limitations need to be addressed before there can be successful, full-scale therapeutic use of approved EVs. These limitations include obtaining or manufacturing from the appropriate medium (e.g., from bodily fluid or cell culture), loading and isolating EVs, stability, and storage, standardization of processing, and determining potency. This review highlights specific topics, including circulation of abnormal EVs contribute to human disease and the theranostic potential of EVs. Theranostics is defined as a combination of the word's therapeutics and diagnostics and describes how a specific medicine or technique can function as both. Key findings include, (1) EVs and the secretome are future theranostics which will be utilized as both biomarkers for diagnosis and as therapeutics, (2) basic and translational research supports clinical trials utilizing EVs/secretome, and (3) additional investigation is required to fully unmask the theranostic potential of EVs/secretome in specific diseases and injuries.
Collapse
Affiliation(s)
- Arezoo Mohammadipoor
- Pain and Sensory Trauma Care, Combat Research Team 5 (CRT5), US Army Institute of Surgical Research (USAISR), 3698 Chambers Pass, JBSA Fort Sam Houston, San Antonio, TX, 78234-4504, USA
| | - Megan R Hershfield
- Pain and Sensory Trauma Care, Combat Research Team 5 (CRT5), US Army Institute of Surgical Research (USAISR), 3698 Chambers Pass, JBSA Fort Sam Houston, San Antonio, TX, 78234-4504, USA
| | | | - James Smith
- Pain and Sensory Trauma Care, Combat Research Team 5 (CRT5), US Army Institute of Surgical Research (USAISR), 3698 Chambers Pass, JBSA Fort Sam Houston, San Antonio, TX, 78234-4504, USA
| | - James Mack
- Pain and Sensory Trauma Care, Combat Research Team 5 (CRT5), US Army Institute of Surgical Research (USAISR), 3698 Chambers Pass, JBSA Fort Sam Houston, San Antonio, TX, 78234-4504, USA
| | - Shanmugasundaram Natesan
- Pain and Sensory Trauma Care, Combat Research Team 5 (CRT5), US Army Institute of Surgical Research (USAISR), 3698 Chambers Pass, JBSA Fort Sam Houston, San Antonio, TX, 78234-4504, USA
| | | | - Thomas R Stark
- Pain and Sensory Trauma Care, Combat Research Team 5 (CRT5), US Army Institute of Surgical Research (USAISR), 3698 Chambers Pass, JBSA Fort Sam Houston, San Antonio, TX, 78234-4504, USA
| | - Natasha M Sosanya
- Pain and Sensory Trauma Care, Combat Research Team 5 (CRT5), US Army Institute of Surgical Research (USAISR), 3698 Chambers Pass, JBSA Fort Sam Houston, San Antonio, TX, 78234-4504, USA.
| |
Collapse
|
34
|
Zhou Z, Zhang Y, Zhang X, Zhang J, Yi G, Wan B, Li Y, Lu H, Tan C, Lu W. Follicular Fluid-Derived Small Extracellular Vesicles Alleviate DHEA-Induced Granulosa Cell Apoptosis by Delivering LINC00092. Reprod Sci 2023; 30:3092-3102. [PMID: 37188981 DOI: 10.1007/s43032-023-01251-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/23/2023] [Indexed: 05/17/2023]
Abstract
Polycystic ovary syndrome (PCOS) is a perplexing condition in females of reproductive age. Dysplasia of ovarian granulosa cell (GC) is implicated in PCOS. Follicular fluid (FF)-extracellular vesicles (Evs) are important in cell-cell communication during follicular development. The current study elaborated on the function and mechanism of FF-Evs in the viability and apoptosis of GC cells in PCOS development. Human GC cells KGN were treated with dehydroepiandrosterone (DHEA) to mimic a PCOS-like condition in vitro, which were further co-cultured with the FF-derived Evs (FF-Evs). The FF-Evs treatment significantly reduced DHEA-induced apoptosis of KGN cells while promoting cell viability and migration. The lncRNA microarray analysis showed that FF-Evs mainly deliver LINC00092 into the KGN cells. Knockdown of LINC00092 negated the protective effect of FF-Evs against DHEA-induced damage on KGN cells. Moreover, by performing bioinformatics analyses and biotin-labeled RNA pull-down assay, we found that LINC00092 could bind to the RNA binding protein LIN28B and inhibit its binding to pre-microRNA-18-5p, which allowed biogenesis of pre-miR-18-5p and increased the expression of miR-18b-5p, a miRNA with known alleviating role in PCOS by suppressing the PTEN mRNA. Collectively, the present work demonstrates that FF-Evs can alleviate DHEA-induced GC damage by delivering LINC00092.
