1
|
Arroyo-Mendoza M, Proctor A, Correa-Medina A, DeWolf S, Brand M, Rosas V, Lorenzi H, Wannemuehler M, Phillips G, Hinton D. A single rare σ70 variant establishes a unique gene expression pattern in the E. coli pathobiont LF82. Nucleic Acids Res 2024; 52:11552-11570. [PMID: 39258538 PMCID: PMC11514462 DOI: 10.1093/nar/gkae773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/08/2024] [Accepted: 08/28/2024] [Indexed: 09/12/2024] Open
Abstract
LF82, an adherent-invasive Escherichia coli (AIEC) pathobiont, is associated with Crohn's disease, an inflammatory bowel disease of unknown etiology. Although AIEC phenotypes differ from those of 'commensal' or pathogenic E. coli, work has failed to identify genetic features accounting for these differences. We have investigated a natural, but rare, single nucleotide polymorphism (SNP) in LF82 present within the highly conserved rpoD gene, encoding σ70 [primary sigma factor, RNA polymerase (RNAP)]. We demonstrate that σ70 D445V results in transcriptomic and phenotypic changes consistent with LF82 phenotypes, including increased antibiotic resistance and biofilm formation and increased capacity for methionine biosynthesis. RNA-seq analyses comparing σ70 V445 versus σ70 D445 identified 24 genes upregulated by σ70 V445 in both LF82 and the laboratory E. coli K-12 strain MG1655. Using in vitro transcription, we demonstrate that σ70 D445V directly increases transcription from promoters for several of the up-regulated genes and that the presence of a 16 bp spacer and -14 G:C is associated with this increase. The position of D445V within RNAP suggests that it could affect RNAP/spacer interaction. Our work represents the first identification of a distinguishing SNP for this pathobiont and suggests an underrecognized mechanism by which pathobionts and strain variants can emerge.
Collapse
Affiliation(s)
- Melissa Arroyo-Mendoza
- Gene Expression and Regulation Section, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 8 Center Dr., Bethesda, MD, USA
- Department of Veterinary Microbiology and Preventative Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Alexandra Proctor
- Department of Veterinary Microbiology and Preventative Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Abraham Correa-Medina
- Gene Expression and Regulation Section, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 8 Center Dr., Bethesda, MD, USA
| | - Sarah DeWolf
- Department of Veterinary Microbiology and Preventative Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Meghan Wymore Brand
- Department of Veterinary Microbiology and Preventative Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Virginia Rosas
- Gene Expression and Regulation Section, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 8 Center Dr., Bethesda, MD, USA
| | - Hernan Lorenzi
- TriLab Bioinformatics Group, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 8 Center Dr., Bethesda, MD, USA
| | - Michael J Wannemuehler
- Department of Veterinary Microbiology and Preventative Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Gregory J Phillips
- Department of Veterinary Microbiology and Preventative Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Deborah M Hinton
- Gene Expression and Regulation Section, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 8 Center Dr., Bethesda, MD, USA
| |
Collapse
|
2
|
Richie TG, Heeren L, Kamke A, Monk K, Pogranichniy S, Summers T, Wiechman H, Ran Q, Sarkar S, Plattner BL, Lee STM. Limitation of amino acid availability by bacterial populations during enhanced colitis in IBD mouse model. mSystems 2023; 8:e0070323. [PMID: 37909786 PMCID: PMC10746178 DOI: 10.1128/msystems.00703-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/27/2023] [Indexed: 11/03/2023] Open
Abstract
IMPORTANCE Inflammatory bowel disease is associated with an increase in Enterobacteriaceae and Enterococcus species; however, the specific mechanisms are unclear. Previous research has reported the associations between microbiota and inflammation, here we investigate potential pathways that specific bacteria populations use to drive gut inflammation. Richie et al. show that these bacterial populations utilize an alternate sulfur metabolism and are tolerant of host-derived immune-response products. These metabolic pathways drive host gut inflammation and fuel over colonization of these pathobionts in the dysbiotic colon. Cultured isolates from dysbiotic mice indicated faster growth supplemented with L-cysteine, showing these microbes can utilize essential host nutrients.
