1
|
Onai T, Adachi N, Urakubo H, Sugahara F, Aramaki T, Matsumoto M, Ohno N. Ultrastructure of the lamprey head mesoderm reveals evolution of the vertebrate head. iScience 2023; 26:108338. [PMID: 38187188 PMCID: PMC10767164 DOI: 10.1016/j.isci.2023.108338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/20/2023] [Accepted: 10/23/2023] [Indexed: 01/09/2024] Open
Abstract
The cranial muscle is a critical component in the vertebrate head for a predatory lifestyle. However, its evolutionary origin and possible segmental nature during embryogenesis have been controversial. In jawed vertebrates, the presence of pre-otic segments similar to trunk somites has been claimed based on developmental observations. However, evaluating such arguments has been hampered by the paucity of research on jawless vertebrates. Here, we discovered different cellular arrangements in the head mesoderm in lamprey embryos (Lethenteron camtschaticum) using serial block-face scanning electron and laser scanning microscopies. These cell populations were morphologically and molecularly different from somites. Furthermore, genetic comparison among deuterostomes revealed that mesodermal gene expression domains were segregated antero-posteriorly in vertebrates, whereas such segregation was not recognized in invertebrate deuterostome embryos. These findings indicate that the vertebrate head mesoderm evolved from the anteroposterior repatterning of an ancient mesoderm and developmentally diversified before the split of jawless and jawed vertebrates.
Collapse
Affiliation(s)
- Takayuki Onai
- Department of Anatomy, University of Fukui, School of Medical Sciences, 23-3, Matsuokashimoaizuki, Eiheiji, Yoshida, Fukui, Japan
- Life Science Innovation Center, University of Fukui, 23-3, Matsuokashimoaizuki, Eiheiji, Yoshida, Fukui, Japan
| | - Noritaka Adachi
- Aix-Marseille Université, IBDM, CNRS UMR 7288, Campus De Luminy Case 907, 13288 Marseille Cedex 9, France
| | - Hidetoshi Urakubo
- Section of Electron Microscopy, National Institute for Physiological Sciences, 38, Nishigonaka, Myodaiji, Okazaki, Aichi, Japan
| | - Fumiaki Sugahara
- Division of Biology, Hyogo Medical University, 1-1, Mukogawa, Nishinomiya, Hyogo, Japan
| | - Toshihiro Aramaki
- Graduate School of Frontier Biosciences, Osaka University, 1-1, Yamadaoka, Suita, Osaka, Japan
| | - Mami Matsumoto
- Section of Electron Microscopy, Supportive Center for Brain Research, National Institute for Physiological Sciences, 38, Nishigonaka, Myodaiji, Okazaki, Aichi, Japan
- Department of Developmental and Regenerative Biology, Nagoya City University Graduate School of Medical Sciences, 1, Kawasumi, Mizuho, Nagoya, Aichi, Japan
| | - Nobuhiko Ohno
- Department of Anatomy, Division of Histology and Cell Biology, School of Medicine, Jichi Medical University, 3311-1, Yakushiji, Shimotsuke, Tochigi, Japan
- Division of Ultrastructural Research, National Institute for Physiological Sciences, 38, Nishigonaka, Myodaiji, Okazaki, Aichi, Japan
| |
Collapse
|
2
|
Hombría JCG, García-Ferrés M, Sánchez-Higueras C. Anterior Hox Genes and the Process of Cephalization. Front Cell Dev Biol 2021; 9:718175. [PMID: 34422836 PMCID: PMC8374599 DOI: 10.3389/fcell.2021.718175] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/16/2021] [Indexed: 11/13/2022] Open
Abstract
During evolution, bilateral animals have experienced a progressive process of cephalization with the anterior concentration of nervous tissue, sensory organs and the appearance of dedicated feeding structures surrounding the mouth. Cephalization has been achieved by the specialization of the unsegmented anterior end of the body (the acron) and the sequential recruitment to the head of adjacent anterior segments. Here we review the key developmental contribution of Hox1-5 genes to the formation of cephalic structures in vertebrates and arthropods and discuss how this evolved. The appearance of Hox cephalic genes preceded the evolution of a highly specialized head in both groups, indicating that Hox gene involvement in the control of cephalic structures was acquired independently during the evolution of vertebrates and invertebrates to regulate the genes required for head innovation.
Collapse
Affiliation(s)
- James C-G Hombría
- Centro Andaluz de Biología del Desarrollo (Consejo Superior de Investigaciones Científicas/Junta de Andalucía/Universidad Pablo de Olavide), Seville, Spain
| | - Mar García-Ferrés
- Centro Andaluz de Biología del Desarrollo (Consejo Superior de Investigaciones Científicas/Junta de Andalucía/Universidad Pablo de Olavide), Seville, Spain
| | - Carlos Sánchez-Higueras
- Centro Andaluz de Biología del Desarrollo (Consejo Superior de Investigaciones Científicas/Junta de Andalucía/Universidad Pablo de Olavide), Seville, Spain
| |
Collapse
|
3
|
Abstract
How vertebrates evolved from their invertebrate ancestors has long been a central topic of discussion in biology. Evolutionary developmental biology (evodevo) has provided a new tool-using gene expression patterns as phenotypic characters to infer homologies between body parts in distantly related organisms-to address this question. Combined with micro-anatomy and genomics, evodevo has provided convincing evidence that vertebrates evolved from an ancestral invertebrate chordate, in many respects resembling a modern amphioxus. The present review focuses on the role of evodevo in addressing two major questions of chordate evolution: (1) how the vertebrate brain evolved from the much simpler central nervous system (CNS) in of this ancestral chordate and (2) whether or not the head mesoderm of this ancestor was segmented.
Collapse
|
4
|
Abstract
The lateral plate mesoderm (LPM) forms the progenitor cells that constitute the heart and cardiovascular system, blood, kidneys, smooth muscle lineage and limb skeleton in the developing vertebrate embryo. Despite this central role in development and evolution, the LPM remains challenging to study and to delineate, owing to its lineage complexity and lack of a concise genetic definition. Here, we outline the processes that govern LPM specification, organization, its cell fates and the inferred evolutionary trajectories of LPM-derived tissues. Finally, we discuss the development of seemingly disparate organ systems that share a common LPM origin. Summary: The lateral plate mesoderm is the origin of several major cell types and organ systems in the vertebrate body plan. How this mesoderm territory emerges and partitions into its downstream fates provides clues about vertebrate development and evolution.
