1
|
van Heyningen V. Stochasticity in genetics and gene regulation. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230476. [PMID: 38432316 PMCID: PMC10909507 DOI: 10.1098/rstb.2023.0476] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 12/20/2023] [Indexed: 03/05/2024] Open
Abstract
Development from fertilized egg to functioning multi-cellular organism requires precision. There is no precision, and often no survival, without plasticity. Plasticity is conferred partly by stochastic variation, present inherently in all biological systems. Gene expression levels fluctuate ubiquitously through transcription, alternative splicing, translation and turnover. Small differences in gene expression are exploited to trigger early differentiation, conferring distinct function on selected individual cells and setting in motion regulatory interactions. Non-selected cells then acquire new functions along the spatio-temporal developmental trajectory. The differentiation process has many stochastic components. Meiotic segregation, mitochondrial partitioning, X-inactivation and the dynamic DNA binding of transcription factor assemblies-all exhibit randomness. Non-random X-inactivation generally signals deleterious X-linked mutations. Correct neural wiring, such as retina to brain, arises through repeated confirmatory activity of connections made randomly. In immune system development, both B-cell antibody generation and the emergence of balanced T-cell categories begin through stochastic trial and error followed by functional selection. Aberrant selection processes lead to immune dysfunction. DNA sequence variants also arise through stochastic events: some involving environmental fluctuation (radiation or presence of pollutants), or genetic repair system malfunction. The phenotypic outcome of mutations is also fluid. Mutations may be advantageous in some circumstances, deleterious in others. This article is part of a discussion meeting issue 'Causes and consequences of stochastic processes in development and disease'.
Collapse
Affiliation(s)
- Veronica van Heyningen
- UCL Institute of Ophthalmology, University College London, London, EC1V 9EL, UK
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| |
Collapse
|
2
|
Capra E, Lazzari B, Milanesi M, Nogueira GP, Garcia JF, Utsunomiya YT, Ajmone-Marsan P, Stella A. Comparison between indicine and taurine cattle DNA methylation reveals epigenetic variation associated to differences in morphological adaptive traits. Epigenetics 2023; 18:2163363. [PMID: 36600398 PMCID: PMC9980582 DOI: 10.1080/15592294.2022.2163363] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Indicine and taurine subspecies present distinct morphological traits as a consequence of environmental adaptation and artificial selection. Although the two subspecies have been characterized and compared at genome-wide level and at specific loci, their epigenetic diversity has not yet been explored. In this work, Reduced Representation Bisulphite Sequencing (RRBS) profiling of the taurine Angus (A) and indicine Nellore (N) cattle breeds was applied to identify methylation differences between the two subspecies. Genotyping by sequencing (GBS) of the same animals was performed to detect single nucleotide polymorphisms (SNPs) at cytosines in CpG dinucleotides and remove them from the differential methylation analysis. A total of 660,845 methylated cytosines were identified within the CpG context (CpGs) across the 10 animals sequenced (5 N and 5 A). A total of 25,765 of these were differentially methylated (DMCs). Most DMCs clustered in CpG stretches nearby genes involved in cellular and anatomical structure morphogenesis. Also, sequences flanking DMC were enriched in SNPs compared to all other CpGs, either methylated or unmethylated in the two subspecies. Our data suggest a contribution of epigenetics to the regulation and divergence of anatomical morphogenesis in the two subspecies relevant for cattle evolution and sub-species differentiation and adaptation.