Collapse
Affiliation(s)
- Zhi Zhou
- Reproductive Medical Center, Hainan Women and Children's Medical Center, 75 South Longkun Road, Haikou, 570206, Hainan, People's Republic of China
| | - Yong Zhang
- Department of Pharmacology, School of Basic Medicine and Life Science, Hainan Medical University, Haikou, 571199, Hainan, People's Republic of China
| | - Xiaopo Zhang
- Key Laboratory of Tropical Translational Medicine of the Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou, 571199, Hainan, People's Republic of China
| | - Juan Zhang
- Reproductive Medical Center, Zhuzhou Central Hospital, Zhuzhou, 412007, Hunan, People's Republic of China
| | - Guohui Yi
- Public Research Laboratory, Hainan Medical University, Haikou, 571199, Hainan, People's Republic of China
| | - Bangbei Wan
- Reproductive Medical Center, Hainan Women and Children's Medical Center, 75 South Longkun Road, Haikou, 570206, Hainan, People's Republic of China
| | - Yejuan Li
- Reproductive Medical Center, Hainan Women and Children's Medical Center, 75 South Longkun Road, Haikou, 570206, Hainan, People's Republic of China
| | - Hui Lu
- Reproductive Medical Center, Hainan Women and Children's Medical Center, 75 South Longkun Road, Haikou, 570206, Hainan, People's Republic of China
| | - Can Tan
- Feinberg School of Medicine, Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Chicago, IL, 60611, USA
| | - Weiying Lu
- Reproductive Medical Center, Hainan Women and Children's Medical Center, 75 South Longkun Road, Haikou, 570206, Hainan, People's Republic of China.
| |
Collapse
|
35
|
Lu J, Li H, Zheng X, Liu Y, Zhao P. Small RNA sequencing analysis of exosomes derived from umbilical plasma in IUGR lambs. Commun Biol 2023; 6:943. [PMID: 37714996 PMCID: PMC10504244 DOI: 10.1038/s42003-023-05276-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 08/23/2023] [Indexed: 09/17/2023] Open
Abstract
During the summer, pregnant ewes experience heat stress, leading to the occurrence of IUGR lambs. This study aims to explore the biomarkers of exosomal miRNAs derived from umbilical plasma in both IUGR and normal Hu lambs. We establish a heat-stressed Hu sheep model during mid-late gestation and selected IUGR and normal lambs for analysis. Exosomes from umbilical plasma were separated and small RNA sequencing is used to identify differentially expressed miRNAs. Next, we utilize MiRanda to predict the target genes of the differentially expressed miRNAs. To further understand the biological significance of these miRNAs, we conduct GO and KEGG pathway enrichment analysis for their target genes. The study's findings indicate that oar-miR-411a-5p is significantly downregulated in exosomes derived from umbilical plasma of IUGR lambs, while oar-miR-200c is significantly upregulated in the HS-IUGR group (P < 0.05). Furthermore, GO and KEGG enrichment analysis demonstrate that the target genes are involved in the Wnt, TGF-beta, and Rap1 signaling pathways. miRNAs found in exosomes have the potential to be utilized as biomarkers for both the diagnosis and treatment of IUGR fetuses.
Collapse
Affiliation(s)
- Jiawei Lu
- College of Animal Science and Technology, Nanjing Agricultural University, 210095, Nanjing, China
| | - Huixia Li
- College of Animal Science and Technology, Nanjing Agricultural University, 210095, Nanjing, China.
| | - Xiaomin Zheng
- Research Institute for Reproductive Medicine and Genetic Diseases, Wuxi Maternity and Child Health Hospital, Wuxi, 214002, Jiangsu, China.
| | - Yuan Liu
- College of Animal Science and Technology, Nanjing Agricultural University, 210095, Nanjing, China
| | - Peng Zhao
- College of Animal Science and Technology, Nanjing Agricultural University, 210095, Nanjing, China
| |
Collapse
|
36
|
Barrachina F, Ottino K, Elizagaray ML, Gervasi MG, Tu LJ, Markoulaki S, Spallanzani RG, Capen D, Brown D, Battistone MA. Regulatory T cells play a crucial role in maintaining sperm tolerance and male fertility. Proc Natl Acad Sci U S A 2023; 120:e2306797120. [PMID: 37676910 PMCID: PMC10500189 DOI: 10.1073/pnas.2306797120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/31/2023] [Indexed: 09/09/2023] Open
Abstract
Regulatory T cells (Tregs) modulate tissue homeostatic processes and immune responses. Understanding tissue-Treg biology will contribute to developing precision-targeting treatment strategies. Here, we show that Tregs maintain the tolerogenic state of the testis and epididymis, where sperm are produced and mature. We found that Treg depletion induces severe autoimmune orchitis and epididymitis, manifested by an exacerbated immune cell infiltration [CD4 T cells, monocytes, and mononuclear phagocytes (MPs)] and the development of antisperm antibodies (ASA). In Treg-depleted mice, MPs increased projections toward the epididymal lumen as well as invading the lumen. ASA-bound sperm enhance sperm agglutination and might facilitate sperm phagocytosis. Tolerance breakdown impaired epididymal epithelial function and altered extracellular vesicle cargo, both of which play crucial roles in the acquisition of sperm fertilizing ability and subsequent embryo development. The affected mice had reduced sperm number and motility and severe fertility defects. Deciphering these immunoregulatory mechanisms may help to design new strategies to treat male infertility, as well as to identify potential targets for immunocontraception.
