1
|
Schaeffer BM, Truman SS, Truscott TT, Dickerson AK. Maple samara flight is robust to morphological perturbation and united by a classic drag model. Commun Biol 2024; 7:248. [PMID: 38429358 PMCID: PMC10907639 DOI: 10.1038/s42003-024-05913-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/12/2024] [Indexed: 03/03/2024] Open
Abstract
Winged, autorotating seeds from the genus Acer, have been the subject of study for botanists and aerodynamicists for decades. Despite this attention and the relative simplicity of these winged seeds, there are still considerable gaps in our understanding of how samara dynamics are informed by morphological features. Additionally, questions remain regarding the robustness of their dynamics to morphological alterations such as mass change by moisture or area change by damage. We here challenge the conventional approach of using wing-loading correlations and instead demonstrate the superiority of a classical aerodynamic model. Using allometry, we determine why some species deviate from interspecific aerodynamic behavior. We alter samara mass and wing area and measure corresponding changes to descent velocity, rotation rate, and coning angle, thereby demonstrating their remarkable ability to autorotate despite significant morphological alteration. Samaras endure mass changes greater than 100% while maintaining descent velocity changes of less than 15%, and are thus robust to changes in mass by moisture or damage. Additionally, samaras withstand up to a 40% reduction in wing area before losing their ability to autorotate, with the largest wings more robust to ablation. Thus, samaras are also robust to wing damage in their environment, a fact children joyfully exploit.
Collapse
Affiliation(s)
- Breanna M Schaeffer
- Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee, Knoxville, TN, USA
| | - Spencer S Truman
- Department of Mechanical Engineering, Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955, Kingdom of Saudi Arabia
| | - Tadd T Truscott
- Department of Mechanical Engineering, Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955, Kingdom of Saudi Arabia
| | - Andrew K Dickerson
- Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee, Knoxville, TN, USA.
| |
Collapse
|
2
|
Dickerson AK, Muijres FT, Pieters R. Using Videography to Study the Biomechanics and Behavior of Freely Moving Mosquitoes. Cold Spring Harb Protoc 2023; 2023:84-89. [PMID: 36167673 DOI: 10.1101/pdb.top107676] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Female mosquitoes of most species require a blood meal for egg development. When biting a human host to collect this blood meal, they can spread dangerous diseases such as malaria, yellow fever, or dengue. Researchers use videography to study many aspects of mosquito behavior, including in-flight host-seeking, takeoff, and landing behaviors, as well as probing and blood feeding, and more. Here, we introduce protocols on how to use videography to capture and analyze mosquito movements at high spatial and temporal resolution, in two and three dimensions.
Collapse
Affiliation(s)
- Andrew K Dickerson
- Department of Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee, Tennessee 37996, USA
| | - Florian T Muijres
- Department of Experimental Zoology, Wageningen University, 6708 PB Wageningen, the Netherlands
| | - Remco Pieters
- Department of Experimental Zoology, Wageningen University, 6708 PB Wageningen, the Netherlands
| |
Collapse
|
3
|
Abstract
Drain flies, Psychodidae spp. (Order Diptera, Family Psychodidae), commonly reside in our homes, annoying us in our bathrooms, kitchens, and laundry rooms. They like to stay near drains where they lay their eggs and feed on microorganisms and liquid carbohydrates found in the slime that builds up over time. Though they generally behave very sedately, they react quite quickly when threatened with water. A squirt from the sink induces them to fly away, seemingly unaffected, and flushing the toilet with flies inside does not necessarily whisk them down. We find that drain flies’ remarkable ability to evade such potentially lethal threats does not stem primarily from an evolved behavioral response, but rather from a unique hair covering with a hierarchical roughness. This covering, that has never been previously explored, imparts superhydrophobicity against large droplets and pools and antiwetting properties against micron-sized droplets and condensation. We examine how this hair covering equips them to take advantage of the relevant fluid dynamics and flee water threats in domestic and natural environments including: millimetric-sized droplets, mist, waves, and pools of water. Our findings elucidate drain flies’ astounding ability to cope with a wide range of water threats and almost never get washed down the drain.
