1
|
DeRosa H, Smith A, Geist L, Cheng A, Hunter RG, Kentner AC. Maternal immune activation alters placental histone-3 lysine-9 tri-methylation, offspring sensorimotor processing, and hypothalamic transposable element expression in a sex-specific manner. Neurobiol Stress 2023; 24:100538. [PMID: 37139465 PMCID: PMC10149420 DOI: 10.1016/j.ynstr.2023.100538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 05/05/2023] Open
Abstract
Animal models of maternal immune activation (MIA) are central to identifying the biological mechanisms that underly the association between prenatal infection and neuropsychiatric disorder susceptibility. Many studies, however, have limited their scope to protein coding genes and their role in mediating this inherent risk, while much less attention has been directed towards exploring the roles of the epigenome and transposable elements (TEs). In Experiment 1, we demonstrate the ability of MIA to alter the chromatin landscape of the placenta. We induced MIA by injecting 200 μg/kg (i.p.) of lipopolysaccharide (LPS) on gestational day 15 in Sprague-Dawley rats. We found a sex-specific rearrangement of heterochromatin 24-h after exposure to MIA, as evidenced by an increase in histone-3 lysine-9 trimethylation (H3K9me3). In Experiment 2, MIA was associated with long-term sensorimotor processing deficits as indicated by reduced prepulse inhibition (PPI) of the acoustic startle reflex in adult male and female offspring and an increased mechanical allodynia threshold in males. Analyses of gene expression within the hypothalamus-chosen for its involvement in the sex-specific pathogenesis of schizophrenia and the stress response-revealed significantly higher levels of the stress-sensitive genes Gr and Fkbp5. Deleterious TE expression is often a hallmark of neuropsychiatric disease and we found sex-specific increases in the expression of several TEs including IAP, B2 SINE, and LINE-1 ORF1. The data from this study warrant the future consideration of chromatin stability and TEs as part of the mechanism that drives MIA-associated changes in the brain and behavior.
Collapse
Affiliation(s)
- Holly DeRosa
- University of Massachusetts Boston, Department of Psychology, Developmental and Brain Sciences Program, Boston, Massachusetts, USA
- School of Arts & Sciences, Health Psychology Program, Massachusetts College of Pharmacy and Health Sciences, Boston, MA, USA
| | - Arianna Smith
- School of Arts & Sciences, Health Psychology Program, Massachusetts College of Pharmacy and Health Sciences, Boston, MA, USA
| | - Laurel Geist
- School of Arts & Sciences, Health Psychology Program, Massachusetts College of Pharmacy and Health Sciences, Boston, MA, USA
| | - Ada Cheng
- School of Arts & Sciences, Health Psychology Program, Massachusetts College of Pharmacy and Health Sciences, Boston, MA, USA
| | - Richard G. Hunter
- University of Massachusetts Boston, Department of Psychology, Developmental and Brain Sciences Program, Boston, Massachusetts, USA
| | - Amanda C. Kentner
- School of Arts & Sciences, Health Psychology Program, Massachusetts College of Pharmacy and Health Sciences, Boston, MA, USA
| |
Collapse
|
2
|
Richter TA, Aiken AA, Puracchio MJ, Maganga-Bakita I, Hunter RG. Maternal Immune Activation and Enriched Environments Impact B2 SINE Expression in Stress Sensitive Brain Regions of Rodent Offspring. Genes (Basel) 2023; 14:858. [PMID: 37107616 PMCID: PMC10137338 DOI: 10.3390/genes14040858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/24/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
Early life stress (ELS) can have wide-spread neurodevelopmental effects with support accumulating for the idea that genomic mechanisms may induce lasting physiological and behavioral changes following stress exposure. Previous work found that a sub-family of transposable elements, SINEs, are repressed epigenetically after acute stress. This gives support to the concept that the mammalian genome may be regulating retrotransposon RNA expression allowing for adaptation in response to environmental challenges, such as maternal immune activation (MIA). Transposon (TE) RNAs are now thought to work at the epigenetic level and to have an adaptive response to environmental stressors. Abnormal expression of TEs has been linked to neuropsychiatric disorders like schizophrenia, which is also linked to maternal immune activation. Environmental enrichment (EE), a clinically utilized intervention, is understood to protect the brain, enhance cognitive performance, and attenuate responses to stress. This study examines the effects of MIA on offspring B2 SINE expression and further, the impact that EE, experienced throughout gestation and early life, may have in conjunction with MIA during development. Utilizing RT-PCR to quantify the expression of B2 SINE RNA in the juvenile brain of MIA exposed rat offspring, we found dysregulation of B2 SINE expression associated with MIA in the prefrontal cortex. For offspring experiencing EE, the prefrontal cortex exhibited an attenuation of the MIA response observed in standard housed animals. Here, the adaptive nature of B2 is observed and thought to be aiding in the animal's adaptation to stress. The present changes indicate a wide-spread stress-response system adaptation that impacts not only changes at the genomic level but potentially observable behavioral impacts throughout the lifespan, with possible translational relevance to psychotic disorders.