Collapse
Affiliation(s)
- E Capra
- Institute of Agricultural Biology and Biotechnology, National Research Council IBBA CNR, Lodi, Italy
| | - B Lazzari
- Institute of Agricultural Biology and Biotechnology, National Research Council IBBA CNR, Lodi, Italy
| | - M Milanesi
- School of Veterinary Medicine, Araçatuba, Department of Production and Animal Health, São Paulo State University (Unesp), Araçatuba, Brazil.,International Atomic Energy Agency, Collaborating Centre on Animal Genomics and Bioinformatics, Araçatuba, Brazil.,Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, Viterbo, Italy
| | - G P Nogueira
- School of Veterinary Medicine, Araçatuba, Department of Production and Animal Health, São Paulo State University (Unesp), Araçatuba, Brazil
| | - J F Garcia
- School of Veterinary Medicine, Araçatuba, Department of Production and Animal Health, São Paulo State University (Unesp), Araçatuba, Brazil.,International Atomic Energy Agency, Collaborating Centre on Animal Genomics and Bioinformatics, Araçatuba, Brazil
| | - Y T Utsunomiya
- School of Veterinary Medicine, Araçatuba, Department of Production and Animal Health, São Paulo State University (Unesp), Araçatuba, Brazil
| | - P Ajmone-Marsan
- Department of Animal Science, Food and Nutrition - DIANA, and Nutrigenomics and Proteomics Research Center - PRONUTRIGEN, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - A Stella
- Institute of Agricultural Biology and Biotechnology, National Research Council IBBA CNR, Lodi, Italy
| |
Collapse
|
3
|
Vogt G. Phenotypic plasticity in the monoclonal marbled crayfish is associated with very low genetic diversity but pronounced epigenetic diversity. Curr Zool 2023; 69:426-441. [PMID: 37614917 PMCID: PMC10443617 DOI: 10.1093/cz/zoac094] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 11/19/2022] [Indexed: 08/25/2023] Open
Abstract
Clonal organisms are particularly useful to investigate the contribution of epigenetics to phenotypic plasticity, because confounding effects of genetic variation are negligible. In the last decade, the apomictic parthenogenetic marbled crayfish, Procambarus virginalis, has been developed as a model to investigate the relationships between phenotypic plasticity and genetic and epigenetic diversity in detail. This crayfish originated about 30 years ago by autotriploidy from a single slough crayfish Procambarus fallax. As the result of human releases and active spreading, marbled crayfish has established numerous populations in very diverse habitats in 22 countries from the tropics to cold temperate regions. Studies in the laboratory and field revealed considerable plasticity in coloration, spination, morphometric parameters, growth, food preference, population structure, trophic position, and niche width. Illumina and PacBio whole-genome sequencing of marbled crayfish from representatives of 19 populations in Europe and Madagascar demonstrated extremely low genetic diversity within and among populations, indicating that the observed phenotypic diversity and ability to live in strikingly different environments are not due to adaptation by selection on genetic variation. In contrast, considerable differences were found between populations in the DNA methylation patterns of hundreds of genes, suggesting that the environmentally induced phenotypic plasticity is mediated by epigenetic mechanisms and corresponding changes in gene expression. Specific DNA methylation fingerprints persisted in local populations over successive years indicating the existence of epigenetic ecotypes, but there is presently no information as to whether these epigenetic signatures are transgenerationally inherited or established anew in each generation and whether the recorded phenotypic plasticity is adaptive or nonadaptive.
Collapse
Affiliation(s)
- Günter Vogt
- Faculty of Biosciences, University of Heidelberg, Im Neuenheimer Feld 234, 69120 Heidelberg, Germany
| |
Collapse
|
4
|
Chapelle V, Silvestre F. Population Epigenetics: The Extent of DNA Methylation Variation in Wild Animal Populations. EPIGENOMES 2022; 6:31. [PMID: 36278677 PMCID: PMC9589984 DOI: 10.3390/epigenomes6040031] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/17/2022] Open
Abstract
Population epigenetics explores the extent of epigenetic variation and its dynamics in natural populations encountering changing environmental conditions. In contrast to population genetics, the basic concepts of this field are still in their early stages, especially in animal populations. Epigenetic variation may play a crucial role in phenotypic plasticity and local adaptation as it can be affected by the environment, it is likely to have higher spontaneous mutation rate than nucleotide sequences do, and it may be inherited via non-mendelian processes. In this review, we aim to bring together natural animal population epigenetic studies to generate new insights into ecological epigenetics and its evolutionary implications. We first provide an overview of the extent of DNA methylation variation and its autonomy from genetic variation in wild animal population. Second, we discuss DNA methylation dynamics which create observed epigenetic population structures by including basic population genetics processes. Then, we highlight the relevance of DNA methylation variation as an evolutionary mechanism in the extended evolutionary synthesis. Finally, we suggest new research directions by highlighting gaps in the knowledge of the population epigenetics field. As for our results, DNA methylation diversity was found to reveal parameters that can be used to characterize natural animal populations. Some concepts of population genetics dynamics can be applied to explain the observed epigenetic structure in natural animal populations. The set of recent advancements in ecological epigenetics, especially in transgenerational epigenetic inheritance in wild animal population, might reshape the way ecologists generate predictive models of the capacity of organisms to adapt to changing environments.