Collapse
|
4
|
Smith NM, Balsalobre JB, Doshi M, Willenberg BJ, Dickerson AK. Landing mosquitoes bounce when engaging a substrate. Sci Rep 2020; 10:15744. [PMID: 32978447 PMCID: PMC7519040 DOI: 10.1038/s41598-020-72462-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 09/02/2020] [Indexed: 11/09/2022] Open
Abstract
In this experimental study we film the landings of Aedes aegypti mosquitoes to characterize landing behaviors and kinetics, limitations, and the passive physiological mechanics they employ to land on a vertical surface. A typical landing involves 1-2 bounces, reducing inbound momentum by more than half before the mosquito firmly attaches to a surface. Mosquitoes initially approach landing surfaces at 0.1-0.6 m/s, decelerating to zero velocity in approximately 5 ms at accelerations as high as 5.5 gravities. Unlike Dipteran relatives, mosquitoes do not visibly prepare for landing with leg adjustments or body pitching. Instead mosquitoes rely on damping by deforming two forelimbs and buckling of the proboscis, which also serves to distribute the impact force, lessening the potential of detection by a mammalian host. The rebound response of a landing mosquito is well-characterized by a passive mass-spring-damper model which permits the calculation of force across impact velocity. The landing force of the average mosquito in our study is approximately 40 [Formula: see text]N corresponding to an impact velocity of 0.24 m/s. The substrate contact velocity which produces a force perceptible to humans, 0.42 m/s, is above 85% of experimentally observed landing speeds.
Collapse
Affiliation(s)
- Nicholas M Smith
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, USA
| | - Jasmine B Balsalobre
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, USA
| | - Mona Doshi
- Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, USA
| | - Bradley J Willenberg
- Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, USA
| | - Andrew K Dickerson
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, USA.
| |
Collapse
|
5
|
Alam ME, Wu D, Dickerson AK. Predictive modelling of drop ejection from damped, dampened wings by machine learning. Proc Math Phys Eng Sci 2020; 476:20200467. [PMID: 33071591 DOI: 10.1098/rspa.2020.0467] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 08/14/2020] [Indexed: 11/12/2022] Open
Abstract
The high frequency, low amplitude wing motion that mosquitoes employ to dry their wings inspires the study of drop release from millimetric, forced cantilevers. Our mimicking system, a 10-mm polytetrafluoroethylene cantilever driven through ±1 mm base amplitude at 85 Hz, displaces drops via three principal ejection modes: normal-to-cantilever ejection, sliding and pinch-off. The selection of system variables such as cantilever stiffness, drop location, drop size and wetting properties modulates the appearance of a particular ejection mode. However, the large number of system features complicate the prediction of modal occurrence, and the transition between complete and partial liquid removal. In this study, we build two predictive models based on ensemble learning that predict the ejection mode, a classification problem, and minimum inertial force required to eject a drop from the cantilever, a regression problem. For ejection mode prediction, we achieve an accuracy of 85% using a bagging classifier. For inertial force prediction, the lowest root mean squared error achieved is 0.037 using an ensemble learning regression model. Results also show that ejection time and cantilever wetting properties are the dominant features for predicting both ejection mode and the minimum inertial force required to eject a drop.