Collapse
Affiliation(s)
- Ferran Barrachina
- Program in Membrane Biology, Nephrology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA02129
| | - Kiera Ottino
- Program in Membrane Biology, Nephrology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA02129
| | - Maia Lina Elizagaray
- Program in Membrane Biology, Nephrology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA02129
| | - Maria Gracia Gervasi
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA01003
- Genetically Engineered Models Center, Whitehead Institute of Biomedical Research, Cambridge, MA02142
| | - Leona J. Tu
- Program in Membrane Biology, Nephrology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA02129
| | - Styliani Markoulaki
- Genetically Engineered Models Center, Whitehead Institute of Biomedical Research, Cambridge, MA02142
| | - Raul G. Spallanzani
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA02115
| | - Diane Capen
- Program in Membrane Biology, Nephrology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA02129
| | - Dennis Brown
- Program in Membrane Biology, Nephrology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA02129
| | - Maria Agustina Battistone
- Program in Membrane Biology, Nephrology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA02129
| |
Collapse
|
37
|
Reshi QUA, Godakumara K, Ord J, Dissanayake K, Hasan MM, Andronowska A, Heath P, Fazeli A. Spermatozoa, acts as an external cue and alters the cargo and production of the extracellular vesicles derived from oviductal epithelial cells in vitro. J Cell Commun Signal 2023; 17:737-755. [PMID: 36469292 PMCID: PMC10409707 DOI: 10.1007/s12079-022-00715-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 11/23/2022] [Indexed: 12/09/2022] Open
Abstract
The oviduct provides optimum physiological and biochemical milieu essential for successful fertilization, early embryo development and facilitates functional maturation of spermatozoa. A study has revealed that spermatozoa alters the gene expression in bovine oviductal epithelial cells (BOECs) remotely via bio-active particles, thus acting as a cue to the oviduct prior to their arrival. However, very little attention has been paid to the question of whether spermatozoa could alter the cargo of extracellular vesicles (EVs) derived from BOECs. Therefore, the aim of this study was to investigate the alterations in small non-coding RNAs in EVs cargo derived from BOECs when incubated with spermatozoa in contact and non-contact co-culture models. After 4 h of incubation the EVs were isolated from the conditioned media, followed by small non-coding sequencing of the BOEC derived EVs. Our results revealed that EVs from both co-culture models contained distinct cargo in form of miRNA, fragmented mRNA versus control. The pathway enrichment analysis revealed that EV miRNA from direct co-culture were involved in the biological processes associated with phagocytosis, macroautophagy, placenta development, cellular responses to TNF and FGF. The mRNA fragments also varied within the different groups and mapped to the exonic regions of the transcriptome providing vital insights regarding the changes in cellular transcriptome on the arrival of spermatozoa. The findings of this study suggest that spermatozoa, in contact as well as remotely, alter the EV cargo of female reproductive tract epithelial cells which might be playing an essential role in pre and post-fertilization events.
Collapse
Affiliation(s)
- Qurat Ul Ain Reshi
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 62, 51006, Tartu, Estonia
- Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila St. 19, 50411, Tartu, Estonia
| | - Kasun Godakumara
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 62, 51006, Tartu, Estonia
- Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila St. 19, 50411, Tartu, Estonia
| | - James Ord
- Institute for Fish and Wildlife Health, University of Bern, Längassstrasse 122, 3012, Bern, Switzerland
| | - Keerthie Dissanayake
- Department of Anatomy, Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka
| | - Mohammad Mehedi Hasan
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 62, 51006, Tartu, Estonia
- Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila St. 19, 50411, Tartu, Estonia
- Institute for Women's Health, Maternal and Fetal Medicine Department, University College London, 86-96 Chenies Mews, London, WC1N 1EH, UK
| | - Aneta Andronowska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima St. 10, 10-748, Olsztyn, Poland
| | - Paul Heath
- Sheffield Institute for Translational Neuroscience SITraN, University of Sheffield, 385a Glossop Rd, Sheffield, S10 2HQ, UK
| | - Alireza Fazeli
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 62, 51006, Tartu, Estonia.
- Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila St. 19, 50411, Tartu, Estonia.
- Academic Unit of Reproductive and Developmental Medicine, Department of Oncology and Metabolism, The Medical School, University of Sheffield, Sheffield, S10 2SF, UK.
| |
Collapse
|
38
|
Liu J, Wang C. Lysophosphatidic acid is associated with oocyte maturation by enhancing autophagy via PI3K-AKT-mTOR signaling pathway in granulosa cells. J Ovarian Res 2023; 16:137. [PMID: 37434211 DOI: 10.1186/s13048-023-01228-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/29/2023] [Indexed: 07/13/2023] Open
Abstract
BACKGROUND Folliculogenesis is a complex network of interacting cellular signals between somatic cells and oocytes. Many components in ovarian follicular fluid (FF) dynamically change during folliculogenesis and play a positive role in oocyte maturation. Previous studies have reported that lysophosphatidic acid (LPA) promotes cumulus cell expansion, oocyte nuclear maturation, and in vitro maturation of oocytes. RESULTS Initially, the expression of LPA was raised in matured FF significantly (P < 0.0001). Then, 10 μM LPA treated for 24 h in human granulosa cells (KGNs) aggravated cell proliferation, with increased autophagy, and reduced apoptosis. Meanwhile, we demonstrated that LPA mediated cell function through the PI3K-AKT-mTOR signaling pathway as PI3K inhibitor (LY294002) significantly prevented LPA-induced AKT, mTOR phosphorylation and autophagy activation. Such results were also verified by immunofluorescence staining and flow cytometry. In addition, an autophagy inhibitor 3 methyladenine (3MA) could also alleviate the effects of LPA, by activating apoptosis through PI3K-AKT-mTOR pathways. Finally, we found blockade with Ki16425 or knockdown LPAR1, alleviated LPA mediated autophagy activation in KGNs, suggesting that LPA enhances autophagy through activation of the LPAR1 and PI3K-AKT-mTOR signaling pathways. CONCLUSION This study demonstrates that increased LPA activated PI3K-Akt-mTOR pathway through LPAR1 in granulosa cells, suppressing apoptosis by enhancing autophagy, which might play a role in oocyte maturation in vivo.