Collapse
Affiliation(s)
- Valentine Chapelle
- Laboratory of Evolutionary and Adaptive Physiology, Institute of Life, Earth, and Environment, University of Namur, 61 Rue de Bruxelles, 5000 Namur, Belgium
| | | |
Collapse
|
5
|
Fellous A, Wegner KM, John U, Mark FC, Shama LNS. Windows of opportunity: Ocean warming shapes temperature-sensitive epigenetic reprogramming and gene expression across gametogenesis and embryogenesis in marine stickleback. GLOBAL CHANGE BIOLOGY 2022; 28:54-71. [PMID: 34669228 DOI: 10.1111/gcb.15942] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/23/2021] [Accepted: 10/14/2021] [Indexed: 06/13/2023]
Abstract
Rapid climate change is placing many marine species at risk of local extinction. Recent studies show that epigenetic mechanisms (e.g. DNA methylation, histone modifications) can facilitate both within and transgenerational plasticity to cope with changing environments. However, epigenetic reprogramming (erasure and re-establishment of epigenetic marks) during gamete and early embryo development may hinder transgenerational epigenetic inheritance. Most of our knowledge about reprogramming stems from mammals and model organisms, whereas the prevalence and extent of reprogramming among non-model species from wild populations is rarely investigated. Moreover, whether reprogramming dynamics are sensitive to changing environmental conditions is not well known, representing a key knowledge gap in the pursuit to identify mechanisms underlying links between parental exposure to changing climate patterns and environmentally adapted offspring phenotypes. Here, we investigated epigenetic reprogramming (DNA methylation/hydroxymethylation) and gene expression across gametogenesis and embryogenesis of marine stickleback (Gasterosteus aculeatus) under three ocean warming scenarios (ambient, +1.5 and +4°C). We found that parental acclimation to ocean warming led to dynamic and temperature-sensitive reprogramming throughout offspring development. Both global methylation/hydroxymethylation and expression of genes involved in epigenetic modifications were strongly and differentially affected by the increased warming scenarios. Comparing transcriptomic profiles from gonads, mature gametes and early embryonic stages showed sex-specific accumulation and temperature sensitivity of several epigenetic actors. DNA methyltransferase induction was primarily maternally inherited (suggesting maternal control of remethylation), whereas induction of several histone-modifying enzymes was shaped by both parents. Importantly, massive, temperature-specific changes to the epigenetic landscape occurred in blastula, a critical stage for successful embryo development, which could, thus, translate to substantial consequences for offspring phenotype resilience in warming environments. In summary, our study identified key stages during gamete and embryo development with temperature-sensitive reprogramming and epigenetic gene regulation, reflecting potential 'windows of opportunity' for adaptive epigenetic responses under future climate change.
