1
|
Kelly B, Izenour K, Zohdy S. Parasite–Host Coevolution. GENETICS AND EVOLUTION OF INFECTIOUS DISEASES 2024:141-161. [DOI: 10.1016/b978-0-443-28818-0.00008-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
2
|
Molbert N, Goutte A. Narrower isotopic niche size in fish infected by the intestinal parasite Pomphorhynchus sp. compared to uninfected ones. JOURNAL OF FISH BIOLOGY 2022; 101:1466-1473. [PMID: 36097411 DOI: 10.1111/jfb.15217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
Examples of parasite-related effects on intermediate crustacean hosts are numerous but their ecological consequences on their vertebrate hosts are scarce. Here, we address the role of macroparasite infections on the trophic niche structure of definitive hosts and its potential physiological consequences using wild fish populations infected with an acantochephalan parasite Pomphorhynchus sp., a trophically transmitted intestinal worm. Infected and uninfected fish were sampled from six populations on the Marne River, France and the prevalence of intestinal parasites in the host populations ranged from 50% to 90%. Although the isotopic ratios (δ13 C and δ15 N) did not differ between infected and uninfected fish, we found a consistent pattern of isotopic niche size being considerably smaller in infected hosts when compared with noninfected ones. This was not explained by interindividual differences in intrinsic factors such as length/age or body condition between infected and uninfected fish. These results suggest a potential niche specialization of infected fish, which did not impair their energetic status.
Collapse
Affiliation(s)
- Noëlie Molbert
- Centre National de la Recherche Scientifique (CNRS), EPHE, UMR METIS, Sorbonne Université, Paris, France
| | - Aurélie Goutte
- Centre National de la Recherche Scientifique (CNRS), EPHE, UMR METIS, Sorbonne Université, Paris, France
- École Pratique des Hautes Études, PSL Research University, Paris, France
| |
Collapse
|
3
|
Weil T, Ometto L, Esteve-Codina A, Gómez-Garrido J, Oppedisano T, Lotti C, Dabad M, Alioto T, Vrhovsek U, Hogenhout S, Anfora G. Linking omics and ecology to dissect interactions between the apple proliferation phytoplasma and its psyllid vector Cacopsylla melanoneura. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 127:103474. [PMID: 33007407 DOI: 10.1016/j.ibmb.2020.103474] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/08/2020] [Accepted: 09/17/2020] [Indexed: 06/11/2023]
Abstract
Phytoplasmas are bacterial plant pathogens that are detrimental to many plants and cause devastating effects on crops. They are not viable outside their host plants and depend on specific insect vectors for their transmission. So far, research has largely focused on plant-pathogen interactions, while the complex interactions between phytoplasmas and insect vectors are far less understood. Here, we used next-generation sequencing to investigate how transcriptional profiles of the vector psyllid Cacopsylla melanoneura (Hemiptera, Psyllidae) are altered during infection by the bacterium Candidatus Phytoplasma mali (P. mali), which causes the economically important apple proliferation disease. This first de novo transcriptome assembly of an apple proliferation vector revealed that mainly genes involved in small GTPase mediated signal transduction, nervous system development, adhesion, reproduction, actin-filament based and rhythmic processes are significantly altered upon P. mali infection. Furthermore, the presence of P. mali is accompanied by significant changes in carbohydrate and polyol levels, as revealed by metabolomics analysis. Taken together, our results suggest that infection with P. mali impacts on the insect vector physiology, which in turn likely affects the ability of the vector to transmit phytoplasma.