Collapse
Affiliation(s)
- Jia Liu
- Department of Otolaryngology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310051, People's Republic of China
| | - Chong Wang
- Reproductive Medicine Center, Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital), Shangcheng District, No. 369 Kunpeng Road, Hangzhou, 310008, People's Republic of China.
| |
Collapse
|
39
|
Li Y, Cai L, Guo N, Liu C, Wang M, Zhu L, Li F, Jin L, Sui C. Oviductal extracellular vesicles from women with endometriosis impair embryo development. Front Endocrinol (Lausanne) 2023; 14:1171778. [PMID: 37409222 PMCID: PMC10319124 DOI: 10.3389/fendo.2023.1171778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/23/2023] [Indexed: 07/07/2023] Open
Abstract
Objective To investigate the influence of oviductal extracellular vesicles from patients with endometriosis on early embryo development. Design In vitro experimental study. Setting University-affiliated hospital. Patients Women with and without endometriosis who underwent hysterectomy (n = 27 in total). Interventions None. Main outcome measures Oviductal extracellular vesicles from patients with endometriosis (oEV-EMT) or without endometriosis (oEV-ctrl) were isolated and co-cultured with two-cell murine embryos for 75 hours. Blastocyst rates were recorded. RNA sequencing was used to identify the differentially expressed genes in blastocysts cultured either with oEV-EMT or with oEV-ctrl. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed to identify potential biological processes in embryos that oEV-EMT affects. The functions of oEV on early embryo development were determined by reactive oxygen species (ROS) levels, mitochondrial membrane potentials (MMP), total cell numbers, and apoptotic cell proportions. Results Extracellular vesicles were successfully isolated from human Fallopian tubal fluid, and their characterizations were described. The blastocyst rates were significantly decreased in the oEV-EMT group. RNA sequencing revealed that oxidative phosphorylation was down-regulated in blastocysts cultured with oEV-EMT. Analysis of oxidative stress and apoptosis at the blastocysts stage showed that embryos cultured with oEV-EMT had increased ROS levels, decreased MMP, and increased apoptotic index. Total cell numbers were not influenced. Conclusion Oviductal extracellular vesicles from patients with endometriosis negatively influence early embryo development by down-regulating oxidative phosphorylation.
Collapse
Affiliation(s)
- Yuehan Li
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Cai
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Na Guo
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chang Liu
- Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Meng Wang
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lixia Zhu
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Li
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Jin
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cong Sui
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
40
|
Coxir SA, Costa GMJ, Santos CFD, Alvarenga RDLLS, Lacerda SMDSN. From in vivo to in vitro: exploring the key molecular and cellular aspects of human female gametogenesis. Hum Cell 2023:10.1007/s13577-023-00921-7. [PMID: 37237248 DOI: 10.1007/s13577-023-00921-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023]
Abstract
Human oogenesis is a highly complex and not yet fully understood process due to ethical and technological barriers that limit studies in the field. In this context, replicating female gametogenesis in vitro would not only provide a solution for some infertility problems, but also be an excellent study model to better understand the biological mechanisms that determine the formation of the female germline. In this review, we explore the main cellular and molecular aspects involved in human oogenesis and folliculogenesis in vivo, from the specification of primordial germ cells (PGCs) to the formation of the mature oocyte. We also sought to describe the important bidirectional relationship between the germ cell and the follicular somatic cells. Finally, we address the main advances and different methodologies used in the search for obtaining cells of the female germline in vitro.
Collapse
Affiliation(s)
- Sarah Abreu Coxir
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Guilherme Mattos Jardim Costa
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Camilla Fernandes Dos Santos
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | | | - Samyra Maria Dos Santos Nassif Lacerda
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil.
| |
Collapse
|
41
|
Sgueglia G, Longobardi S, Valerio D, Campitiello MR, Colacurci N, Di Pietro C, Battaglia R, D'Hooghe T, Altucci L, Dell'Aversana C. The impact of epigenetic landscape on ovarian cells in infertile older women undergoing IVF procedures. Clin Epigenetics 2023; 15:76. [PMID: 37143127 PMCID: PMC10161563 DOI: 10.1186/s13148-023-01490-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/24/2023] [Indexed: 05/06/2023] Open
Abstract
The constant decline in fertility and older reproductive age is the major cause of low clinical pregnancy rates in industrialised countries. Epigenetic mechanisms impact on proper embryonic development in women undergoing in vitro fertilisation (IVF) protocols. Here, we describe the main epigenetic modifications that may influence female reproduction and could affect IVF success.
Collapse
Affiliation(s)
- Giulia Sgueglia
- Department of Precision Medicine, University of Campania 'Luigi Vanvitelli', Programma di Epigenetica Medica, Azienda Ospedaliera Universitaria, Naples, Italy
| | | | - Domenico Valerio
- Outpatient Fertility Unit, University of Campania 'Luigi Vanvitelli', 80138, Naples, Italy
| | - Maria Rosaria Campitiello
- Department of Obstetrics and Gynecology and Physiopathology of Human Reproduction, ASL Salerno, Salerno, Italy
| | - Nicola Colacurci
- Outpatient Fertility Unit, University of Campania 'Luigi Vanvitelli', 80138, Naples, Italy
- Department of Woman, Child and General and Special Surgery, University of Campania 'Luigi Vanvitelli', 80138, Naples, Italy
| | - Cinzia Di Pietro
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics "Giovanni Sichel", University of Catania, 95123, Catania, CT, Italy
| | - Rosalia Battaglia
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics "Giovanni Sichel", University of Catania, 95123, Catania, CT, Italy
| | | | - Lucia Altucci
- Department of Precision Medicine, University of Campania 'Luigi Vanvitelli', Programma di Epigenetica Medica, Azienda Ospedaliera Universitaria, Naples, Italy.