Collapse
Affiliation(s)
- Tanner G. Richie
- Division of Biology, Kansas State University, Manhattan, Kansas, USA
| | - Leah Heeren
- Division of Biology, Kansas State University, Manhattan, Kansas, USA
| | - Abigail Kamke
- Division of Biology, Kansas State University, Manhattan, Kansas, USA
| | - Kourtney Monk
- Division of Biology, Kansas State University, Manhattan, Kansas, USA
| | | | - Trey Summers
- Division of Biology, Kansas State University, Manhattan, Kansas, USA
| | - Hallie Wiechman
- Division of Biology, Kansas State University, Manhattan, Kansas, USA
| | - Qinghong Ran
- Division of Biology, Kansas State University, Manhattan, Kansas, USA
| | - Soumyadev Sarkar
- Division of Biology, Kansas State University, Manhattan, Kansas, USA
| | - Brandon L. Plattner
- Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, Kansas, USA
| | - Sonny T. M. Lee
- Division of Biology, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
3
|
D'Adamo GL, Chonwerawong M, Gearing LJ, Marcelino VR, Gould JA, Rutten EL, Solari SM, Khoo PWR, Wilson TJ, Thomason T, Gulliver EL, Hertzog PJ, Giles EM, Forster SC. Bacterial clade-specific analysis identifies distinct epithelial responses in inflammatory bowel disease. Cell Rep Med 2023; 4:101124. [PMID: 37467722 PMCID: PMC10394256 DOI: 10.1016/j.xcrm.2023.101124] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/19/2023] [Accepted: 06/21/2023] [Indexed: 07/21/2023]
Abstract
Abnormal immune responses to the resident gut microbiome can drive inflammatory bowel disease (IBD). Here, we combine high-resolution, culture-based shotgun metagenomic sequencing and analysis with matched host transcriptomics across three intestinal sites (terminal ileum, cecum, rectum) from pediatric IBD (PIBD) patients (n = 58) and matched controls (n = 42) to investigate this relationship. Combining our site-specific approach with bacterial culturing, we establish a cohort-specific bacterial culture collection, comprising 6,620 isolates (170 distinct species, 32 putative novel), cultured from 286 mucosal biopsies. Phylogeny-based, clade-specific metagenomic analysis identifies key, functionally distinct Enterococcus clades associated with either IBD or health. Strain-specific in vitro validation demonstrates differences in cell cytotoxicity and inflammatory signaling in intestinal epithelial cells, consistent with the colonic mucosa-specific response measured in patients with IBD. This demonstrates the importance of strain-specific phenotypes and consideration of anatomical sites in exploring the dysregulated host-bacterial interactions in IBD.
Collapse
Affiliation(s)
- Gemma L D'Adamo
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; Department of Molecular and Translational Sciences, Monash University, Clayton, VIC 3800, Australia
| | - Michelle Chonwerawong
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; Department of Molecular and Translational Sciences, Monash University, Clayton, VIC 3800, Australia
| | - Linden J Gearing
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; Department of Molecular and Translational Sciences, Monash University, Clayton, VIC 3800, Australia
| | - Vanessa R Marcelino
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; Department of Molecular and Translational Sciences, Monash University, Clayton, VIC 3800, Australia
| | - Jodee A Gould
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; Department of Molecular and Translational Sciences, Monash University, Clayton, VIC 3800, Australia
| | - Emily L Rutten
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; Department of Molecular and Translational Sciences, Monash University, Clayton, VIC 3800, Australia
| | - Sean M Solari
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; Department of Molecular and Translational Sciences, Monash University, Clayton, VIC 3800, Australia
| | - Patricia W R Khoo
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; Department of Molecular and Translational Sciences, Monash University, Clayton, VIC 3800, Australia; Department of Paediatrics, Monash University, Clayton, VIC 3800, Australia
| | - Trevor J Wilson
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC 3800, Australia; MHTP Medical Genomics Facility, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia
| | - Tamblyn Thomason
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; Department of Molecular and Translational Sciences, Monash University, Clayton, VIC 3800, Australia
| | - Emily L Gulliver
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; Department of Molecular and Translational Sciences, Monash University, Clayton, VIC 3800, Australia
| | - Paul J Hertzog
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; Department of Molecular and Translational Sciences, Monash University, Clayton, VIC 3800, Australia
| | - Edward M Giles
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; Department of Molecular and Translational Sciences, Monash University, Clayton, VIC 3800, Australia; Department of Paediatrics, Monash University, Clayton, VIC 3800, Australia.