Collapse
Affiliation(s)
- Alexandre Fellous
- Coastal Ecology Section, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Wadden Sea Station Sylt, List, Germany
| | - K Mathias Wegner
- Coastal Ecology Section, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Wadden Sea Station Sylt, List, Germany
| | - Uwe John
- Ecological Chemistry Section, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
- Helmholtz Institute for Functional Marine Biodiversity, Oldenburg, Germany
| | - Felix C Mark
- Integrative Ecophysiology Section, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Lisa N S Shama
- Coastal Ecology Section, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Wadden Sea Station Sylt, List, Germany
| |
Collapse
|
6
|
Piferrer F. Epigenetic mechanisms in sex determination and in the evolutionary transitions between sexual systems. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200110. [PMID: 34247505 PMCID: PMC8273503 DOI: 10.1098/rstb.2020.0110] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The hypothesis that epigenetic mechanisms of gene expression regulation have two main roles in vertebrate sex is presented. First, and within a given generation, by contributing to the acquisition and maintenance of (i) the male or female function once during the lifetime in individuals of gonochoristic species; and (ii) the male and female function in the same individual, either at the same time in simultaneous hermaphrodites, or first as one sex and then as the other in sequential hermaphrodites. Second, if environmental conditions change, epigenetic mechanisms may have also a role across generations, by providing the necessary phenotypic plasticity to facilitate the transition: (i) from one sexual system to another, or (ii) from one sex-determining mechanism to another. Furthermore, if the environmental change lasts enough time, epimutations could facilitate assimilation into genetic changes that stabilize the new sexual system or sex-determining mechanism. Examples supporting these assertions are presented, caveats or difficulties and knowledge gaps identified, and possible ways to test this hypothesis suggested. This article is part of the theme issue ‘Challenging the paradigm in sex chromosome evolution: empirical and theoretical insights with a focus on vertebrates (Part I)’.
Collapse
Affiliation(s)
- Francesc Piferrer
- Institut de Ciències del Mar (ICM), Spanish National Research Council (CSIC), Passeig Marítim, 37-49, 08003 Barcelona, Spain
| |
Collapse
|
7
|
The Impact of Stress Within and Across Generations: Neuroscientific and Epigenetic Considerations. Harv Rev Psychiatry 2021; 29:303-317. [PMID: 34049337 DOI: 10.1097/hrp.0000000000000300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The impact of stress and trauma on biological systems in humans can be substantial. They can result in epigenetic changes, accelerated brain development and sexual maturation, and predisposition to psychopathology. Such modifications may be accompanied by behavioral, emotional, and cognitive overtones during one's lifetime. Exposure during sensitive periods of neural development may lead to long-lasting effects that may not be affected by subsequent environmental interventions. The cumulative effects of life stressors in an individual may affect offspring's methylome makeup and epigenetic clocks, neurohormonal modulation and stress reactivity, and physiological and reproductive development. While offspring may suffer deleterious effects from parental stress and their own early-life adversity, these factors may also confer traits that prove beneficial and enhance fitness to their own environment. This article synthesizes the data on how stress shapes biological and behavioral dimensions, drawing from preclinical and human models. Advances in this field of knowledge should potentially allow for an improved understanding of how interventions may be increasingly tailored according to individual biomarkers and developmental history.
Collapse
|
8
|
Wang X, Li A, Wang W, Zhang G, Li L. Direct and heritable effects of natural tidal environments on DNA methylation in Pacific oysters (Crassostrea gigas). ENVIRONMENTAL RESEARCH 2021; 197:111058. [PMID: 33757824 DOI: 10.1016/j.envres.2021.111058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
Rapid climate change threatens the survival of animals, especially in vulnerable coastal ecosystems. Recent studies have shown that DNA methylation is a mechanism by which organisms can modulate current and future generations to cope with rapid environmental changes. Here, an investigation in a real-world context was conducted to determine the epigenetic mechanisms that are triggered by environmental changes in a typical intertidal species, the Pacific oyster (Crassostrea gigas). Oysters inhabiting intertidal and subtidal regions were collected, and their offspring were produced and subjected to common environment. The divergence of phenotypes and whole genome DNA methylation were assayed between the intertidal and subtidal oysters. The undifferentiated genetic structures implied that the phenotypic and epigenetic variations were mainly induced by the environment. Approximately 41% of genes modified by DNA methylation, which play a role in responses to the variable intertidal environment, could be transmitted to the next generation and had largely consistent tendency of regulation. The cross-generational genes were involved in the regulation of GTPase activity, primary metabolic activity, autophagosomes, and apoptosis, which may mediate the inheritable phenotypic divergence related to heat stress resistance between intertidal and subtidal oysters. The extent to which environmentally induced DNA methylation is inherited was evaluated here for the first time in oysters. This study provides new insights into the epigenetic mechanisms underlying biological adaptations to rapid climate change in coastal organisms.