Collapse
Affiliation(s)
- Karin D Prummel
- University of Colorado School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, 12801 E 17th Avenue, Aurora, CO 80045, USA.,Department of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Susan Nieuwenhuize
- University of Colorado School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, 12801 E 17th Avenue, Aurora, CO 80045, USA.,Department of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Christian Mosimann
- University of Colorado School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, 12801 E 17th Avenue, Aurora, CO 80045, USA .,Department of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| |
Collapse
|
5
|
Vyas B, Nandkishore N, Sambasivan R. Vertebrate cranial mesoderm: developmental trajectory and evolutionary origin. Cell Mol Life Sci 2020; 77:1933-1945. [PMID: 31722070 PMCID: PMC11105048 DOI: 10.1007/s00018-019-03373-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/29/2019] [Accepted: 11/05/2019] [Indexed: 02/06/2023]
Abstract
Vertebrate cranial mesoderm is a discrete developmental unit compared to the mesoderm below the developing neck. An extraordinary feature of the cranial mesoderm is that it includes a common progenitor pool contributing to the chambered heart and the craniofacial skeletal muscles. This striking developmental potential and the excitement it generated led to advances in our understanding of cranial mesoderm developmental mechanism. Remarkably, recent findings have begun to unravel the origin of its distinct developmental characteristics. Here, we take a detailed view of the ontogenetic trajectory of cranial mesoderm and its regulatory network. Based on the emerging evidence, we propose that cranial and posterior mesoderm diverge at the earliest step of the process that patterns the mesoderm germ layer along the anterior-posterior body axis. Further, we discuss the latest evidence and their impact on our current understanding of the evolutionary origin of cranial mesoderm. Overall, the review highlights the findings from contemporary research, which lays the foundation to probe the molecular basis of unique developmental potential and evolutionary origin of cranial mesoderm.
Collapse
Affiliation(s)
- Bhakti Vyas
- Institute for Stem Cell Biology and Regenerative Medicine, GKVK Campus, Bellary Road, Bengaluru, 560065, India
- Manipal Academy of Higher Education, Manipal, 576104, India
| | - Nitya Nandkishore
- Institute for Stem Cell Biology and Regenerative Medicine, GKVK Campus, Bellary Road, Bengaluru, 560065, India
- SASTRA University, Thirumalaisamudram, Thanjavur, 613401, India
| | - Ramkumar Sambasivan
- Indian Institute of Science Education and Research (IISER) Tirupati, Transit Campus, Karakambadi Road, Rami Reddy Nagar, Mangalam, Tirupati, Andhra Pradesh, 517507, India.
| |
Collapse
|
6
|
Wang H, Holland PWH, Takahashi T. Gene profiling of head mesoderm in early zebrafish development: insights into the evolution of cranial mesoderm. EvoDevo 2019; 10:14. [PMID: 31312422 PMCID: PMC6612195 DOI: 10.1186/s13227-019-0128-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 06/26/2019] [Indexed: 11/10/2022] Open
Abstract
Background The evolution of the head was one of the key events that marked the transition from invertebrates to vertebrates. With the emergence of structures such as eyes and jaws, vertebrates evolved an active and predatory life style and radiated into diversity of large-bodied animals. These organs are moved by cranial muscles that derive embryologically from head mesoderm. Compared with other embryonic components of the head, such as placodes and cranial neural crest cells, our understanding of cranial mesoderm is limited and is restricted to few species. Results Here, we report the expression patterns of key genes in zebrafish head mesoderm at very early developmental stages. Apart from a basic anterior–posterior axis marked by a combination of pitx2 and tbx1 expression, we find that most gene expression patterns are poorly conserved between zebrafish and chick, suggesting fewer developmental constraints imposed than in trunk mesoderm. Interestingly, the gene expression patterns clearly show the early establishment of medial–lateral compartmentalisation in zebrafish head mesoderm, comprising a wide medial zone flanked by two narrower strips. Conclusions In zebrafish head mesoderm, there is no clear molecular regionalisation along the anteroposterior axis as previously reported in chick embryos. In contrast, the medial–lateral regionalisation is formed at early developmental stages. These patterns correspond to the distinction between paraxial mesoderm and lateral plate mesoderm in the trunk, suggesting a common groundplan for patterning head and trunk mesoderm. By comparison of these expression patterns to that of amphioxus homologues, we argue for an evolutionary link between zebrafish head mesoderm and amphioxus anteriormost somites. Electronic supplementary material The online version of this article (10.1186/s13227-019-0128-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Huijia Wang
- 1Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester, M13 9PT UK
| | - Peter W H Holland
- 2Department of Zoology, University of Oxford, Zoology Research and Administration Building, 11a Mansfield Road, Oxford, OX1 3SZ UK
| | - Tokiharu Takahashi
- 1Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester, M13 9PT UK
| |
Collapse
|
7
|
Aldea D, Subirana L, Keime C, Meister L, Maeso I, Marcellini S, Gomez-Skarmeta JL, Bertrand S, Escriva H. Genetic regulation of amphioxus somitogenesis informs the evolution of the vertebrate head mesoderm. Nat Ecol Evol 2019; 3:1233-1240. [PMID: 31263232 DOI: 10.1038/s41559-019-0933-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 05/22/2019] [Indexed: 01/13/2023]
Abstract
The evolution of vertebrates from an ancestral chordate was accompanied by the acquisition of a predatory lifestyle closely associated to the origin of a novel anterior structure, the highly specialized head. While the vertebrate head mesoderm is unsegmented, the paraxial mesoderm of the earliest divergent chordate clade, the cephalochordates (amphioxus), is fully segmented in somites. We have previously shown that fibroblast growth factor signalling controls the formation of the most anterior somites in amphioxus; therefore, unravelling the fibroblast growth factor signalling downstream effectors is of crucial importance to shed light on the evolutionary origin of vertebrate head muscles. By using a comparative RNA sequencing approach and genetic functional analyses, we show that several transcription factors, such as Six1/2, Pax3/7 and Zic, act in combination to ensure the formation of three different somite populations. Interestingly, these proteins are orthologous to key regulators of trunk, and not head, muscle formation in vertebrates. Contrary to prevailing thinking, our results suggest that the vertebrate head mesoderm is of visceral and not paraxial origin and support a multistep evolutionary scenario for the appearance of the unsegmented mesoderm of the vertebrates new 'head'.