Collapse
Affiliation(s)
- Troy A. Richter
- Department of Psychology, Developmental and Brain Sciences Program, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Ariel A. Aiken
- Department of Psychology, Developmental and Brain Sciences Program, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Madeline J. Puracchio
- School of Arts & Sciences, Massachusetts College of Pharmacy and Health Sciences, Boston, MA 02125, USA
| | - Ismael Maganga-Bakita
- Department of Psychology, Developmental and Brain Sciences Program, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Richard G. Hunter
- Department of Psychology, Developmental and Brain Sciences Program, University of Massachusetts Boston, Boston, MA 02125, USA
| |
Collapse
|
3
|
Fang H, Li J, Lu L, Yang J, Feng H, Yin X, Wang S, He X, Song L, Shi Y, Gao Y, Shi H, Yin X. Long-lasting and sex-dependent effects of late lactational maternal deprivation on socioemotional behaviors in adult mice. Neurosci Lett 2023; 799:137096. [PMID: 36738955 DOI: 10.1016/j.neulet.2023.137096] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 12/30/2022] [Accepted: 01/23/2023] [Indexed: 02/05/2023]
Abstract
The lactation period is an important period for individual development and a sensitive period for the behavioral phenotypes and plasticity of individual offspring. Early life experiences (e.g., maternal deprivation (MD) and neglect) have significant long-lasting and dual effects on individual stress reactivities during adulthood. Theoretically, stress inoculation can improve the adaptive capacity of the body, but overstress can lead to dysfunction when adaptive mechanisms fail.To date, the potential effects of late lactational MD on the socioemotional behaviors of mouse offspring during adulthood are still not fully understood. In the present study, mice were subjected to early deprivation by individually separating pups from their dam for 0 min, 15 min, and 3 h per day from PND 13-25. The social dominance test (SDT), social interaction test (SI), open field test (OFT), and forced swim test (FST) were carried out during adulthood. The results showed that the social dominance of male mice in the 15 min/d MD group significantly increased, especially in low-rank mice. In the 3 h/d MD group, the social dominance of female mice was decreased, especially in the lower-rank mice. The anxiolytic and antidepressant-like effects of the 15 min/d MD group were significantly increased in male mice. Our study provides direct evidence that MD during late lactation period results in long-lasting effects on social dominance as well as on anxiety and depression phenotypes in a sex-dependent manner.
Collapse
Affiliation(s)
- Hanlu Fang
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China
| | - Jiabo Li
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China
| | - Liuhua Lu
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China
| | - Jingyu Yang
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China
| | - Hao Feng
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China
| | - Xueyong Yin
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China
| | - Shuang Wang
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China
| | - Xinyue He
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China
| | - Li Song
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medical University, 050017, China
| | - Yun Shi
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medical University, 050017, China
| | - Yuan Gao
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medical University, 050017, China
| | - Haishui Shi
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medical University, 050017, China.
| | - Xi Yin
- Department of Functional Region of Diagnosis, Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, China.