| | - Samuel C Forster
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; Department of Molecular and Translational Sciences, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
4
|
Estevinho MM, Cabeda J, Santiago M, Machado E, Silva R, Duro M, Pita I, Morais R, Macedo G, Bull TJ, Magro F, Sarmento A. Viable Mycobacterium avium subsp. paratuberculosis Colonizes Peripheral Blood of Inflammatory Bowel Disease Patients. Microorganisms 2023; 11:1520. [PMID: 37375022 DOI: 10.3390/microorganisms11061520] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/31/2023] [Accepted: 06/04/2023] [Indexed: 06/29/2023] Open
Abstract
Pathobionts, particularly Mycobacterium avium subsp. paratuberculosis (MAP) and Escherichia coli isolates with adherence/invasive ability (AIEC) have been associated with inflammatory bowel disease (IBD), particularly Crohn's disease (CD). This study aimed to evaluate the frequency of viable MAP and AIEC in a cohort of IBD patients. As such, MAP and E. coli cultures were established from faecal and blood samples (with a total n = 62 for each) of patients with CD (n = 18), ulcerative colitis (UC, n = 15), or liver cirrhosis (n = 7), as well as from healthy controls (HC, n = 22). Presumptive positive cultures were tested by polymerase chain reaction (PCR), for a positive confirmation of MAP or E. coli identity. E. coli-confirmed isolates were then tested for AIEC identity using adherence and invasion assays in the epithelial cell line of Caco-2 and survival and replication assays in the macrophage cell line of J774. MAP sub-culture and genome sequencing were also performed. MAP was more frequently cultured from the blood and faecal samples of patients with CD and cirrhosis. E. coli presumptive colonies were isolated from the faecal samples of most individuals, in contrast to what was registered for the blood samples. Additionally, from the confirmed E. coli isolates, only three had an AIEC-like phenotype (i.e., one CD patient and two UC patients). This study confirmed the association between MAP and CD; however, it did not find a strong association between the presence of AIEC and CD. It may be hypothesized that the presence of viable MAP in the bloodstream of CD patients contributes to disease reactivation.
Collapse
Affiliation(s)
- Maria Manuela Estevinho
- Department of Gastroenterology, Vila Nova de Gaia/Espinho Hospital Center, 4434-502 Vila Nova de Gaia, Portugal
- Department of Biomedicine, Unit of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, 4050-313 Porto, Portugal
| | - José Cabeda
- FP-I3ID, Universidade Fernando Pessoa, 4200-150 Porto, Portugal
- Escola Superior de Saúde Fernando Pessoa, 4200-253 Porto, Portugal
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR, CIMAR), 4450-208 Matosinhos, Portugal
| | - Mafalda Santiago
- Department of Biomedicine, Unit of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, 4050-313 Porto, Portugal
| | - Elisabete Machado
- FP-I3ID, Universidade Fernando Pessoa, 4200-150 Porto, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Microbiology, Department of Biological Sciences, REQUIMTE, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Faculdade de Ciências da Saúde, Universidade Fernando Pessoa, 4200-150 Porto, Portugal
| | - Ricardo Silva
- FP-I3ID, Universidade Fernando Pessoa, 4200-150 Porto, Portugal
- Escola Superior de Saúde Fernando Pessoa, 4200-253 Porto, Portugal
| | - Mary Duro
- FP-I3ID, Universidade Fernando Pessoa, 4200-150 Porto, Portugal
- Escola Superior de Saúde Fernando Pessoa, 4200-253 Porto, Portugal
- LAQV@REQUIMTE, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Inês Pita
- Department of Gastroenterology, Entre Douro e Vouga Hospital Center, 4520-211 Santa Maria da Feira, Portugal
| | - Rui Morais
- Department of Gastroenterology, São João University Hospital Center, 4200-319 Porto, Portugal
| | - Guilherme Macedo
- Department of Gastroenterology, São João University Hospital Center, 4200-319 Porto, Portugal
| | - Tim J Bull
- Institute of Infection and Immunity, St George's University of London, London SW17 ORE, UK
| | - Fernando Magro
- Department of Biomedicine, Unit of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, 4050-313 Porto, Portugal
- Department of Gastroenterology, São João University Hospital Center, 4200-319 Porto, Portugal
| | - Amélia Sarmento