- BIOGEM, Ariano Irpino, Italy.
- Institute of Experimental Endocrinology and Oncology 'Gaetano Salvatore' (IEOS)-National Research Council (CNR), Naples, Italy.
| | - Carmela Dell'Aversana
- Department of Precision Medicine, University of Campania 'Luigi Vanvitelli', Programma di Epigenetica Medica, Azienda Ospedaliera Universitaria, Naples, Italy.
- Institute of Experimental Endocrinology and Oncology 'Gaetano Salvatore' (IEOS)-National Research Council (CNR), Naples, Italy.
| |
Collapse
|
42
|
Guo XR, Ma Y, Ma ZM, Dai TS, Wei SH, Chu YK, Dan XG. Exosomes: The role in mammalian reproductive regulation and pregnancy-related diseases. Front Physiol 2023; 14:1056905. [PMID: 36969587 PMCID: PMC10036776 DOI: 10.3389/fphys.2023.1056905] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 03/01/2023] [Indexed: 03/12/2023] Open
Abstract
Exosomes are a kind of extracellular vesicles that are produced and secreted by different mammalian cells. They serve as cargo proteins and can transfer different kinds of biomolecules, including proteins, lipids, and nucleic acids, which consequently act on target cells to exert different biological effects. Recent years have witnessed a significant increase in the number of studies on exosomes due to the potential effects of exosomes in the diagnosis and treatment of cancers, neurodegenerative diseases, and immune disorders. Previous studies have demonstrated that exosomal contents, especially miRNAs, are implicated in numerous physiological processes such as reproduction, and are crucial regulators of mammalian reproduction and pregnancy-related diseases. Here, we describe the origin, composition, and intercellular communication of exosomes, and discuss their functions in follicular development, early embryonic development, embryonic implantation, male reproduction and development of pregnancy-related diseases in humans and animals. We believe this study will provide a foundation for revealing the mechanism of exosomes in regulating mammalian reproduction, and providing new approaches and ideas for the diagnosis and treatment of pregnancy-related diseases.
Collapse
Affiliation(s)
- Xing-Ru Guo
- School of Agriculture, Ningxia University, Yinchuan, Ningxia, China
| | - Yun Ma
- School of Agriculture, Ningxia University, Yinchuan, Ningxia, China
| | - Zi-Ming Ma
- School of Agriculture, Ningxia University, Yinchuan, Ningxia, China
| | - Tian-Shu Dai
- School of Agriculture, Ningxia University, Yinchuan, Ningxia, China
| | - Shi-Hao Wei
- School of Agriculture, Ningxia University, Yinchuan, Ningxia, China
| | - Yuan-Kui Chu
- Department of Laboratory Medicine, General Hospital of Ningxia Medical University, Ningxia Medical University, Yinchuan, China
- *Correspondence: Yuan-Kui Chu, ; Xin-Gang Dan,
| | - Xin-Gang Dan
- School of Agriculture, Ningxia University, Yinchuan, Ningxia, China
- *Correspondence: Yuan-Kui Chu, ; Xin-Gang Dan,
| |
Collapse
|
43
|
Poh QH, Rai A, Salamonsen LA, Greening DW. Omics insights into extracellular vesicles in embryo implantation and their therapeutic utility. Proteomics 2023; 23:e2200107. [PMID: 36591946 DOI: 10.1002/pmic.202200107] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 01/03/2023]
Abstract
Implantation success relies on intricate interplay between the developing embryo and the maternal endometrium. Extracellular vesicles (EVs) represent an important player of this intercellular signalling through delivery of functional cargo (proteins and RNAs) that reprogram the target cells protein and RNA landscape. Functionally, the signalling reciprocity of endometrial and embryo EVs regulates the site of implantation, preimplantation embryo development and hatching, antioxidative activity, embryo attachment, trophoblast invasion, arterial remodelling, and immune tolerance. Omics technologies including mass spectrometry have been instrumental in dissecting EV cargo that regulate these processes as well as molecular changes in embryo and endometrium to facilitate implantation. This has also led to discovery of potential cargo in EVs in human uterine fluid (UF) and embryo spent media (ESM) of diagnostic and therapeutic value in implantation success, fertility, and pregnancy outcome. This review discusses the contribution of EVs in functional hallmarks of embryo implantation, and how the integration of various omics technologies is enabling design of EV-based diagnostic and therapeutic platforms in reproductive medicine.