| |
Collapse
|
4
|
Merenciano M, Coronado-Zamora M, González J. Experimental Validation of Transposable Element Insertions Using the Polymerase Chain Reaction (PCR). Methods Mol Biol 2023; 2607:95-114. [PMID: 36449160 DOI: 10.1007/978-1-0716-2883-6_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Transposable elements (TEs), also known as transposons, are repetitive DNA sequences, present in virtually all organisms, that can move from one genomic position to another. TEs can be a source of mutations with important consequences for organisms. Despite their interest, its repetitive nature has made their study very challenging. However, the emergence of new sequencing technologies that allow obtaining long-read sequences, has improved the in silico de novo detection and annotation of TEs. The de novo annotation of TEs has already been performed in several organisms including the fruit fly Drosophila melanogaster. Yet, experimental validation can be used to confirm the presence of TEs in specific D. melanogaster natural populations. Here, we present a step-by-step protocol to experimentally validate by polymerase chain reaction (PCR) the presence and/or absence of TEs in natural populations of D. melanogaster. This detailed protocol has been implemented in the participant high schools of the Citizen Fly Lab activity that is part of the international citizen science project Melanogaster: Catch the Fly! ( https://melanogaster.eu ). Specifically, the students collaborate with the scientists of the European Drosophila Population Genomics Consortium (DrosEU) in the experimental validation of new genetic variants, previously identified using bioinformatic techniques.
Collapse
Affiliation(s)
| | | | - Josefa González
- Institute of Evolutionary Biology, CSIC, UPF, Barcelona, Spain.
| |
Collapse
|
5
|
Chiang VSC, DeRosa H, Park JH, Hunter RG. The Role of Transposable Elements in Sexual Development. Front Behav Neurosci 2022; 16:923732. [PMID: 35874645 PMCID: PMC9301316 DOI: 10.3389/fnbeh.2022.923732] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/20/2022] [Indexed: 11/19/2022] Open
Abstract
Up to 50% of most mammalian genomes are made up of transposable elements (TEs) that have the potential to mobilize around the genome. Despite this prevalence, research on TEs is only beginning to gain traction within the field of neuroscience. While TEs have long been regarded as "junk" or parasitic DNA, it has become evident that they are adaptive DNA and RNA regulatory elements. In addition to their vital role in normal development, TEs can also interact with steroid receptors, which are key elements to sexual development. In this review, we provide an overview of the involvement of TEs in processes related to sexual development- from TE activity in the germline to TE accumulation in sex chromosomes. Moreover, we highlight sex differences in TE activity and their regulation of genes related to sexual development. Finally, we speculate on the epigenetic mechanisms that may govern TEs' role in sexual development. In this context, we emphasize the need to further the understanding of sexual development through the lens of TEs including in a variety of organs at different developmental stages, their molecular networks, and evolution.
Collapse
Affiliation(s)
| | | | | | - Richard G. Hunter
- College of Liberal Arts, Department of Psychology, Developmental and Brain Sciences Program, University of Massachusetts Boston, Boston, MA, United States
| |
Collapse
|
6
|
Divergent Neural and Endocrine Responses in Wild-Caught and Laboratory-Bred Rattus Norvegicus. Behav Brain Res 2022; 432:113978. [PMID: 35753530 DOI: 10.1016/j.bbr.2022.113978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/17/2022] [Accepted: 06/22/2022] [Indexed: 11/23/2022]
Abstract
Although rodents have represented the most intensely studied animals in neurobiological investigations for more than a century, few studies have systematically compared neural and endocrine differences between wild rodents in their natural habitats and laboratory strains raised in traditional laboratory environments. In the current study, male and female Rattus norvegicus rats were trapped in an urban setting and compared to weight-and sex-matched conspecifics living in standard laboratory housing conditions. Brains were extracted for neural assessments and fecal boli were collected for endocrine [corticosterone and dehydroepiandrosterone (DHEA)] assays. Additionally, given their role in immune and stress functions, spleen and adrenal weights were recorded. A separate set of wild rats was trapped at a dairy farm and held in captivity for one month prior to assessments; in these animals, brains were processed but no hormone data were available. The results indicated that wild-trapped rats exhibited 31% heavier brains, including higher densities of cerebellar neurons and glial cells in the bed nucleus of the stria terminalis. The wild rats also had approximately 300% greater spleen and adrenal weights, and more than a six-fold increase in corticosterone levels than observed in laboratory rats. Further research on neurobiological variables in wild vs. lab animals will inform the extensive neurobiological knowledge base derived from laboratory investigations using selectively bred rodents in laboratory environments, knowledge that will enhance the translational value of preclinical laboratory rodent studies.