- FP-I3ID, Universidade Fernando Pessoa, 4200-150 Porto, Portugal
- Faculdade de Ciências da Saúde, Universidade Fernando Pessoa, 4200-150 Porto, Portugal
- I3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-150 Porto, Portugal
| |
Collapse
|
5
|
Arroyo-Mendoza M, Proctor A, Correa-Medina A, Brand MW, Rosas V, Wannemuehler MJ, Phillips GJ, Hinton DM. The E. coli pathobiont LF82 encodes a unique variant of σ 70 that results in specific gene expression changes and altered phenotypes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.08.523653. [PMID: 36798310 PMCID: PMC9934711 DOI: 10.1101/2023.02.08.523653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
LF82, an adherent invasive Escherichia coli pathobiont, is associated with ileal Crohn's disease, an inflammatory bowel disease of unknown etiology. Although LF82 contains no virulence genes, it carries several genetic differences, including single nucleotide polymorphisms (SNPs), that distinguish it from nonpathogenic E. coli. We have identified and investigated an extremely rare SNP that is within the highly conserved rpoD gene, encoding σ70, the primary sigma factor for RNA polymerase. We demonstrate that this single residue change (D445V) results in specific transcriptome and phenotypic changes that are consistent with multiple phenotypes observed in LF82, including increased antibiotic resistance and biofilm formation, modulation of motility, and increased capacity for methionine biosynthesis. Our work demonstrates that a single residue change within the bacterial primary sigma factor can lead to multiple alterations in gene expression and phenotypic changes, suggesting an underrecognized mechanism by which pathobionts and other strain variants with new phenotypes can emerge.
Collapse
Affiliation(s)
- Melissa Arroyo-Mendoza
- Gene Expression and Regulation Section, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 8 Center Dr., Bethesda, MD, United States, 20892
- Department of Veterinary Microbiology and Preventative Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States, 50011
| | - Alexandra Proctor
- Department of Veterinary Microbiology and Preventative Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States, 50011
| | - Abraham Correa-Medina
- Gene Expression and Regulation Section, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 8 Center Dr., Bethesda, MD, United States, 20892
| | - Meghan Wymore Brand
- Department of Veterinary Microbiology and Preventative Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States, 50011
| | - Virginia Rosas
- Gene Expression and Regulation Section, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 8 Center Dr., Bethesda, MD, United States, 20892
| | - Michael J Wannemuehler
- Department of Veterinary Microbiology and Preventative Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States, 50011
| | - Gregory J Phillips
- Department of Veterinary Microbiology and Preventative Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States, 50011
| | - Deborah M Hinton
- Gene Expression and Regulation Section, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 8 Center Dr., Bethesda, MD, United States, 20892
| |
Collapse
|
6
|
Mansour S, Asrar T, Elhenawy W. The multifaceted virulence of adherent-invasive Escherichia coli. Gut Microbes 2023; 15:2172669. [PMID: 36740845 PMCID: PMC9904308 DOI: 10.1080/19490976.2023.2172669] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/16/2023] [Indexed: 02/07/2023] Open
Abstract
The surge in inflammatory bowel diseases, like Crohn's disease (CD), is alarming. While the role of the gut microbiome in CD development is unresolved, the frequent isolation of adherent-invasive Escherichia coli (AIEC) strains from patient biopsies, together with their propensity to trigger gut inflammation, underpin the potential role of these bacteria as disease modifiers. In this review, we explore the spectrum of AIEC pathogenesis, including their metabolic versatility in the gut. We describe how AIEC strains hijack the host defense mechanisms to evade immune attrition and promote inflammation. Furthermore, we highlight the key traits that differentiate AIEC from commensal E. coli. Deciphering the main components of AIEC virulence is cardinal to the discovery of the next generation of antimicrobials that can selectively eradicate CD-associated bacteria.