Collapse
Affiliation(s)
- Qi Hui Poh
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Victoria, Australia
| | - Alin Rai
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Baker Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Melbourne, Victoria, Australia.,Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Lois A Salamonsen
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Molecular and Translational Medicine, Monash University, Clayton, Victoria, Australia
| | - David W Greening
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Victoria, Australia.,Baker Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Melbourne, Victoria, Australia.,Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia.,Central Clinical School, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
44
|
Li Y, Liu C, Guo N, Cai L, Wang M, Zhu L, Li F, Jin L, Sui C. Extracellular vesicles from human Fallopian tubal fluid benefit embryo development in vitro. Hum Reprod Open 2023; 2023:hoad006. [PMID: 36895886 PMCID: PMC9991590 DOI: 10.1093/hropen/hoad006] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/06/2023] [Indexed: 02/23/2023] Open
Abstract
STUDY QUESTION Do extracellular vesicles (EVs) from human Fallopian tubes exert an influence on early embryo development in vitro? SUMMARY ANSWER Human Fallopian tube EVs carrying miRNAs increase murine embryo viability in vitro. WHAT IS KNOWN ALREADY Oviductal EVs (oEVs) are recently identified key players in embryo-oviduct interactions that contribute to successful pregnancy in vivo. Their absence in current in vitro systems may partly explain the suboptimal embryo development observed; therefore, further knowledge is needed about their impact on early embryos. STUDY DESIGN SIZE DURATION The oEVs were isolated from the luminal fluid of human Fallopian tubes using ultracentrifugation. We cocultured oEVs with murine two-cell embryos until the blastocyst stage. The study was conducted between August 2021 and July 2022. PARTICIPANTS/MATERIALS SETTING METHODS A total of 23 premenopausal women were recruited for Fallopian-tubes collection, and the oEVs were isolated. The micro RNA (miRNA) contents were detected using high-throughput sequencing and their target genes and effects were analyzed. After in vitro culture with or without oEVs, the blastocyst and hatching rates were recorded. Furthermore, for the blastocysts formed, we assessed the total cell number, inner cell mass proportion, reactive oxygen species (ROS) level, number of apoptotic cells, and mRNA expression levels of genes involved in development. MAIN RESULTS AND THE ROLE OF CHANCE EVs were successfully isolated from the human Fallopian tubal fluid and the concentrations were evaluated. A total of 79 known miRNAs were identified from eight samples that had been sequenced, all involved in various biological processes. The blastocyst rate, hatching rate, as well as total cell number of blastocysts were significantly increased in the oEVs-treated groups (P < 0.05 versus untreated), while the proportion of inner cell mass showed no significant difference between groups. ROS levels and apoptotic cell proportions were decreased in the oEVs-treated groups (P < 0.05 versus untreated). The genes, Actr3 (actin-related protein 3), Eomes (eomesodermin), and Wnt3a (Wnt family member 3A) were upregulated in blastocysts in the oEVs-treated group. LARGE SCALE DATA Data are available from Gene Expression Omnibus: Accession number: GSE225122. LIMITATIONS REASONS FOR CAUTION The Fallopian tubes in the current study were collected from patients with uterine fibroids (the reason they underwent hysterectomy), and this pathological condition may affect the characteristics of EVs in luminal fluid. Also, owing to restrictions for ethical reasons, an in vitro co-culture system using murine embryos was used instead of human embryos, and the findings may not be transferable. WIDER IMPLICATIONS OF THE FINDINGS Deciphering miRNA contents in human oEVs and providing new evidence that oEVs benefit embryo development in vitro will not only increase our knowledge on embryo-oviduct communication but also potentially improve ART outcomes. STUDY FUNDING/COMPETING INTERESTS This study was supported by the National Key Research and Development Project of China (2021YFC2700603). No competing interests are declared.
Collapse
Affiliation(s)
- Yuehan Li
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Chang Liu
- Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, People's Republic of China
| | - Na Guo
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Lei Cai
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Meng Wang
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Lixia Zhu
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Fei Li
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Lei Jin
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Cong Sui
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| |
Collapse
|
45
|
Chhikara N, Tomar AK, Datta SK, Yadav S. Proteomic changes in human spermatozoa during in vitro capacitation and acrosome reaction in normozoospermia and asthenozoospermia. Andrology 2023; 11:73-85. [PMID: 36057948 DOI: 10.1111/andr.13289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/31/2022] [Accepted: 08/28/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND The cellular and molecular mechanisms of the events that help spermatozoa acquire their fertilizing capability during capacitation and acrosome reaction are not completely understood. OBJECTIVE This study was performed with a postulation that the identification of sperm proteins and their changes during in vitro capacitation and acrosome reaction will unravel unknown molecular aspects of fertilization that impact male fertility. MATERIALS AND METHODS Spermatozoa collected from sequential conditions, that is, separation of ejaculated spermatozoa by Percoll gradient centrifugation, in vitro capacitation, and acrosome reaction were processed for tandem mass spectrometric analysis, followed by protein identification, label-free quantitation, and statistical analysis. RESULTS AND DISCUSSION Collectively, a total of 1088 sperm proteins were identified. In comparison to ejaculated spermatozoa, 44 and 141 proteins were differentially expressed in capacitated and acrosome reacted spermatozoa, respectively. A large number of proteins were found downregulated, including clusterin, pyruvate dehydrogenase E1 component, semenogelin-1 and 2, heat shock protein 90, beta-microseminoprotein, and keratin. It was expected as sperm-membrane-associated proteins are removed during capacitation. There were significant proteomic alterations in asthenozoospermia compared to normozoospermia; however, variation was more noticeable among proteins of acrosome reacted spermatozoa and those released during the acrosome reaction. The processes enriched among downregulated proteins in asthenozoospermia included acrosome assembly, binding of spermatozoa to zona pellucida, nucleosome assembly, flagellated sperm motility, protein folding, oxidative phosphorylation, tricarboxylic acid cycle, chromatin silencing, gluconeogenesis, glycolytic process, and glycolysis. CONCLUSION The dynamic information generated about proteomic alterations in spermatozoa during capacitation and acrosome reaction and their variability in asthenozoospermia will contribute not only to enhancing our understanding of processes that prepare spermatozoa to acquire fertilization capability but also help in deciphering novel factors of male infertility.