Collapse
Affiliation(s)
- Xinxing Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100039, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Ao Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, 266071, China
| | - Wei Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, 266071, China
| | - Guofan Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, 266071, China
| | - Li Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, 266071, China.
| |
Collapse
|
9
|
Bordoni B, Escher AR. Osteopathic Principles: The Inspiration of Every Science Is Its Change. Cureus 2021; 13:e12478. [PMID: 33425556 PMCID: PMC7785509 DOI: 10.7759/cureus.12478] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2021] [Indexed: 02/07/2023] Open
Abstract
The Educational Council on Osteopathic Principles (ECOP) annually renews and reviews the fundamental osteopathic principles that Dr. Still left behind for osteopathic medicine (OM). These tenets represent a guide and rationale for the osteopathic manual approach. The non-profit research organization, Foundation of Osteopathic Research and Clinical Endorsement (FORCE), which was founded in 2013 under the auspices of different international professionals, wishes to propose changes to these principles based on scientific knowledge, which did not exist in the nineteenth century, as well as all the information discovered subsequently. The proposal is not a constraint, but a further stimulus to improve the vision of OM. We believe, in fact, that a principle or a point of view never ceases to evolve: the inspiration of every science is its change.
Collapse
Affiliation(s)
- Bruno Bordoni
- Physical Medicine and Rehabilitation, Foundation Don Carlo Gnocchi, Milan, ITA
| | - Allan R Escher
- Anesthesiology/Pain Medicine, H Lee Moffitt Cancer Center and Research Institute, Tampa, USA
| |
Collapse
|
10
|
Stevenson TJ, Hanson HE, Martin LB. Theory, hormones and life history stages: an introduction to the symposium epigenetic variation in endocrine systems. Integr Comp Biol 2020; 60:1454-1457. [PMID: 33326579 DOI: 10.1093/icb/icaa140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
All organisms must respond to environmental stimuli, and most metazoans do so through endocrine system regulation. Hormonal fluctuations allow organisms to maintain and return to homeostasis following perturbations, making them vital for survival and fitness. Many components of the endocrine system (e.g., proteins, steroids, receptors, genome response elements, etc.) and the physiological and behavioral processes they regulate are conserved among vertebrates (e.g., the glucocorticoid stress response). However, there are sometimes dramatic differences among and within species, particularly in how hormonal variation affects phenotypes. Some such variation is driven by internal factors such as genetics, developmental stage, sex, individual age, and body condition in addition to external factors such as the type, magnitude, and duration of environmental stimuli. Eco-evolutionary endocrinology has been quite successful in describing this variation among and within species, but we have only just begun to understand how these factors interact to affect phenotypic diversity, ecological function, and evolution. Mounting evidence suggests that various molecular epigenetic modifications of genome structure and activity, such as deoxyribonucleic acid methylation, histone modifications, non-coding RNAs, and small RNAs, mediate the interactions between environmental conditions, individual traits, and the endocrine system. As some epigenetic modifications can be induced or removed by environmental stimuli, they represent promising candidates underlying endocrine regulation and variation, particularly epigenetic marks that can be stably inherited. This symposium discussed the role of epigenetic modifications in endocrine systems, mainly in natural populations.
Collapse
Affiliation(s)
- Tyler J Stevenson
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, Scotland
| | - Haley E Hanson
- Center for Global Health and Infectious Disease Research, College of Public Health University of South Florida, Tampa, FL, USA
| | - Lynn B Martin
- Center for Global Health and Infectious Disease Research, College of Public Health University of South Florida, Tampa, FL, USA
| |
Collapse
|