Collapse
Affiliation(s)
- Sarah Mansour
- Department of Medical Microbiology & Immunology, Faculty of Medicine & Dentistry, University of Alberta, Canada
| | - Tahreem Asrar
- Department of Medical Microbiology & Immunology, Faculty of Medicine & Dentistry, University of Alberta, Canada
| | - Wael Elhenawy
- Department of Medical Microbiology & Immunology, Faculty of Medicine & Dentistry, University of Alberta, Canada
- Division of Gastroenterology, Department of Medicine, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Li Ka Shing Institute of Virology, Canada
- Women and Children’s Health Research Institute, Edmonton, Alberta, Canada
- Antimicrobial Resistance, One Health Consortium - Edmonton, AB, Canada
| |
Collapse
|
7
|
Zheng L, Duan SL, Dai YC, Wu SC. Role of adherent invasive Escherichia coli in pathogenesis of inflammatory bowel disease. World J Clin Cases 2022; 10:11671-11689. [PMID: 36405271 PMCID: PMC9669839 DOI: 10.12998/wjcc.v10.i32.11671] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/04/2022] [Accepted: 10/11/2022] [Indexed: 02/05/2023] Open
Abstract
Gut microbiota imbalances play an important role in inflammatory bowel disease (IBD), but no single pathogenic microorganism critical to IBD that is specific to the IBD terminal ileum mucosa or can invade intestinal epithelial cells has been found. Invasive Escherichia coli (E. coli) adhesion to macrophages is considered to be closely related to the pathogenesis of inflammatory bowel disease. Further study of the specific biological characteristics of adherent invasive E. coli (AIEC) may contribute to a further understanding of IBD pathogenesis. This review explores the relationship between AIEC and the intestinal immune system, discusses the prevalence and relevance of AIEC in Crohn's disease and ulcerative colitis patients, and describes the relationship between AIEC and the disease site, activity, and postoperative recurrence. Finally, we highlight potential therapeutic strategies to attenuate AIEC colonization in the intestinal mucosa, including the use of phage therapy, antibiotics, and anti-adhesion molecules. These strategies may open up new avenues for the prevention and treatment of IBD in the future.
Collapse
Affiliation(s)
- Lie Zheng
- Department of Gastroenterology, Shaanxi Provincial Hospital of Traditional Chinese Medicine, Xi’an 322000, Shaanxi Province, China
| | - Sheng-Lei Duan
- Department of Gastroenterology, Shaanxi Provincial Hospital of Traditional Chinese Medicine, Xi’an 322000, Shaanxi Province, China
| | - Yan-Cheng Dai
- Department of Gastroenterology, Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Shi-Cheng Wu
- Department of Proctology, Gansu Academy of Traditional Chinese Medicine, Gansu Hospital of Traditional Chinese Medicine, Lanzhou 730050, Gansu Province, China
| |
Collapse
|
8
|
Lopez LR, Ahn JH, Alves T, Arthur JC. Microenvironmental Factors that Shape Bacterial Metabolites in Inflammatory Bowel Disease. Front Cell Infect Microbiol 2022; 12:934619. [PMID: 35959366 PMCID: PMC9362432 DOI: 10.3389/fcimb.2022.934619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/21/2022] [Indexed: 11/17/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a significant global health problem that involves chronic intestinal inflammation and can involve severe comorbidities, including intestinal fibrosis and inflammation-associated colorectal cancer (CRC). Disease-associated alterations to the intestinal microbiota often include fecal enrichment of Enterobacteriaceae, which are strongly implicated in IBD development. This dysbiosis of intestinal flora accompanies changes in microbial metabolites, shaping host:microbe interactions and disease risk. While there have been numerous studies linking specific bacterial taxa with IBD development, our understanding of microbial function in the context of IBD is limited. Several classes of microbial metabolites have been directly implicated in IBD disease progression, including bacterial siderophores and genotoxins. Yet, our microbiota still harbors thousands of uncharacterized microbial products. In-depth discovery and characterization of disease-associated microbial metabolites is necessary to target these products in IBD treatment strategies. Towards improving our understanding of microbiota metabolites in IBD, it is important to recognize how host relevant factors influence microbiota function. For example, changes in host inflammation status, metal availability, interbacterial community structure, and xenobiotics all play an important role in shaping gut microbial ecology. In this minireview, we outline how each of these factors influences gut microbial function, with a specific focus on IBD-associated Enterobacteriaceae metabolites. Importantly, we discuss how altering the intestinal microenvironment could improve the treatment of intestinal inflammation and associated disorders, like intestinal fibrosis and CRC.