Collapse
Affiliation(s)
- Md Erfanul Alam
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL, USA
| | - Dazhong Wu
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL, USA
| | - Andrew K Dickerson
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL, USA
| |
Collapse
|
6
|
Wan Q, Li H, Zhang S, Wang C, Su S, Long S, Pan B. Combination of active behaviors and passive structures contributes to the cleanliness of housefly wing surfaces: A new insight for the design of cleaning materials. Colloids Surf B Biointerfaces 2019; 180:473-480. [PMID: 31102851 DOI: 10.1016/j.colsurfb.2019.05.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 04/07/2019] [Accepted: 05/07/2019] [Indexed: 10/26/2022]
Abstract
Evolutionary pressure has pushed many extant plants and animals to develop micro/nanostructures on their surfaces to keep them clean. These structures have become ideal models for bio-inspired design. Although microstructures on biological surfaces have been widely studied, little attention has been paid to the combined role of microstructures and animal's active cleaning behaviors in keeping their surfaces clean. In this study, we explored the relationship between these micro/nanostructures and wettability as well as the role of the housefly cleaning behaviors in keeping their wings clean. Hierarchical structures consisting of microscale macrotrichias with nanoscale grooves on the wings were observed under scanning electron microscope. The wings were hydrophobic (CA = 133.3°) but with high adhesion to water (CAH = 87.5°), indicating that they were non-self-cleaning surfaces. Macroscale droplets standing on the wings could be best described as being in a transitional wetting state between Wenzel and Cassie-Baxter states due to the presence of the nanoscale grooves, which increased the resistance to water penetration. The hydrophobicity decreased (CA = 109.9°) when the nanostructures were removed by coating the wings with a thick layer of polydimethylsiloxane (PDMS). The houseflies could highly efficiently remove the microscale droplets atop the macrotrichias, and reduce bacterial contamination on their wings through grooming and flutter activities. These active cleaning behaviors could offset the absence of self-cleaning properties and play a key role in keeping the wings clean. The results indicate that housefly wings could be used as a template for the design of special functional surfaces. The present findings not only improve our understanding of the wettability and cleaning properties of natural surfaces, but also provide important insights into the design of bio-inspired materials.
Collapse
Affiliation(s)
- Qiang Wan
- College of Veterinary Medicine, China Agricultural University, Hai Dian District, Beijing, 100193, China
| | - Hao Li
- College of Veterinary Medicine, China Agricultural University, Hai Dian District, Beijing, 100193, China
| | - Shudong Zhang
- College of Veterinary Medicine, China Agricultural University, Hai Dian District, Beijing, 100193, China
| | - Chuanwen Wang
- College of Veterinary Medicine, China Agricultural University, Hai Dian District, Beijing, 100193, China
| | - Shanchun Su
- College of Veterinary Medicine, China Agricultural University, Hai Dian District, Beijing, 100193, China
| | - Shaojun Long
- College of Veterinary Medicine, China Agricultural University, Hai Dian District, Beijing, 100193, China
| | - Baoliang Pan
- College of Veterinary Medicine, China Agricultural University, Hai Dian District, Beijing, 100193, China.
| |
Collapse
|
7
|
Smith NM, Clayton GV, Khan HA, Dickerson AK. Mosquitoes modulate leg dynamics at takeoff to accommodate surface roughness. BIOINSPIRATION & BIOMIMETICS 2018; 14:016007. [PMID: 30479315 DOI: 10.1088/1748-3190/aaed87] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Insects perform takeoffs from a nearly unquantifiable number of surface permutations and many use their legs to initiate upward movement prior to the onset of wingbeats, including the mosquito. In this study we examine the unprovoked pre-takeoff mechanics of Aedes aegypti mosquitoes from two surfaces of contrasting roughness, one with roughness similar to polished glass and the other comparable to the human forearm. Using high-speed videography, we find mosquitos exhibit two distinct leg actions prior to takeoff, the widely observed push and a previously undocumented leg-strike, where one of the rearmost legs is raised and strikes the ground. Across 106 takeoff sequences we observe a greater incidence of leg-strikes from the smoother surface, and rationalize this observation by comparing the characteristic size of surface features on the mosquito tarsi and each test surface. Measurements of pre-takeoff kinematics reveal both strategies remain under the mechanosensory detection threshold of mammalian hair and produce nearly identical vertical body velocities. Lastly, we develop a model that explicates the measured leg velocity of striking legs utilized by mosquitoes, 0.59 m s-1.