Collapse
Affiliation(s)
- Nirmal Chhikara
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Anil Kumar Tomar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Sudip Kumar Datta
- Department of Laboratory Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Savita Yadav
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
46
|
Belleannée C, Viana AGDA, Lavoie-Ouellet C. Intra and intercellular signals governing sperm maturation. Reprod Fertil Dev 2022; 35:27-38. [PMID: 36592975 DOI: 10.1071/rd22226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
After their production in the testis, spermatozoa do not have the capacity to move progressively and are unable to fertilise an oocyte. They sequentially acquire these abilities following their maturation in the epididymis and their capacitation/hyperactivation in the female reproductive system. As gene transcription is silenced in spermatozoa, extracellular factors released from the epididymal epithelium and from secretory glands allow spermatozoa to acquire bioactive molecules and to undergo intrinsic modifications. These modifications include epigenetic changes and post-translational modifications of endogenous proteins, which are important processes in sperm maturation. This article emphasises the roles played by extracellular factors secreted by the epididymis and accessory glands in the control of sperm intercellular signallings and fertilising abilities.
Collapse
Affiliation(s)
- Clémence Belleannée
- Faculty of Medicine, Department of Obstetrics, Gynecology and Reproduction, Université Laval, Center for Research in Reproduction, Development and Intergenerational Health (CRDSI), CHU de Québec Research Center (CHUL), Quebec City, QC, Canada
| | | | - Camille Lavoie-Ouellet
- Faculty of Medicine, Department of Obstetrics, Gynecology and Reproduction, Université Laval, Center for Research in Reproduction, Development and Intergenerational Health (CRDSI), CHU de Québec Research Center (CHUL), Quebec City, QC, Canada
| |
Collapse
|
47
|
Li Y, Zhao W, Fu R, Ma Z, Hu Y, Liu Y, Ding Z. Endoplasmic reticulum stress increases exosome biogenesis and packaging relevant to sperm maturation in response to oxidative stress in obese mice. Reprod Biol Endocrinol 2022; 20:161. [PMID: 36411474 PMCID: PMC9677646 DOI: 10.1186/s12958-022-01031-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 11/03/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Mammalian sperm maturation in the epididymis is mainly modulated by exosomes that are secreted into the epididymal lumen from epididymal epithelial cells (EECs). Exposure to oxidative stress (OS) resulting from being fed a high fat diet (HFD) reduces sperm fertility, which is one of the cause inducing male infertility. Thus, we hypothesize that stress-induced changes in exosome content play a critical role in mediating this detrimental process. METHODS: An obese mouse model was established by feeding a HFD. Then oxidative stress status was measured in the mouse caput epididymis, epididymal fluid and spermatozoa. Meanwhile, epididymis-derived purified exosomes were isolated and validated. Subsequently, liquid chromatography tandem mass spectrometry (LC-MS) was used to perform proteomic analysis of purified exosomes. Gene Ontology (GO) analysis was performed along with pathway enrichment to identify differentially expressed proteins (DEPs). RESULTS Two hundred and two DEPs mostly related to endoplasmic reticulum (ER) function were identified in the exosomes separated from the epididymis of control mice and obese mice. The ER stress and CD63 (an exosome marker), both increased in the caput epididymis of obese mice. Furthermore, an in vitro study showed that palmitic acid (PA), an-oxidative stress inducer, increased exosome biogenesis and secretion in the EECs. CONCLUSION Oxidative stress in the epididymal microenvironment induces ER stress in the EECs. This effect alters the epididymis-derived exosome content, profile and amounts of their differentially expressed ER proteins. Such changes may affect exosome biogenesis and cargo packaging, finally leading to abnormalities in sperm maturation and fertility.
Collapse
Affiliation(s)
- Yangyang Li
- Department of Histology, Embryology, Genetics and Developmental Biology, Shanghai Key Laboratory for Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Wenzhen Zhao
- Department of Histology and Embryology, School of Basic Medical Science, Dali University, 671000, Dali, Yunnan, China
| | - Rong Fu
- Department of Core Facility of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Zhuoyao Ma
- Department of Histology, Embryology, Genetics and Developmental Biology, Shanghai Key Laboratory for Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Yanqin Hu
- Department of Histology, Embryology, Genetics and Developmental Biology, Shanghai Key Laboratory for Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Yue Liu
- Department of Histology, Embryology, Genetics and Developmental Biology, Shanghai Key Laboratory for Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
| | - Zhide Ding
- Department of Histology, Embryology, Genetics and Developmental Biology, Shanghai Key Laboratory for Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
- Department of Histology, Embryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, No.280, Chongqing Road (South), 200025, Shanghai, China.
| |
Collapse
|
48
|
Bulletti C, Bulletti FM, Sciorio R, Guido M. Progesterone: The Key Factor of the Beginning of Life. Int J Mol Sci 2022; 23:ijms232214138. [PMID: 36430614 PMCID: PMC9692968 DOI: 10.3390/ijms232214138] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/03/2022] [Accepted: 11/05/2022] [Indexed: 11/17/2022] Open
Abstract
Progesterone is the ovarian steroid produced by the granulosa cells of follicles after the LH peak at mid-cycle. Its role is to sustain embryo endometrial implantation and ongoing pregnancy. Other biological effects of progesterone may exert a protective function in supporting pregnancy up to birth. Luteal phase support (LPS) with progesterone is the standard of care for assisted reproductive technology. Progesterone vaginal administration is currently the most widely used treatment for LPS. Physicians and patients have been reluctant to change an administration route that has proven to be effective. However, some questions remain open, namely the need for LPS in fresh and frozen embryo transfer, the route of administration, the optimal duration of LPS, dosage, and the benefit of combination therapies. The aim of this review is to provide an overview of the uterine and extra-uterine effects of progesterone that may play a role in embryo implantation and pregnancy, and to discuss the advantages of the use of progesterone for LPS in the context of Good Medical Practice.