Collapse
Affiliation(s)
- Lacey R. Lopez
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Ju-Hyun Ahn
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Tomaz Alves
- Division of Comprehensive Oral Health, Adams School of Dentistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Janelle C. Arthur
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Center for Gastrointestinal Biology and Disease, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- *Correspondence: Janelle C. Arthur,
| |
Collapse
|
9
|
Sousa T, Costa M, Sarmento P, Manso MC, Abreu C, Bull TJ, Cabeda J, Sarmento A. DNA-based detection of Mycobacterium avium subsp. paratuberculosis in domestic and municipal water from Porto (Portugal), an area of high IBD prevalence. AIMS Microbiol 2021; 7:163-174. [PMID: 34250373 PMCID: PMC8255903 DOI: 10.3934/microbiol.2021011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/13/2021] [Indexed: 01/31/2023] Open
Abstract
Mycobacterium avium subsp. paratuberculosis (MAP) may play a role in the pathology of human inflammatory bowel disease (IBD). Previously, we found a high frequency (98% in patients with active disease) of MAP DNA detection in the blood of Portuguese Crohn's Disease patients, suggesting this cohort has high exposure to MAP organisms. Water is an important route for MAP dissemination, in this study we therefore aimed to assess MAP contamination within water sources in Porto area (the residential area of our IBD study cohort). Water and biofilms were collected in a wide variety of locations within the Porto area, including taps connected to domestic water sources and from municipal water distribution systems. Baseline samples were collected in early autumn plus further domestic water samples in early winter, to assess the effect of winter rainfall. DNA was extracted from all 131 samples and IS900-based nested PCR used to assess the frequency of MAP presence. Our results show high MAP positivity in municipal water sources (20.7% of water samples and 41.4% of biofilm samples) and even higher amongst domestic sources (30.8% of water samples and 50% of biofilm samples). MAP positivity in biofilms correlated with positivity in water samples from the same sources. A significantly higher frequency of MAP-positivity was observed during winter rains as compared with samples collected in autumn prior to the winter rainfall period (61.9% versus 30.8%). We conclude that domestic and municipal water sources of Porto region have a high burden of MAP contamination and this prevalence increases with rainfall. We hypothesize that human exposure to MAP from local water supplies is commonplace and represents a major route for MAP transmission and challenge which, if positively linked to disease pathology, may contribute to the observed high prevalence of IBD in Porto district.