Collapse
Affiliation(s)
- Nicholas M Smith
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL, 32816, United States of America
| | | | | | | |
Collapse
|
8
|
Dickerson AK, Olvera A, Luc Y. Void Entry by Aedes aegypti (Diptera: Culicidae) Mosquitoes Is Lower Than Would Be Expected by a Randomized Search. JOURNAL OF INSECT SCIENCE (ONLINE) 2018; 18:5205815. [PMID: 30476211 PMCID: PMC6260123 DOI: 10.1093/jisesa/iey115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Indexed: 06/09/2023]
Abstract
Insects enter every passible space on the planet. Despite our best efforts, flying insects infiltrate slightly open windows in domiciles, automobiles, storage spaces, and more. Is this ubiquitous experience a consequence of insect abundance and probability, or are flying insects adept at detecting passageways? There remains a lack of understanding of insect effectiveness in finding passage through the voids and imperfections in physical barriers in response to attractants, a topic particularly critical to the area of insect-borne disease control. In this study, we recorded the passage of Aedes aegytpi mosquitoes through voids in vertically oriented bed net fabrics within a cylindrical flight arena. We model the probability mosquitoes will discover and navigate the void in response to a physical attractant by observing their search behavior and quantifying the region within a void that is physically navigable, constrained by body size. Void passage rates were lower than that would be expected by purely randomized search behaviors and decline rapidly as the void diameter approaches the in-flight width of the insect.
Collapse
Affiliation(s)
| | - Alexander Olvera
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, Florida
| | - Yva Luc
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, Florida
| |
Collapse
|
9
|
Schroeder TBH, Houghtaling J, Wilts BD, Mayer M. It's Not a Bug, It's a Feature: Functional Materials in Insects. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1705322. [PMID: 29517829 DOI: 10.1002/adma.201705322] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/15/2017] [Indexed: 05/25/2023]
Abstract
Over the course of their wildly successful proliferation across the earth, the insects as a taxon have evolved enviable adaptations to their diverse habitats, which include adhesives, locomotor systems, hydrophobic surfaces, and sensors and actuators that transduce mechanical, acoustic, optical, thermal, and chemical signals. Insect-inspired designs currently appear in a range of contexts, including antireflective coatings, optical displays, and computing algorithms. However, as over one million distinct and highly specialized species of insects have colonized nearly all habitable regions on the planet, they still provide a largely untapped pool of unique problem-solving strategies. With the intent of providing materials scientists and engineers with a muse for the next generation of bioinspired materials, here, a selection of some of the most spectacular adaptations that insects have evolved is assembled and organized by function. The insects presented display dazzling optical properties as a result of natural photonic crystals, precise hierarchical patterns that span length scales from nanometers to millimeters, and formidable defense mechanisms that deploy an arsenal of chemical weaponry. Successful mimicry of these adaptations may facilitate technological solutions to as wide a range of problems as they solve in the insects that originated them.
Collapse
Affiliation(s)
- Thomas B H Schroeder
- Department of Chemical Engineering, University of Michigan, 2300 Hayward Street, Ann Arbor, MI, 48109, USA
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
| | - Jared Houghtaling
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel Boulevard, Ann Arbor, MI, 48109, USA
| | - Bodo D Wilts
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
| | - Michael Mayer
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
| |
Collapse
|
10
|
Godeau G, Godeau RP, Orange F, Szczepanski CR, Guittard F, Darmanin T. Variation of Goliathus orientalis (Moser, 1909) Elytra Nanostructurations and Their Impact on Wettability. Biomimetics (Basel) 2018; 3:biomimetics3020006. [PMID: 31105228 PMCID: PMC6352665 DOI: 10.3390/biomimetics3020006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 03/18/2018] [Accepted: 03/20/2018] [Indexed: 11/16/2022] Open
Abstract
Among the different species of flower beetles, there is one of particular notoriety: the Goliath beetle. This large insect can grow up to 11 cm long and is well-known for its distinctive black and white shield. In this paper, we focus on a particular Goliathus species: G. orientalis (Moser, 1909). We investigated the variations in properties of both the black and white parts of the upper face of G. orientalis; more precisely, the variation in surface properties with respect to the wettability of these two parts. This work reveals that the white parts of the shield have a higher hydrophobic character when compared to the black regions. While the black parts are slightly hydrophobic (θ = 91 ± 5°) and relatively smooth, the white parts are highly hydrophobic (θ = 130 ± 3°) with strong water adhesion (parahydrophobic); similar to the behavior observed for rose petals. Roughness and morphology analyses revealed significant differences between the two parts, and, hence, may explain the change in wettability. The white surfaces are covered with horizontally aligned nanohairs. Interestingly, vertically aligned microhairs are also present on the white surface. Furthermore, the surfaces of the microhairs are not smooth, they contain nanogrooves that are qualitatively similar to those observed in cactus spines. The nanogrooves may have an extremely important function regarding water harvesting, as they preferentially direct the migration of water droplets; this process could be mimicked in the future to capture and guide a large volume of water.