Collapse
Affiliation(s)
- Daniel Aldea
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, Banyuls-sur-Mer, France
| | - Lucie Subirana
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, Banyuls-sur-Mer, France
| | - Celine Keime
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM, U1258, CNRS, UMR7104, Université de Strasbourg, Illkirch-Graffenstaden, France
| | - Lydvina Meister
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, Banyuls-sur-Mer, France
| | - Ignacio Maeso
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
| | - Sylvain Marcellini
- Laboratory of Development and Evolution, Department of Cell Biology, Faculty of Biological Sciences, University of Concepción, Concepción, Chile
| | - Jose Luis Gomez-Skarmeta
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
| | - Stephanie Bertrand
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, Banyuls-sur-Mer, France.
| | - Hector Escriva
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, Banyuls-sur-Mer, France.
| |
Collapse
|
8
|
Ferran JL, Puelles L. Lessons from Amphioxus Bauplan About Origin of Cranial Nerves of Vertebrates That Innervates Extrinsic Eye Muscles. Anat Rec (Hoboken) 2018; 302:452-462. [PMID: 29659196 DOI: 10.1002/ar.23824] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 10/19/2017] [Accepted: 10/23/2017] [Indexed: 12/23/2022]
Abstract
Amphioxus is the living chordate closest to the ancestral form of vertebrates, and in a key position to reveal essential aspects of the evolution of the brain Bauplan of vertebrates. The dorsal neural cord of this species at the larval stage is characterized by a small cerebral vesicle at its anterior end and a large posterior region. The latter is comparable in some aspects to the hindbrain and spinal cord regions of vertebrates. The rostral end of the cerebral vesicle contains a median pigment spot and associated rows of photoreceptor and other nerve cells; this complex is known as "the frontal eye." However, this is not a complete eye in the sense that it has neither eye muscles nor lens (only a primitive retina-like tissue). Cranial nerves III, IV, and VI take part in the motor control of eye muscles in all vertebrates. Using a recent model that postulates distinct molecularly characterized hypothalamo-prethalamic and mesodiencephalic domains in the early cerebral vesicle of amphioxus, we analyze here possible scenarios for the origin from the common ancestor of cephalochordates and vertebrates of the cranial nerves related with extrinsic eye muscle innervations. Anat Rec, 302:452-462, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- José Luis Ferran
- Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia, Murcia, Spain.,Institute of Biomedical Research of Murcia - IMIB, Group of Brain Regionalization and genes of development; Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
| | - Luis Puelles
- Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia, Murcia, Spain.,Institute of Biomedical Research of Murcia - IMIB, Group of Brain Regionalization and genes of development; Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
| |
Collapse
|
9
|
Onai T. The evolutionary origin of chordate segmentation: revisiting the enterocoel theory. Theory Biosci 2018; 137:1-16. [PMID: 29488055 DOI: 10.1007/s12064-018-0260-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 02/10/2018] [Indexed: 11/28/2022]
Abstract
One of the definitive characteristics of chordates (cephalochordates, vertebrates) is the somites, which are a series of paraxial mesodermal blocks exhibiting segmentation. The presence of somites in the basal chordate amphioxus and in vertebrates, but not in tunicates (the sister group of vertebrates), suggests that the tunicates lost the somites secondarily. Somites are patterned from anterior to posterior during embryogenesis. How such a segmental pattern evolved from deuterostome ancestors is mysterious. The classic enterocoel theory claims that chordate mesoderm evolved from the ancestral deuterostome mesoderm that organizes the trimeric body parts seen in extant hemichordates. Recent progress in molecular embryology has been tremendous, which has enabled us to test this classic theory. In this review, the history of the study on the evolution of the chordate mesoderm is summarized. This is followed by a review of the current understanding of genetic mapping on anterior/posterior (A/P) mesodermal patterning between chordates (cephalochordates, vertebrates) and a direct developing hemichordate (Saccoglossus kowalevskii). Finally, a possible scenario about the evolution of the chordate mesoderm from deuterostome ancestors is discussed.
Collapse
Affiliation(s)
- Takayuki Onai
- Department of Anatomy, School of Medical Sciences, University of Fukui, 23-3, Matsuokashimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan. .,Life Science Innovation Center, University of Fukui, 23-3, Matsuokashimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan.
| |
Collapse
|
10
|
Schubert FR, Singh AJ, Afoyalan O, Kioussi C, Dietrich S. To roll the eyes and snap a bite - function, development and evolution of craniofacial muscles. Semin Cell Dev Biol 2018; 91:31-44. [PMID: 29331210 DOI: 10.1016/j.semcdb.2017.12.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 12/15/2017] [Accepted: 12/18/2017] [Indexed: 02/06/2023]
Abstract
Craniofacial muscles, muscles that move the eyes, control facial expression and allow food uptake and speech, have long been regarded as a variation on the general body muscle scheme. However, evidence has accumulated that the function of head muscles, their developmental anatomy and the underlying regulatory cascades are distinct. This article reviews the key aspects of craniofacial muscle and muscle stem cell formation and discusses how this differs from the trunk programme of myogenesis; we show novel RNAseq data to support this notion. We also trace the origin of head muscle in the chordate ancestors of vertebrates and discuss links with smooth-type muscle in the primitive chordate pharynx. We look out as to how the special properties of head muscle precursor and stem cells, in particular their competence to contribute to the heart, could be exploited in regenerative medicine.