Collapse
|
7
|
DeRosa H, Richter T, Wilkinson C, Hunter RG. Bridging the Gap Between Environmental Adversity and Neuropsychiatric Disorders: The Role of Transposable Elements. Front Genet 2022; 13:813510. [PMID: 35711940 PMCID: PMC9196244 DOI: 10.3389/fgene.2022.813510] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 04/13/2022] [Indexed: 12/21/2022] Open
Abstract
Long regarded as “junk DNA,” transposable elements (TEs) have recently garnered much attention for their role in promoting genetic diversity and plasticity. While many processes involved in mammalian development require TE activity, deleterious TE insertions are a hallmark of several psychiatric disorders. Moreover, stressful events including exposure to gestational infection and trauma, are major risk factors for developing psychiatric illnesses. Here, we will provide evidence demonstrating the intersection of stressful events, atypical TE expression, and their epigenetic regulation, which may explain how neuropsychiatric phenotypes manifest. In this way, TEs may be the “bridge” between environmental perturbations and psychopathology.
Collapse
Affiliation(s)
- Holly DeRosa
- Psychology Department, Developmental Brain Sciences Program, College of Liberal Arts, University of Massachusetts Boston, Boston, MA, United States
| | - Troy Richter
- Psychology Department, Developmental Brain Sciences Program, College of Liberal Arts, University of Massachusetts Boston, Boston, MA, United States
| | - Cooper Wilkinson
- Psychology Department, Developmental Brain Sciences Program, College of Liberal Arts, University of Massachusetts Boston, Boston, MA, United States
| | - Richard G Hunter
- Psychology Department, Developmental Brain Sciences Program, College of Liberal Arts, University of Massachusetts Boston, Boston, MA, United States
| |
Collapse
|
8
|
Colonna Romano N, Fanti L. Transposable Elements: Major Players in Shaping Genomic and Evolutionary Patterns. Cells 2022; 11:cells11061048. [PMID: 35326499 PMCID: PMC8947103 DOI: 10.3390/cells11061048] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/04/2022] [Accepted: 03/18/2022] [Indexed: 02/04/2023] Open
Abstract
Transposable elements (TEs) are ubiquitous genetic elements, able to jump from one location of the genome to another, in all organisms. For this reason, on the one hand, TEs can induce deleterious mutations, causing dysfunction, disease and even lethality in individuals. On the other hand, TEs can increase genetic variability, making populations better equipped to respond adaptively to environmental change. To counteract the deleterious effects of TEs, organisms have evolved strategies to avoid their activation. However, their mobilization does occur. Usually, TEs are maintained silent through several mechanisms, but they can be reactivated during certain developmental windows. Moreover, TEs can become de-repressed because of drastic changes in the external environment. Here, we describe the ‘double life’ of TEs, being both ‘parasites’ and ‘symbionts’ of the genome. We also argue that the transposition of TEs contributes to two important evolutionary processes: the temporal dynamic of evolution and the induction of genetic variability. Finally, we discuss how the interplay between two TE-dependent phenomena, insertional mutagenesis and epigenetic plasticity, plays a role in the process of evolution.
Collapse
|
9
|
Zhang Z, Zhou K, Tran D, Saier M. Insertion Sequence (IS) Element-Mediated Activating Mutations of the Cryptic Aromatic β-Glucoside Utilization ( BglGFB) Operon Are Promoted by the Anti-Terminator Protein (BglG) in Escherichia coli. Int J Mol Sci 2022; 23:ijms23031505. [PMID: 35163427 PMCID: PMC8836124 DOI: 10.3390/ijms23031505] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 01/24/2023] Open
Abstract
The cryptic β-glucoside GFB (bglGFB) operon in Escherichia coli (E. coli) can be activated by mutations arising under starvation conditions in the presence of an aromatic β-glucoside. This may involve the insertion of an insertion sequence (IS) element into a "stress-induced DNA duplex destabilization" (SIDD) region upstream of the operon promoter, although other types of mutations can also activate the bgl operon. Here, we show that increased expression of the bglG gene, encoding a well-characterized transcriptional antiterminator, dramatically increases the frequency of both IS-mediated and IS-independent Bgl+ mutations occurring on salicin- and arbutin-containing agar plates. Both mutation rates increased with increasing levels of bglG expression but IS-mediated mutations were more prevalent at lower BglG levels. Mutations depended on the presence of both BglG and an aromatic β-glucoside, and bglG expression did not influence IS insertion in other IS-activated operons tested. The N-terminal mRNA-binding domain of BglG was essential for mutational activation, and alteration of BglG's binding site in the mRNA nearly abolished Bgl+ mutant appearances. Increased bglG expression promoted residual bgl operon expression in parallel with the increases in mutation rates. Possible mechanisms are proposed explaining how BglG enhances the frequencies of bgl operon activating mutations.