Collapse
Affiliation(s)
- Guilhem Godeau
- NICE Lab, Université Côte d'Azur, Parc Valrose, 06100 Nice, France.
| | - René-Paul Godeau
- NICE Lab, Université Côte d'Azur, Parc Valrose, 06100 Nice, France.
| | - François Orange
- Centre Commun de Microscopie Appliquée (CCMA), Université Nice Sophia Antipolis, 06100 Nice, France.
| | | | | | - Thierry Darmanin
- NICE Lab, Université Côte d'Azur, Parc Valrose, 06100 Nice, France.
| |
Collapse
|
11
|
Amador GJ, Hu DL. Cleanliness is next to godliness: mechanisms for staying clean. J Exp Biol 2015; 218:3164-74. [DOI: 10.1242/jeb.103937] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Getting dirty is a fundamental problem, and one for which there are few solutions, especially across the enormous range of animal size. How do both a honeybee and a squirrel get clean? In this Review, we discuss two broad types of cleaning, considered from the viewpoint of energetics. Non-renewable cleaning strategies rely upon the organism as an energy source. Examples include grooming motions, wet-dog shaking or the secretion of chemicals. Renewable cleaning strategies depend on environmental sources of energy, such as the use of eyelashes to redirect incoming wind and so reduce deposition onto the eye. Both strategies take advantage of body hair to facilitate cleaning, and honeybees and squirrels, for example, each have around 3 million hairs. This hair mat increases the area on which particles can land by a factor of 100, but also suspends particles above the body, reducing their adhesion and facilitating removal. We hope that the strategies outlined here will inspire energy-efficient cleaning strategies in synthetic systems.
Collapse
Affiliation(s)
- Guillermo J. Amador
- School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Drive, MRDC 2211, Atlanta, GA 30332, USA
| | - David L. Hu
- School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Drive, MRDC 2211, Atlanta, GA 30332, USA
- School of Biology, Georgia Institute of Technology, 310 Ferst Drive, Atlanta, GA 30322, USA
| |
Collapse
|
12
|
Bourouiba L, Hu DL, Levy R. Surface-tension phenomena in organismal biology: an introduction to the symposium. Integr Comp Biol 2014; 54:955-8. [PMID: 25260664 DOI: 10.1093/icb/icu113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Flows driven by surface tension are both ubiquitous and diverse, involving the drinking of birds and bees, the flow of xylem in plants, the impact of raindrops on animals, respiration in humans, and the transmission of diseases in plants and animals, including humans. The fundamental physical principles underlying such flows provide a unifying framework to interpret the adaptations of the microorganisms, animals, and plants that rely upon them. The symposium on "Surface-Tension Phenomena in Organismal Biology" assembled an interdisciplinary group of researchers to address a large spectrum of topics, all articulated around the role of surface tension in shaping biology, health, and ecology. The contributions to the symposium and the papers in this issue are meant to be a starting point for novices to familiarize themselves with the fundamentals of flows driven by surface tension; to understand how they can play a governing role in many settings in organismal biology; and how such understanding of nature's use of surface tension can, in turn, inspire humans to innovate.
Collapse
Affiliation(s)
- Lydia Bourouiba
- *Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Schools of Mechanical Engineering and Biology, Georgia Institute of Technology, Atlanta, GA, USA; Department of Mathematics, Harvey Mudd College, Claremont, CA, USA
| | - David L Hu
- *Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Schools of Mechanical Engineering and Biology, Georgia Institute of Technology, Atlanta, GA, USA; Department of Mathematics, Harvey Mudd College, Claremont, CA, USA
| | - Rachel Levy
- *Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Schools of Mechanical Engineering and Biology, Georgia Institute of Technology, Atlanta, GA, USA; Department of Mathematics, Harvey Mudd College, Claremont, CA, USA
| |
Collapse
|