Collapse
Affiliation(s)
- Frank R Schubert
- Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, UK
| | - Arun J Singh
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, 97331, USA
| | - Oluwatomisin Afoyalan
- Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, UK
| | - Chrissa Kioussi
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, 97331, USA
| | - Susanne Dietrich
- Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, UK.
| |
Collapse
|
11
|
Kuratani S, Adachi N. What are Head Cavities? — A History of Studies on Vertebrate Head Segmentation. Zoolog Sci 2016; 33:213-28. [DOI: 10.2108/zs150181] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Shigeru Kuratani
- Laboratory for Evolutionary Morphology, RIKEN, Kobe 650-0047, Japan
| | - Noritaka Adachi
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago IL 60637, USA
| |
Collapse
|
12
|
Suzuki DG, Fukumoto Y, Yoshimura M, Yamazaki Y, Kosaka J, Kuratani S, Wada H. Comparative morphology and development of extra-ocular muscles in the lamprey and gnathostomes reveal the ancestral state and developmental patterns of the vertebrate head. ZOOLOGICAL LETTERS 2016; 2:10. [PMID: 27081572 PMCID: PMC4831119 DOI: 10.1186/s40851-016-0046-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 04/06/2016] [Indexed: 05/16/2023]
Abstract
The ancestral configuration of the vertebrate head has long been an intriguing topic in comparative morphology and evolutionary biology. One peculiar component of the vertebrate head is the presence of extra-ocular muscles (EOMs), the developmental mechanism and evolution of which remain to be determined. The head mesoderm of elasmobranchs undergoes local epithelialization into three head cavities, precursors of the EOMs. In contrast, in avians, these muscles appear to develop mainly from the mesenchymal head mesoderm. Importantly, in the basal vertebrate lamprey, the head mesoderm does not show overt head cavities or signs of segmental boundaries, and the development of the EOMs is not well described. Furthermore, the disposition of the lamprey EOMs differs from those the rest of vertebrates, in which the morphological pattern of EOMs is strongly conserved. To better understand the evolution and developmental origins of the vertebrate EOMs, we explored the development of the head mesoderm and EOMs of the lamprey in detail. We found that the disposition of lamprey EOM primordia differed from that in gnathostomes, even during the earliest period of development. We also found that three components of the paraxial head mesoderm could be distinguished genetically (premandibular mesoderm: Gsc+/TbxA-; mandibular mesoderm: Gsc-/TbxA-; hyoid mesoderm: Gsc-/TbxA+), indicating that the genetic mechanisms of EOMs are conserved in all vertebrates. We conclude that the tripartite developmental origin of the EOMs is likely to have been possessed by the latest common ancestor of the vertebrates. This ancestor's EOM developmental pattern was also suggested to have resembled more that of the lamprey, and the gnathostome EOMs' disposition is likely to have been established by a secondary modification that took place in the common ancestor of crown gnathostomes.
Collapse
Affiliation(s)
- Daichi G. Suzuki
- />Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572 Japan
| | - Yuma Fukumoto
- />Laboratory for Evolutionary Morphology, RIKEN, Kobe, 650-0047 Japan
- />Department of Cytology and Histology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama, 700-8558 Japan
- />Sumitomo Besshi Hospital, 3-1 Oji-cho, Niihama, Ehime 792-8543 Japan
| | - Miho Yoshimura
- />Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572 Japan
| | - Yuji Yamazaki
- />Graduate School of Science and Engineering for Research, University of Toyama, 3190 Gofuku, Toyama, 930-8555 Japan
| | - Jun Kosaka
- />Department of Cytology and Histology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama, 700-8558 Japan
- />Center for Medical Science, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi 324-8501 Japan
| | - Shigeru Kuratani
- />Laboratory for Evolutionary Morphology, RIKEN, Kobe, 650-0047 Japan
| | - Hiroshi Wada
- />Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572 Japan
| |
Collapse
|
13
|
Diogo R, Ziermann JM. Development, metamorphosis, morphology, and diversity: The evolution of chordate muscles and the origin of vertebrates. Dev Dyn 2015; 244:1046-1057. [PMID: 26095777 DOI: 10.1002/dvdy.24245] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 11/29/2014] [Accepted: 12/01/2014] [Indexed: 01/12/2023] Open
Abstract
Recent findings that urochordates are the closest sister-group of vertebrates have dramatically changed our understanding of chordate evolution and vertebrate origins. To continue to deepen our understanding of chordate evolution and diversity, in particular the morphological and taxonomical diversity of the vertebrate clade, one must explore the origin, development, and comparative anatomy of not only hard tissues, but also soft tissues such as muscles. Building on a recent overview of the discovery of a cardiopharyngeal field in urochordates and the profound implications for reconstructing the origin and early evolution of vertebrates, in this study we focus on the broader comparative and developmental anatomy of chordate cephalic muscles and their relation to life history, and to developmental, morphological and taxonomical diversity. We combine our recent findings on cephalochordates, urochordates, and vertebrates with a literature review and suggest that developmental changes related to metamorphosis and/or heterochrony (e.g., peramorphosis) played a crucial role in the early evolution of chordates and vertebrates. Recent studies reviewed here supported de Beer's "law of diversity" that peramorphic animals (e.g., ascidians, lampreys) are taxonomically and morphologically less diverse than nonperamorphic animals (e.g., gnathostomes), probably because their "too specialized" development and adult anatomy constrain further developmental and evolutionary innovations. Developmental Dynamics 244:1046-1057, 2015. © 2014 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Rui Diogo