Collapse
Affiliation(s)
- Carlo Bulletti
- Extra Omnes, Assisted Reproductive Technology, ART Center, Via Gallinelli, 8, 47841 Cattolica, Italy
- Department of Obstetrics, Gynecology, and Reproductive Science, Yale University, New Haven, CT 06510, USA
- Correspondence:
| | | | - Romualdo Sciorio
- Edinburgh Assisted Conception Programme, Royal Infirmary of Edinburgh, Edinburgh EH16 4SA, UK
| | - Maurizio Guido
- Obstetrics and Gynecology Unit, Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| |
Collapse
|
49
|
Exosomes Derived from Yak Follicular Fluid Increase 2-Hydroxyestradiol Secretion by Activating Autophagy in Cumulus Cells. Animals (Basel) 2022; 12:ani12223174. [PMID: 36428401 PMCID: PMC9686841 DOI: 10.3390/ani12223174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/11/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022] Open
Abstract
Exosomes in the follicular fluid can carry and transfer regulatory molecules to recipient cells, thus influencing their biological functions. However, the specific effects of yak follicular fluid exosomes on 2-hydroxyestrodiol (2-OHE2) secretion remain unknown. Here, we investigated whether yak follicular fluid exosomes can increase 2-OHE2 secretion through the activation of autophagy in cumulus cells (YCCs). In vitro cultured YCCs were treated with yak follicular fluid exosomes for 6, 12, and 24 h. The effects of yak follicular fluid exosomes on autophagy and 2-OHE2 secretion were evaluated through real-time quantitative fluorescence PCR (RT-qPCR), Western blotting (WB), transfected with RFP-GFP-LC3, immunohistochemistry, and ELISA. To further investigate whether 2-OHE2 secretion was related to autophagy, YCCs were administered with yak follicular fluid exosomes, 3-methyladenine (3-MA), and rapamycin (RAPA). The results revealed that treatment with yak follicular fluid exosomes activated autophagy in YCCs and increased 2-OHE2 secretion. Conversely, the inhibition of autophagy with 3-MA blocked these effects, suggesting that autophagy has an important role in 2-OHE2 secretion in YCCs. Treatment of YCCs with rapamycin showed similar results with yak follicular fluid exosomes as there was an increase in 2-OHE2 secretion due to the activation of autophagy in the treated cumulus cells. Our results demonstrate that autophagy is enhanced by yak follicular fluid exosomes, and this is associated with an increase in 2-OHE2 secretion in YCCs.
Collapse
|
50
|
Bai L, Gong J, Guo Y, Li Y, Huang H, Liu X. Construction of a ceRNA network in polycystic ovary syndrome (PCOS) driven by exosomal lncRNA. Front Genet 2022; 13:979924. [DOI: 10.3389/fgene.2022.979924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
Polycystic ovary syndrome (PCOS), a common and frustrating syndrome in women of reproductive age, is characterized by symptoms including hyperandrogenemia, ovulation dysfunction, and polycystic ovaries. The role of competitive endogenous RNA (ceRNA) networks is receiving increasing attention and has been reported in multiple complicated diseases, such as various carcinomas, endometriosis, and tubal factor infertility. However, the association of ceRNA networks with the pathogenesis of PCOS remains unclear. This study aimed to construct a ceRNA network orchestrated by exosomal lnRNA and circRNA in PCOS. We screened RNA data of 34 samples from the Gene Expression Omnibus (GEO) database for differentially expressed lncRNAs (DELs), miRNAs (DEMs), mRNAs (DEGs), and circRNA associated with the progression of PCOS (PCOS, n = 17 vs. normal, n = 17). A protein–protein interaction (PPI) network, gene set enrichment analysis (GSEA), and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were conducted. Importantly, the function of the ceRNA network was explored using GO and KEGG enrichment analyses. We identified 46 DELs (25 upregulated and 21 downregulated), 31 DEMs (20 upregulated and 11 downregulated), 165 DEGs (52 upregulated and 113 downregulated), and 1 differentially expressed circRNA. The PPI network had 79 nodes and 112 edges. The GSEA results showed that these genes were mainly related to oxidative phosphorylation; TNF signaling pathways; and valine, leucine, and isoleucine degradation. GO and KEGG analyses revealed that the DEGs were significantly enriched in lipid metabolism, peroxisome proliferator-activated receptor (PPAR) signaling pathways, and fatty acid metabolism. Additionally, we constructed a novel PCOS-associated lncRNA–miRNA–mRNA ceRNA triple network and a circRNA-related network. Thereafter, we described the potential roles played by follicular fluid exosomes in PCOS. Our present study describes the molecular pathogenesis of PCOS in human ovarian granulosa cells at the post-transcriptional level, which provides new insights for the clinical diagnosis and treatment of PCOS and further scientific research.
Collapse
|