Collapse
Affiliation(s)
- Tobias Weil
- Research and Innovation Center, Fondazione E. Mach, 38010, San Michele all'Adige (TN), Italy.
| | - Lino Ometto
- Research and Innovation Center, Fondazione E. Mach, 38010, San Michele all'Adige (TN), Italy; Department of Biology and Biotechnology, University of Pavia, 27100, Pavia, Italy
| | - Anna Esteve-Codina
- CNAG-CRG, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08028, Barcelona, Spain
| | - Jèssica Gómez-Garrido
- CNAG-CRG, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08028, Barcelona, Spain
| | - Tiziana Oppedisano
- Research and Innovation Center, Fondazione E. Mach, 38010, San Michele all'Adige (TN), Italy; Present address: Hermiston Agricultural Research and Extension Center, Oregon State University, Hermiston (OR, USA
| | - Cesare Lotti
- Research and Innovation Center, Fondazione E. Mach, 38010, San Michele all'Adige (TN), Italy
| | - Marc Dabad
- CNAG-CRG, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08028, Barcelona, Spain
| | - Tyler Alioto
- CNAG-CRG, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08028, Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08003, Barcelona, Spain
| | - Urska Vrhovsek
- Research and Innovation Center, Fondazione E. Mach, 38010, San Michele all'Adige (TN), Italy
| | - Saskia Hogenhout
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Gianfranco Anfora
- Research and Innovation Center, Fondazione E. Mach, 38010, San Michele all'Adige (TN), Italy; Centre Agriculture Food Environment, University of Trento, 38010, San Michele all'Adige (TN), Italy
| |
Collapse
|
4
|
Johnson N, Lymburner A, Blouin-Demers G. The impact of ectoparasitism on thermoregulation in Yarrow’s Spiny Lizards (Sceloporus jarrovii). CAN J ZOOL 2019. [DOI: 10.1139/cjz-2019-0017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Parasites are ubiquitous and can have large impacts on the fitness of their hosts. The effects of ectoparasites on physiology, behaviour, and immune function suggest that they could be part of the factors which impact thermoregulation. We tested the hypothesis that ectoparasites impact thermoregulation in Yarrow’s Spiny Lizards (Sceloporus jarrovii Cope in Yarrow, 1875) living along an elevational gradient. We predicted a positive association between ectoparasite load and body temperature (Tb), and a negative association between ectoparasite load and effectiveness of thermoregulation (de – db index). We also predicted that the impacts of ectoparasites would be greatest at high elevation where thermal quality of the environment is low because the costs of thermoregulation increase with elevation and these costs can impact thermal immune responses. We found a significant association between the number of chiggers (Trombiculoidea) harboured by lizards and Tb that depended on elevation, but no association between ectoparasite load and de – db index. The mean chigger infection rate was associated with a ΔTb of +0.18 °C at low elevation (consistent with fever) and of –1.07 °C at high elevation (consistent with hypothermia). These findings suggest that parasitism by chiggers impacts lizard Tb in a way that depends on environmental thermal quality.
Collapse
Affiliation(s)
- N. Johnson
- Department of Biology, University of Ottawa, 30 Marie-Curie Private, Ottawa, ON K1N 6N5, Canada
- Department of Biology, University of Ottawa, 30 Marie-Curie Private, Ottawa, ON K1N 6N5, Canada
| | - A.H. Lymburner
- Department of Biology, University of Ottawa, 30 Marie-Curie Private, Ottawa, ON K1N 6N5, Canada
- Department of Biology, University of Ottawa, 30 Marie-Curie Private, Ottawa, ON K1N 6N5, Canada
| | - G. Blouin-Demers
- Department of Biology, University of Ottawa, 30 Marie-Curie Private, Ottawa, ON K1N 6N5, Canada
- Department of Biology, University of Ottawa, 30 Marie-Curie Private, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
5
|
Weinersmith KL, Liu SM, Forbes AA, Egan SP. Tales from the crypt: a parasitoid manipulates the behaviour of its parasite host. Proc Biol Sci 2018; 284:rspb.2016.2365. [PMID: 28123089 PMCID: PMC5310038 DOI: 10.1098/rspb.2016.2365] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 01/03/2017] [Indexed: 11/26/2022] Open
Abstract
There are many examples of apparent manipulation of host phenotype by parasites, yet few examples of hypermanipulation—where a phenotype-manipulating parasite is itself manipulated by a parasite. Moreover, few studies confirm manipulation is occurring by quantifying whether the host's changed phenotype increases parasite fitness. Here we describe a novel case of hypermanipulation, in which the crypt gall wasp Bassettia pallida (a phenotypic manipulator of its tree host) is manipulated by the parasitoid crypt-keeper wasp Euderus set, and show that the host's changed behaviour increases parasitoid fitness. Bassettia pallida parasitizes sand live oaks and induces the formation of a ‘crypt’ within developing stems. When parasitized by E. set, B. pallida adults excavate an emergence hole in the crypt wall, plug the hole with their head and die. We show experimentally that this phenomenon benefits E. set, as E. set that need to excavate an emergence hole themselves are about three times more likely to die trapped in the crypt. In addition, we discuss museum and field data to explore the distribution of the crypt-keeping phenomena.