- Department of Anatomy, Howard University College of Medicine, Washington, DC
| | - Janine M Ziermann
- Department of Anatomy, Howard University College of Medicine, Washington, DC
| |
Collapse
|
14
|
Castro A, Becerra M, Manso MJ, Anadón R. Neuronal organization of the brain in the adult amphioxus (Branchiostoma lanceolatum): A study with acetylated tubulin immunohistochemistry. J Comp Neurol 2015; 523:2211-32. [DOI: 10.1002/cne.23785] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 09/11/2014] [Accepted: 09/19/2014] [Indexed: 12/28/2022]
Affiliation(s)
- Antonio Castro
- Department of Cell and Molecular Biology; Faculty of Sciences; University of A Coruña; 15008 A Coruña Spain
| | - Manuela Becerra
- Department of Cell Biology and Ecology; CIBUS, University of Santiago de Compostela; 15706 Santiago de Compostela Spain
| | - María Jesús Manso
- Department of Cell and Molecular Biology; Faculty of Sciences; University of A Coruña; 15008 A Coruña Spain
| | - Ramón Anadón
- Department of Cell Biology and Ecology; CIBUS, University of Santiago de Compostela; 15706 Santiago de Compostela Spain
| |
Collapse
|
15
|
Onai T, Aramaki T, Inomata H, Hirai T, Kuratani S. On the origin of vertebrate somites. ZOOLOGICAL LETTERS 2015; 1:33. [PMID: 26613046 PMCID: PMC4660845 DOI: 10.1186/s40851-015-0033-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 10/01/2015] [Indexed: 05/16/2023]
Abstract
INTRODUCTION Somites, blocks of mesoderm tissue located on either side of the neural tube in the developing vertebrate embryo, are derived from mesenchymal cells in the presomitic mesoderm (PSM) and are a defining characteristic of vertebrates. In vertebrates, the somite segmental boundary is determined by Notch signalling and the antagonistic relationship of the downstream targets of Notch, Lfng, and Delta1 in the anterior PSM. The presence of somites in the basal chordate amphioxus (Branchiostoma floridae) indicates that the last common ancestor of chordates also had somites. However, it remains unclear how the genetic mechanisms underlying somitogenesis in vertebrates evolved from those in ancestral chordates. RESULTS We demonstrate that during the gastrula stages of amphioxus embryos, BfFringe expression in the endoderm of the archenteron is detected ventrally to the ventral limit of BfDelta expression in the presumptive rostral somites along the dorsal/ventral (D/V) body axis. Suppression of Notch signalling by DAPT (a γ-secretase inhibitor that indirectly inhibits Notch) treatment from the late blastula stage reduced late gastrula stage expression of BfFringe in the endodermal archenteron and somite markers BfDelta and BfHairy-b in the mesodermal archenteron. Later in development, somites in the DAPT-treated embryo did not separate completely from the dorsal roof of the archenteron. In addition, clear segmental boundaries between somites were not detected in DAPT-treated amphioxus embryos at the larva stage. Similarly, in vertebrates, DAPT treatment from the late blastula stage in Xenopus (Xenopus laevis) embryos resulted in disruption of somite XlDelta-2 expression at the late gastrula stage. At the tail bud stage, the segmental expression of XlMyoD in myotomes was diminished. CONCLUSIONS We propose that Notch signalling and the Fringe/Delta cassette for dorso-ventral boundary formation in the archenteron that separates somites from the gut in an amphioxus-like ancestral chordate were co-opted for anteroposterior segmental boundary formation in the vertebrate anterior PSM during evolution.
Collapse
Affiliation(s)
- Takayuki Onai
- />Kuratani Evolutionary Morphology Laboratory, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-Minamimachi, Chuo-ku Kobe, 650-0047 Japan
| | - Toshihiro Aramaki
- />Pattern Formation Group, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871 Japan
| | - Hidehiko Inomata
- />Laboratory for Axial Pattern Dynamics, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-Minamimachi, Chuo-ku Kobe, 650-0047 Japan
| | - Tamami Hirai
- />Kuratani Evolutionary Morphology Laboratory, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-Minamimachi, Chuo-ku Kobe, 650-0047 Japan
| | - Shigeru Kuratani
- />Kuratani Evolutionary Morphology Laboratory, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-Minamimachi, Chuo-ku Kobe, 650-0047 Japan
| |
Collapse
|
16
|
Onai T, Aramaki T, Inomata H, Hirai T, Kuratani S. Ancestral mesodermal reorganization and evolution of the vertebrate head. ZOOLOGICAL LETTERS 2015; 1:29. [PMID: 26605074 PMCID: PMC4657371 DOI: 10.1186/s40851-015-0030-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 09/22/2015] [Indexed: 05/20/2023]
Abstract
INTRODUCTION The vertebrate head is characterized by unsegmented head mesoderm the evolutionary origin of which remains enigmatic. The head mesoderm is derived from the rostral part of the dorsal mesoderm, which is regionalized anteroposteriorly during gastrulation. The basal chordate amphioxus resembles vertebrates due to the presence of somites, but it lacks unsegmented head mesoderm. Gastrulation in amphioxus occurs by simple invagination with little mesodermal involution, whereas in vertebrates gastrulation is organized by massive cell movements, such as involution, convergence and extension, and cell migration. RESULTS To identify key developmental events in the evolution of the vertebrate head mesoderm, we compared anterior/posterior (A/P) patterning mechanisms of the dorsal mesoderm in amphioxus and vertebrates. The dorsal mesodermal genes gsc, bra, and delta are expressed in similar patterns in early embryos of both animals, but later in development, these expression domains become anteroposteriorly segregated only in vertebrates. Suppression of mesodermal involution in vertebrate embryos by inhibition of convergence and extension recapitulates amphioxus-like dorsal mesoderm formation. CONCLUSIONS Reorganization of ancient mesoderm was likely involved in the evolution of the vertebrate head.