Collapse
Affiliation(s)
- Telma Sousa
- FP-ENAS (UFP Energy, Environment and Health Research Unit), Universidade Fernando Pessoa, Rua Carlos da Maia, 296 - 4200-150 Porto, Portugal
- Faculdade de Ciências da Saúde, Universidade Fernando Pessoa, Rua Carlos da Maia, 296 - 4200-150 Porto, Portugal
| | - Marta Costa
- FP-ENAS (UFP Energy, Environment and Health Research Unit), Universidade Fernando Pessoa, Rua Carlos da Maia, 296 - 4200-150 Porto, Portugal
- Faculdade de Ciências da Saúde, Universidade Fernando Pessoa, Rua Carlos da Maia, 296 - 4200-150 Porto, Portugal
| | - Pedro Sarmento
- Departamento de Biologia & CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Maria Conceição Manso
- FP-ENAS (UFP Energy, Environment and Health Research Unit), Universidade Fernando Pessoa, Rua Carlos da Maia, 296 - 4200-150 Porto, Portugal
- Faculdade de Ciências da Saúde, Universidade Fernando Pessoa, Rua Carlos da Maia, 296 - 4200-150 Porto, Portugal
| | - Cristina Abreu
- FP-ENAS (UFP Energy, Environment and Health Research Unit), Universidade Fernando Pessoa, Rua Carlos da Maia, 296 - 4200-150 Porto, Portugal
- Faculdade de Ciências da Saúde, Universidade Fernando Pessoa, Rua Carlos da Maia, 296 - 4200-150 Porto, Portugal
| | - Tim J. Bull
- Institute of Infection and Immunity, St George's University of London, Cranmer Terrace London SW17 0RE, UK
| | - José Cabeda
- FP-ENAS (UFP Energy, Environment and Health Research Unit), Universidade Fernando Pessoa, Rua Carlos da Maia, 296 - 4200-150 Porto, Portugal
- Escola Superior de Saúde Fernando Pessoa, Rua Delfim Maia, 334 – 4200-253 Porto, Portugal
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Avenida General Norton de Matos, 4450-208 Matosinhos, Portugal
| | - Amélia Sarmento
- FP-ENAS (UFP Energy, Environment and Health Research Unit), Universidade Fernando Pessoa, Rua Carlos da Maia, 296 - 4200-150 Porto, Portugal
- Faculdade de Ciências da Saúde, Universidade Fernando Pessoa, Rua Carlos da Maia, 296 - 4200-150 Porto, Portugal
- I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208 - 4200-135 Porto, Portugal
| |
Collapse
|
10
|
Elhenawy W, Hordienko S, Gould S, Oberc AM, Tsai CN, Hubbard TP, Waldor MK, Coombes BK. High-throughput fitness screening and transcriptomics identify a role for a type IV secretion system in the pathogenesis of Crohn's disease-associated Escherichia coli. Nat Commun 2021; 12:2032. [PMID: 33795670 PMCID: PMC8016931 DOI: 10.1038/s41467-021-22306-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 03/05/2021] [Indexed: 02/06/2023] Open
Abstract
Adherent-invasive Escherichia coli (AIEC) are pathogenic bacteria frequently isolated from patients who have Crohn's disease (CD). Despite the phenotypic differences between AIEC and commensal E. coli, comparative genomic approaches have been unable to differentiate these two groups, making the identification of key virulence factors a challenge. Here, we conduct a high-resolution, in vivo genetic screen to map AIEC genes required for intestinal colonization of mice. In addition, we use in vivo RNA-sequencing to define the host-associated AIEC transcriptome. We identify diverse metabolic pathways required for efficient gut colonization by AIEC and show that a type IV secretion system (T4SS) is required to form biofilms on the surface of epithelial cells, thereby promoting AIEC persistence in the gut. E. coli isolated from CD patients are enriched for a T4SS, suggesting a possible connection to disease activity. Our findings establish the T4SS as a principal AIEC colonization factor and highlight the use of genome-wide screens in decoding the infection biology of CD-associated bacteria that otherwise lack a defined genetic signature.
Collapse
Affiliation(s)
- Wael Elhenawy
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, Hamilton, ON, Canada
| | - Sarah Hordienko
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Steven Gould
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Alexander M Oberc
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Caressa N Tsai
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Troy P Hubbard
- Division of Infectious Diseases, Brigham & Women's Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Matthew K Waldor
- Division of Infectious Diseases, Brigham & Women's Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
| | - Brian K Coombes
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada.
- Michael G. DeGroote Institute for Infectious Disease Research, Hamilton, ON, Canada.