Collapse
Affiliation(s)
- Kelly L Weinersmith
- Department of BioSciences, Rice University, MS-140, 6100 Main Street, Houston, TX 77005, USA
| | - Sean M Liu
- Department of BioSciences, Rice University, MS-140, 6100 Main Street, Houston, TX 77005, USA
| | - Andrew A Forbes
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Scott P Egan
- Department of BioSciences, Rice University, MS-140, 6100 Main Street, Houston, TX 77005, USA
| |
Collapse
|
6
|
|
7
|
Wood CL, Johnson PT. A world without parasites: exploring the hidden ecology of infection. FRONTIERS IN ECOLOGY AND THE ENVIRONMENT 2015; 13:425-434. [PMID: 28077932 PMCID: PMC5222570 DOI: 10.1890/140368] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Parasites have historically been considered a scourge, deserving of annihilation. Although parasite eradications rank among humanity's greatest achievements, new research is shedding light on the collateral effects of parasite loss. Here, we explore a "world without parasites": a thought experiment for illuminating the ecological roles that parasites play in ecosystems. While there is robust evidence for the effects of parasites on host individuals (eg affecting host vital rates), this exercise highlights how little we know about the influence of parasites on communities and ecosystems (eg altering energy flow through food webs). We present hypotheses for novel, interesting, and general effects of parasites. These hypotheses are largely untested, and should be considered a springboard for future research. While many uncertainties exist, the available evidence suggests that a world without parasites would be very different from the world we know, with effects extending from host individuals to populations, communities, and even ecosystems.
Collapse
Affiliation(s)
- Chelsea L Wood
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI; Michigan Society of Fellows, University of Michigan, Ann Arbor, MI; Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO
| | - Pieter Tj Johnson
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO
| |
Collapse
|
8
|
Garlet GP. Lipopolysaccharide and its threatening zombie-like nature: unlive, harmful and tough (but not impossible) to eliminate. J Appl Oral Sci 2015; 23:356-7. [PMID: 26398506 PMCID: PMC4560494 DOI: 10.1590/1678-77572015ed004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
9
|
Fatal attraction: Male spider mites prefer females killed by the mite-pathogenic fungus Neozygites floridana. J Invertebr Pathol 2015; 128:6-13. [DOI: 10.1016/j.jip.2015.04.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 04/07/2015] [Accepted: 04/09/2015] [Indexed: 11/23/2022]
|
10
|
Parker GA, Ball MA, Chubb JC. Evolution of complex life cycles in trophically transmitted helminths. II. How do life-history stages adapt to their hosts? J Evol Biol 2015; 28:292-304. [DOI: 10.1111/jeb.12576] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 12/15/2014] [Indexed: 01/20/2023]
Affiliation(s)
- G. A. Parker
- Department of Evolution, Ecology and Behaviour; Institute of Integrative Biology; University of Liverpool; Liverpool UK
| | - M. A. Ball
- Mathematical Sciences; University of Liverpool; Liverpool UK
| | - J. C. Chubb
- Department of Evolution, Ecology and Behaviour; Institute of Integrative Biology; University of Liverpool; Liverpool UK
| |
Collapse
|