Collapse
Affiliation(s)
- Takayuki Onai
- />Kuratani Evolutionary Morphology Laboratory, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047 Japan
| | - Toshihiro Aramaki
- />Pattern Formation Group, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871 Japan
| | - Hidehiko Inomata
- />Laboratory for Axial Pattern Dynamics, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047 Japan
| | - Tamami Hirai
- />Kuratani Evolutionary Morphology Laboratory, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047 Japan
| | - Shigeru Kuratani
- />Kuratani Evolutionary Morphology Laboratory, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047 Japan
| |
Collapse
|
17
|
Koop D, Chen J, Theodosiou M, Carvalho JE, Alvarez S, de Lera AR, Holland LZ, Schubert M. Roles of retinoic acid and Tbx1/10 in pharyngeal segmentation: amphioxus and the ancestral chordate condition. EvoDevo 2014; 5:36. [PMID: 25664163 PMCID: PMC4320481 DOI: 10.1186/2041-9139-5-36] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 08/27/2014] [Indexed: 12/16/2022] Open
Abstract
Background Although chordates descend from a segmented ancestor, the evolution of head segmentation has been very controversial for over 150 years. Chordates generally possess a segmented pharynx, but even though anatomical evidence and gene expression analyses suggest homologies between the pharyngeal apparatus of invertebrate chordates, such as the cephalochordate amphioxus, and vertebrates, these homologies remain contested. We, therefore, decided to study the evolution of the chordate head by examining the molecular mechanisms underlying pharyngeal morphogenesis in amphioxus, an animal lacking definitive neural crest. Results Focusing on the role of retinoic acid (RA) in post-gastrulation pharyngeal morphogenesis, we found that during gastrulation, RA signaling in the endoderm is required for defining pharyngeal and non-pharyngeal domains and that this process involves active degradation of RA anteriorly in the embryo. Subsequent extension of the pharyngeal territory depends on the creation of a low RA environment and is coupled to body elongation. RA further functions in pharyngeal segmentation in a regulatory network involving the mutual inhibition of RA- and Tbx1/10-dependent signaling. Conclusions These results indicate that the involvement of RA signaling and its interactions with Tbx1/10 in head segmentation preceded the evolution of neural crest and were thus likely present in the ancestral chordate. Furthermore, developmental comparisons between different deuterostome models suggest that the genetic mechanisms for pharyngeal segmentation are evolutionary ancient and very likely predate the origin of chordates. Electronic supplementary material The online version of this article (doi:10.1186/2041-9139-5-36) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Demian Koop
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093-0202 USA
| | - Jie Chen
- Institut de Génomique Fonctionnelle de Lyon (CNRS UMR 5242, UCBL, ENS, INRA 1288), Ecole Normale Supérieure de Lyon, 69364 Lyon, Cedex 07, France
| | - Maria Theodosiou
- Institut de Génomique Fonctionnelle de Lyon (CNRS UMR 5242, UCBL, ENS, INRA 1288), Ecole Normale Supérieure de Lyon, 69364 Lyon, Cedex 07, France
| | - João E Carvalho
- Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR 7009, Laboratoire de Biologie du Développement de Villefranche-sur-Mer, Observatoire Océanologique de Villefranche-sur-Mer, 06230 Villefranche-sur-Mer, France ; CNRS, UMR 7009, Laboratoire de Biologie du Développement de Villefranche-sur-Mer, Observatoire Océanologique de Villefranche-sur-Mer, 06230 Villefranche-sur-Mer, France
| | - Susana Alvarez
- Departamento de Química Orgánica, Universidade de Vigo, 33610 Vigo, Spain
| | - Angel R de Lera
- Departamento de Química Orgánica, Universidade de Vigo, 33610 Vigo, Spain
| | - Linda Z Holland
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093-0202 USA
| | - Michael Schubert
- Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR 7009, Laboratoire de Biologie du Développement de Villefranche-sur-Mer, Observatoire Océanologique de Villefranche-sur-Mer, 06230 Villefranche-sur-Mer, France ; CNRS, UMR 7009, Laboratoire de Biologie du Développement de Villefranche-sur-Mer, Observatoire Océanologique de Villefranche-sur-Mer, 06230 Villefranche-sur-Mer, France
| |
Collapse
|
18
|
Characterization and embryonic expression of four amphioxus Frizzled genes with important functions during early embryogenesis. Gene Expr Patterns 2013; 13:445-53. [DOI: 10.1016/j.gep.2013.08.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Revised: 08/09/2013] [Accepted: 08/28/2013] [Indexed: 01/02/2023]
|
19
|
Adachi N, Takechi M, Hirai T, Kuratani S. Development of the head and trunk mesoderm in the dogfish, Scyliorhinus torazame: II. Comparison of gene expression between the head mesoderm and somites with reference to the origin of the vertebrate head. Evol Dev 2013; 14:257-76. [PMID: 23017074 DOI: 10.1111/j.1525-142x.2012.00543.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The vertebrate mesoderm differs distinctly between the head and trunk, and the evolutionary origin of the head mesoderm remains enigmatic. Although the presence of somite-like segmentation in the head mesoderm of model animals is generally denied at molecular developmental levels, the appearance of head cavities in elasmobranch embryos has not been explained, and the possibility that they may represent vestigial head somites once present in an amphioxus-like ancestor has not been ruled out entirely. To examine whether the head cavities in the shark embryo exhibit any molecular signatures reminiscent of trunk somites, we isolated several developmentally key genes, including Pax1, Pax3, Pax7, Pax9, Myf5, Sonic hedgehog, and Patched2, which are involved in myogenic and chondrogenic differentiation in somites, and Pitx2, Tbx1, and Engrailed2, which are related to the patterning of the head mesoderm, from an elasmobranch species, Scyliorhinus torazame. Observation of the expression patterns of these genes revealed that most were expressed in patterns that resembled those found in amniote embryos. In addition, the head cavities did not exhibit an overt similarity to somites; that is, the similarity was no greater than that of the unsegmented head mesoderm in other vertebrates. Moreover, the shark head mesoderm showed an amniote-like somatic/visceral distinction according to the expression of Pitx2, Tbx1, and Engrailed2. We conclude that the head cavities do not represent a manifestation of ancestral head somites; rather, they are more likely to represent a derived trait obtained in the lineage of gnathostomes.
Collapse
Affiliation(s)
- Noritaka Adachi
- Laboratory for Evolutionary Morphology, RIKEN Center for Developmental Biology, Kobe, Japan
| | | | | | | |
Collapse
|
20
|
Adachi N, Kuratani S. Development of head and trunk mesoderm in the dogfish, Scyliorhinus torazame: I. Embryology and morphology of the head cavities and related structures. Evol Dev 2013; 14:234-56. [PMID: 23017073 DOI: 10.1111/j.1525-142x.2012.00542.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Vertebrate head segmentation has attracted the attention of comparative and evolutionary morphologists for centuries, given its importance for understanding the developmental body plan of vertebrates and its evolutionary origin. In particular, the segmentation of the mesoderm is central to the problem. The shark embryo has provided a canonical morphological scheme of the head, with its epithelialized coelomic cavities (head cavities), which have often been regarded as head somites. To understand the evolutionary significance of the head cavities, the embryonic development of the mesoderm was investigated at the morphological and histological levels in the shark, Scyliorhinus torazame. Unlike somites and some enterocoelic mesodermal components in other vertebrates, the head cavities in S. torazame appeared as irregular cyst(s) in the originally unsegmented mesenchymal head mesoderm, and not via segmentation of an undivided coelom. The mandibular cavity appeared first in the paraxial part of the mandibular mesoderm, followed by the hyoid cavity, and the premandibular cavity was the last to form. The prechordal plate was recognized as a rhomboid roof of the preoral gut, continuous with the rostral notochord, and was divided anteroposteriorly into two parts by the growth of the hypothalamic primordium. Of those, the posterior part was likely to differentiate into the premandibular cavity, and the anterior part disappeared later. The head cavities and somites in the trunk exhibited significant differences, in terms of histological appearance and timing of differentiation. The mandibular cavity developed a rostral process secondarily; its homology to the anterior cavity reported in some elasmobranch embryos is discussed.