Collapse
|
10
|
Corticosterone dynamically regulates retrotransposable element expression in the rat hippocampus and C6 cells. Neurobiol Stress 2021; 15:100397. [PMID: 34584909 PMCID: PMC8455483 DOI: 10.1016/j.ynstr.2021.100397] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 09/08/2021] [Accepted: 09/11/2021] [Indexed: 11/30/2022] Open
Abstract
The hippocampus is a highly plastic brain region sensitive to environmental stress. It shows dynamic changes in epigenetic marks associated with stress related learning. Previous work has shown that acute stress induces substantial transient changes in histone H3 lysine 9 trimethylation (H3K9me3). Moreover, increased H3K9me3 is enriched in hippocampal gene deserts accumulating within endogenous retroviruses and transposable elements. We have found that in response to acute glucocorticoid treatment, a similar change in global H3K9me3 is observed. However, when localized we found that H3K9me3 is markedly decreased at B2 short interspersed nuclear elements but not within intracisternal-A particle endogenous retroviruses. Further, decreased H3K9me3 valence within B2 elements was associated with increased transcript abundance. These data demonstrate the capacity for acute glucocorticoids to mobilize transposable elements via epigenetic unmasking. Reconciled with previous findings following acute stress, this suggests the capacity for mobile elements to potentially function as novel regulators given their dynamic regulation by stress and glucocorticoids.
Collapse
|
11
|
Stevenson TJ, Hanson HE, Martin LB. Theory, hormones and life history stages: an introduction to the symposium epigenetic variation in endocrine systems. Integr Comp Biol 2020; 60:1454-1457. [PMID: 33326579 DOI: 10.1093/icb/icaa140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
All organisms must respond to environmental stimuli, and most metazoans do so through endocrine system regulation. Hormonal fluctuations allow organisms to maintain and return to homeostasis following perturbations, making them vital for survival and fitness. Many components of the endocrine system (e.g., proteins, steroids, receptors, genome response elements, etc.) and the physiological and behavioral processes they regulate are conserved among vertebrates (e.g., the glucocorticoid stress response). However, there are sometimes dramatic differences among and within species, particularly in how hormonal variation affects phenotypes. Some such variation is driven by internal factors such as genetics, developmental stage, sex, individual age, and body condition in addition to external factors such as the type, magnitude, and duration of environmental stimuli. Eco-evolutionary endocrinology has been quite successful in describing this variation among and within species, but we have only just begun to understand how these factors interact to affect phenotypic diversity, ecological function, and evolution. Mounting evidence suggests that various molecular epigenetic modifications of genome structure and activity, such as deoxyribonucleic acid methylation, histone modifications, non-coding RNAs, and small RNAs, mediate the interactions between environmental conditions, individual traits, and the endocrine system. As some epigenetic modifications can be induced or removed by environmental stimuli, they represent promising candidates underlying endocrine regulation and variation, particularly epigenetic marks that can be stably inherited. This symposium discussed the role of epigenetic modifications in endocrine systems, mainly in natural populations.
Collapse
Affiliation(s)
- Tyler J Stevenson
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, Scotland
| | - Haley E Hanson
- Center for Global Health and Infectious Disease Research, College of Public Health University of South Florida, Tampa, FL, USA
| | - Lynn B Martin
- Center for Global Health and Infectious Disease Research, College of Public Health University of South Florida, Tampa, FL, USA
| |
Collapse
|