- Farncombe Family Digestive Health Research Institute, Hamilton, ON, Canada.
| |
Collapse
|
11
|
Paeoniflorin ameliorates experimental colitis by inhibiting gram-positive bacteria-dependent MDP-NOD2 pathway. Int Immunopharmacol 2020; 90:107224. [PMID: 33302036 DOI: 10.1016/j.intimp.2020.107224] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 11/02/2020] [Accepted: 11/17/2020] [Indexed: 02/07/2023]
Abstract
Previous studies reported that antibiotics inhibit the growth of Gram-positive bacteria and alleviate ulcerative colitis (UC). But how Gram-positive bacteria are involved in the occurrence of inflammatory bowel disease (IBD) and which component of it causes inflammation remain unclear. This work aims to demonstrate that Gram-positive bacteria may be an underlying cause of experimental colitis in mice through the muramyl dipeptide (MDP)-nucleotide-binding oligomerization domain-containing protein-2 (NOD2) pathway and paeoniflorin inhibits the pathway above to alleviate experimental colitis. In this study, colitis mice were established by oral administration of 3% dextran sulfate sodium (DSS) and paeoniflorin (25, 50,100 mg/kg per day, ig) was administered to the mice for 10 days. Results shown that the abundance and the infiltration of Gram-positive bacteria in intestinal tissues increased in UC mice. Paeoniflorin treatment significantly alleviated DSS-induced experimental colitis mice, reduced the abundance of Gram-positive bacteria in feces and the infiltration of Gram-positive bacteria in intestinal tissues. Paeoniflorin also inhibited mRNA and protein expression of MDP-NOD2 pathway components and decreased the levels of related inflammatory cytokines. In vitro experiments showed that MDP strongly stimulated RAW264.7 cells to secrete tumor necrosis factor α (TNF-α), and induced translocation of nuclear factor-kappa B (NF-κB p65) from the cytoplasm to nucleus using immunofluorescence co-localization experiments. Overall, the results indicated that Gram-positive bacteria promote the occurrence of colitis via up-regulation of MDP-NOD2 pathway, and paeoniflorin is able to decrease the infiltration of Gram-positive bacteria in intestine and inhibit Gram-positive bacteria-dependent MDP-NOD2 pathway to alleviate mice colitis.
Collapse
|
12
|
Integrating omics for a better understanding of Inflammatory Bowel Disease: a step towards personalized medicine. J Transl Med 2019; 17:419. [PMID: 31836022 PMCID: PMC6909475 DOI: 10.1186/s12967-019-02174-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 12/08/2019] [Indexed: 02/06/2023] Open
Abstract
Background Inflammatory Bowel Disease (IBD) is a multifactorial chronic disease. Understanding only one aspect of IBD pathogenesis does not reflect the complex nature of IBD nor will it improve its clinical management. Therefore, it is vital to dissect the interactions between the different players in IBD pathogenesis in order to understand the biology of the disease and enhance its clinical outcomes. Aims To provide an overview of the available omics data used to assess the potential mechanisms through which various players are contributing to IBD pathogenesis and propose a precision medicine model to fill the current knowledge gap in IBD. Results Several studies have reported microbial dysbiosis, immune and metabolic dysregulation in IBD patients, however, this data is not sufficient to create signatures that can differentiate between the disease subtypes or between disease relapse and remission. Conclusions We summarized the current knowledge in the application of omics in IBD patients, and we showed that the current knowledge gap in IBD hinders the improvements of clinical decision for treatment as well as the prediction of disease relapse. We propose one way to fill this gap by implementing integrative analysis of various omics datasets generated from one patient at a single time point.
Collapse
|
13
|
Intestinal cytotoxicity induced by Escherichia coli is fully prevented by red wine polyphenol extract: Mechanistic insights in epithelial cells. Chem Biol Interact 2019; 310:108711. [DOI: 10.1016/j.cbi.2019.06.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 05/08/2019] [Accepted: 06/11/2019] [Indexed: 12/14/2022]
|