Collapse
Affiliation(s)
- Noritaka Adachi
- Laboratory for Evolutionary Morphology, RIKEN Center for Developmental Biology, Kobe, Japan
| | | |
Collapse
|
21
|
|
22
|
Della Gaspera B, Armand AS, Sequeira I, Chesneau A, Mazabraud A, Lécolle S, Charbonnier F, Chanoine C. Myogenic waves and myogenic programs during Xenopus embryonic myogenesis. Dev Dyn 2012; 241:995-1007. [PMID: 22434732 DOI: 10.1002/dvdy.23780] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
UNLABELLED Although Xenopus is a key model organism in developmental biology, little is known about the myotome formation in this species. Here, we assessed the expression of myogenic regulatory factors of the Myod family (MRFs) during embryonic development and revealed distinct MRF programs. RESULTS The expression pattern of each MRF during embryonic development highlights three successive myogenic waves. We showed that a first median and lateral myogenesis initiates before dermomyotome formation: the median cell population expresses Myf5, Myod, and Mrf4, whereas the lateral one expresses Myod, moderate levels of Myogenin and Mrf4. The second wave of myoblasts arising from the dermomyotome is characterized by the full MRF program expression, with high levels of Myogenin. The third wave is revealed by Myf5 expression in the myotome and could contribute to the formation of plurinucleated fibers at larval stages. Furthermore, Myf5- or Myod-expressing anlagen are identified in craniofacial myogenesis. CONCLUSIONS The first median and lateral myogenesis and their associated MRF programs have probably disappeared in mammals. However, some aspects of Xenopus myogenesis have been conserved such as the development of somitic muscles by successive myogenic waves and the existence of Myf5-dependent and -independent lineages.
Collapse
Affiliation(s)
- Bruno Della Gaspera
- Centre d'Etude de la Sensori-Motricité, UMR 8194 CNRS, Université Paris Descartes, Centre Universitaire des Saints-Pères, 45 rue des Saints-Pères, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
23
|
The central and peripheral nervous system of Cephalodiscus gracilis (Pterobranchia, Deuterostomia). ZOOMORPHOLOGY 2012. [DOI: 10.1007/s00435-011-0144-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
24
|
Holland LZ, Onai T. Early development of cephalochordates (amphioxus). WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2011; 1:167-83. [PMID: 23801434 DOI: 10.1002/wdev.11] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The Phylum Chordata includes three groups--Vertebrata, Tunicata, and Cephalochordata. In cephalochordates, commonly called amphioxus or lancelets, which are basal in the Chordata, the eggs are small and relatively non-yolky. As in vertebrates, cleavage is indeterminate with cell fates determined gradually as development proceeds. The oocytes are attached to the ovarian follicle at the animal pole, where the oocyte nucleus is located. The cytoplasm at the opposite side of the egg, the vegetal pole, contains the future germ plasm or pole plasm, which includes determinants of the germline. After fertilization, additional asymmetries are established by movements of the egg and sperm nuclei, resulting in a concentration of mitochondria at one side of the animal hemisphere. This may be related to establishment of the dorsal/ventral axis. Patterning along the embryonic axes is mediated by secreted signaling proteins. Dorsal identity is specified by Nodal/Vg1 signaling, while during the gastrula stage, opposition between Nodal/Vg1 and BMP signaling establishes dorsal/anterior (i.e., head) and ventral/posterior (i.e., trunk/tail) identities, respectively. Wnt/β-catenin signaling specifies posterior identity while retinoic acid signaling specifies positions along the anterior/posterior axis. These signals are further modulated by a number of secreted antagonists. This fundamental patterning mechanism is conserved, with some modifications, in vertebrates.
Collapse
Affiliation(s)
- Linda Z Holland
- Marine Biology Research Division, Scripps Institution of Oceanography, La Jolla, CA, USA.
| | | |
Collapse
|
25
|
Holland ND. Spawning periodicity of the lancelet,Asymmetron lucayanum(Cephalochordata), in Bimini, Bahamas. ACTA ACUST UNITED AC 2011. [DOI: 10.1080/11250003.2011.594097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
26
|
Bertrand S, Escriva H. Evolutionary crossroads in developmental biology: amphioxus. Development 2011; 138:4819-30. [DOI: 10.1242/dev.066720] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The phylogenetic position of amphioxus, together with its relatively simple and evolutionarily conserved morphology and genome structure, has led to its use as a model for studies of vertebrate evolution. In particular, the recent development of technical approaches, as well as access to the complete amphioxus genome sequence, has provided the community with tools with which to study the invertebrate-chordate to vertebrate transition. Here, we present this animal model, discussing its life cycle, the model species studied and the experimental techniques that it is amenable to. We also summarize the major findings made using amphioxus that have informed us about the evolution of vertebrate traits.
Collapse
Affiliation(s)
- Stephanie Bertrand
- CNRS UMR7232, UPMC Université Paris 06, Observatoire océanologique, F-66651 Banyuls-sur-Mer, France
| | - Hector Escriva
- CNRS UMR7232, UPMC Université Paris 06, Observatoire océanologique, F-66651 Banyuls-sur-Mer, France
| |
Collapse
|
27
|
Takechi M, Takeuchi M, Ota KG, Nishimura O, Mochii M, Itomi K, Adachi N, Takahashi M, Fujimoto S, Tarui H, Okabe M, Aizawa S, Kuratani S. Overview of the transcriptome profiles identified in hagfish, shark, and bichir: current issues arising from some nonmodel vertebrate taxa. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2011; 316:526-46. [PMID: 21809437 DOI: 10.1002/jez.b.21427] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 04/28/2011] [Accepted: 06/14/2011] [Indexed: 02/02/2023]
Abstract
Because of their crucial phylogenetic positions, hagfishes, sharks, and bichirs are recognized as key taxa in our understanding of vertebrate evolution. The expression patterns of the regulatory genes involved in developmental patterning have been analyzed in the context of evolutionary developmental studies. However, in a survey of public sequence databases, we found that the large-scale sequence data for these taxa are still limited. To address this deficit, we used conventional Sanger DNA sequencing and a next-generation sequencing technology based on 454 GS FLX sequencing to obtain expressed sequence tags (ESTs) of the Japanese inshore hagfish (Eptatretus burgeri; 161,482 ESTs), cloudy catshark (Scyliorhinus torazame; 165,819 ESTs), and gray bichir (Polypterus senegalus; 34,336 ESTs). We deposited the ESTs in a newly constructed database, designated the "Vertebrate TimeCapsule." The ESTs include sequences from genes that can be effectively used in evolutionary developmental studies; for instance, several encode cartilaginous extracellular matrix proteins, which are central to an understanding of the ways in which evolutionary processes affected the skeletal elements, whereas others encode regulatory genes involved in craniofacial development and early embryogenesis. Here, we discuss how hagfishes, sharks, and bichirs contribute to our understanding of vertebrate evolution, we review the current status of the publicly available sequence data for these three taxa, and we introduce our EST projects and newly developed database.
Collapse
Affiliation(s)
- Masaki Takechi
- Laboratory for Evolutionary Morphology, Center for Developmental Biology, RIKEN, Kobe, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Sambasivan R, Kuratani S, Tajbakhsh S. An eye on the head: the development and evolution of craniofacial muscles. Development 2011; 138:2401-15. [DOI: 10.1242/dev.040972] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Skeletal muscles exert diverse functions, enabling both crushing with great force and movement with exquisite precision. A remarkably distinct repertoire of genes and ontological features characterise this tissue, and recent evidence has shown that skeletal muscles of the head, the craniofacial muscles, are evolutionarily, morphologically and molecularly distinct from those of the trunk. Here, we review the molecular basis of craniofacial muscle development and discuss how this process is different to trunk and limb muscle development. Through evolutionary comparisons of primitive chordates (such as amphioxus) and jawless vertebrates (such as lampreys) with jawed vertebrates, we also provide some clues as to how this dichotomy arose.
Collapse
Affiliation(s)
- Ramkumar Sambasivan
- Institut Pasteur, Stem Cells and Development, Paris, F-75015, France
- CNRS URA 2578, 25 rue du Dr Roux, Paris, F-75015, France
| | - Shigeru Kuratani
- Laboratory for Evolutionary Morphology, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minami, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Shahragim Tajbakhsh
- Institut Pasteur, Stem Cells and Development, Paris, F-75015, France
- CNRS URA 2578, 25 rue du Dr Roux, Paris, F-75015, France
| |
Collapse
|
29
|
Kundrát M, Janácek J, Martin S. Development of transient head cavities during early organogenesis of the Nile Crocodile (Crocodylus niloticus). J Morphol 2010; 270:1069-83. [PMID: 19291672 DOI: 10.1002/jmor.10743] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Three consecutive pairs of head cavities (premandibular, mandibular, and hyoid) found in elasmobranchs have been considered as remnants of preotic 'head' somites-serial homologues of the myotomic compartments of trunk somites that give rise to the extraoccular musculature. Here, we study a more derived vertebrate, and show that cavitation is more complex in the head of Crocodylus niloticus, than just the occurrence of three pairs of cavities. Apart from the premandibular cavities, paired satellite microcavities, and unpaired extrapremandibular microcavities are recognized in the prechordal region as well. We observed that several developmental phenomena occur at the same time as the formation of the head cavities (premandibular, satellite, extrapremandibular, mandibular, and hyoid) appear temporarily in the crocodile embryo. These are 1) rapid growth of the optic stalk and inflation of the optic vesicle; 2) release of the intimate topographical relationships between the neural tube, notochord and oral gut; 3) tendency of the prechordal mesenchyme to follow the curvature of the forebrain; and 4) proliferation of the prechordal mesenchyme. On the basis of volumetric characters, only the hyoid cavity and hyoid condensation is comparable to the trunk somitocoel and somite, respectively.
Collapse
Affiliation(s)
- Martin Kundrát
- Geological Institute, The Slovak Academy of Sciences, Banská Bystrica, SK-97411, Slovak Republic.
| | | | | |
Collapse
|
30
|
Beaster-Jones L, Kaltenbach SL, Koop D, Yuan S, Chastain R, Holland LZ. Expression of somite segmentation genes in amphioxus: a clock without a wavefront? Dev Genes Evol 2008; 218:599-611. [PMID: 18949486 DOI: 10.1007/s00427-008-0257-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2008] [Accepted: 09/26/2008] [Indexed: 12/22/2022]
Abstract
In the basal chordate amphioxus (Branchiostoma), somites extend the full length of the body. The anteriormost somites segment during the gastrula and neurula stages from dorsolateral grooves of the archenteron. The remaining ones pinch off, one at a time, from the tail bud. These posterior somites appear to be homologous to those of vertebrates, even though the latter pinch off from the anterior end of bands of presomitic mesoderm rather than directly from the tail bud. To gain insights into the evolution of mesodermal segmentation in chordates, we determined the expression of ten genes in nascent amphioxus somites. Five (Uncx4.1, NeuroD/atonal-related, IrxA, Pcdhdelta2-17/18, and Hey1) are expressed in stripes in the dorsolateral mesoderm at the gastrula stage and in the tail bud while three (Paraxis, Lcx, and Axin) are expressed in the posterior mesendoderm at the gastrula and neurula stages and in the tail bud at later stages. Expression of two genes (Pbx and OligA) suggests roles in the anterior somites that may be unrelated to initial segmentation. Together with previous data, our results indicate that, with the exception that Engrailed is only segmentally expressed in the anterior somites, the genetic mechanisms controlling formation of both the anterior and posterior somites are probably largely identical. Thus, the fundamental pathways for mesodermal segmentation involving Notch-Delta, Wnt/beta-catenin, and Fgf signaling were already in place in the common ancestor of amphioxus and vertebrates although budding of somites from bands of presomitic mesoderm exhibiting waves of expression of Notch, Wnt, and Fgf target genes was likely a vertebrate novelty. Given the conservation of segmentation gene expression between amphioxus and vertebrate somites, we propose that the clock mechanism may have been established in the basal chordate, while the wavefront evolved later in the vertebrate lineage.
Collapse
Affiliation(s)
- Laura Beaster-Jones
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093-0202, USA
| | | | | | | | | | | |
Collapse
|