1
|
Liu T, Shao Y, Pang X, Liu Y, Mo X, Chen Z, Lu X. Intestinal microbiota and high-risk antibiotic resistance genes in wild birds with varied ecological traits: Insights from opportunistic direct sampling in Tianjin, China. ENVIRONMENTAL RESEARCH 2024; 263:120040. [PMID: 39305975 DOI: 10.1016/j.envres.2024.120040] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/21/2024] [Accepted: 09/19/2024] [Indexed: 12/01/2024]
Abstract
Within One Health framework, the dissemination of antibiotic resistance genes (ARGs) and pathogenic bacteria by wild birds has attracted increasing attention. In this study, gut samples of wild birds opportunistically collected in Tianjin, China, situated along the East Asian-Australasian Flyway, were used to ascertain the realistic distribution of bacteria and ARGs in their intestinal tracts. These birds have different dietary habits (herbivore, carnivore, and omnivore) and residency statuses (resident and migratory birds). Using 16S rRNA gene sequencing and qPCR, we analyzed microbial communities and the abundance of high-risk ARGs and mobile genetic elements (MGEs). Birds with distinct ecological traits exhibited significant variations in gut bacterial composition, yet similar microbial diversity. Shigella sp. emerged as the core intestinal pathogen, with a mean relative abundance 2.57 to 1466 times higher than that of other pathogenic bacteria, and its concentration correlated with the host's trophic level as indicated by the δ15N values. The distribution of ARGs and MGEs also varied with bird ecological traits. All 10 targeted high-risk ARGs were detected in carnivores or passage migrants, while migratory birds carried significantly greater abundance of intI1 than residents (p < 0.05). The potential of migratory birds to harbor and disseminate pathogenic bacteria and ARGs cannot be ignored. Network analysis revealed blaTEM-1 presence in multiple core microorganisms, positively associated with Clostridioides difficile, emphasizing its risk potential. Positive dfrA12-intI1 correlation across trophic levels suggests potential for intI1-mediated transmission. Our study underscores the high potential risk posed by wild birds in carrying ARGs and pathogenic microorganisms, emphasizing the importance of further research and surveillance in this field.
Collapse
Affiliation(s)
- Tong Liu
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, and Tianjin International Joint Research Center for Environmental Biogeochemical Technology, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Yetong Shao
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, and Tianjin International Joint Research Center for Environmental Biogeochemical Technology, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Xiaoke Pang
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, and Tianjin International Joint Research Center for Environmental Biogeochemical Technology, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Yufei Liu
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, and Tianjin International Joint Research Center for Environmental Biogeochemical Technology, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Xunqiang Mo
- School of Geographic and Environmental Science, Tianjin Normal University, Tianjin, 300387, China.
| | - Zeyou Chen
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, and Tianjin International Joint Research Center for Environmental Biogeochemical Technology, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| | - Xueqiang Lu
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, and Tianjin International Joint Research Center for Environmental Biogeochemical Technology, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
2
|
Sonnega S, Sheriff MJ. Harnessing the gut microbiome: a potential biomarker for wild animal welfare. Front Vet Sci 2024; 11:1474028. [PMID: 39415953 PMCID: PMC11479891 DOI: 10.3389/fvets.2024.1474028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
The welfare of wild animal populations is critically important to conservation, with profound implications for ecosystem health, biodiversity, and zoonotic disease transmission. Animal welfare is typically defined as the accumulated affective mental state of an animal over a particular time period. However, the assessment of animal welfare in the wild poses unique challenges, primarily due to the lack of universally applicable biomarkers. This perspective explores the potential role of the gut microbiome, a dynamic and non-invasive biomarker, as a novel avenue for evaluating animal welfare in wild animals. The gut microbiome, through interactions with the host's physiology, behavior, and cognition, offers a promising opportunity to gain insights into the well-being of animals. In this synthesis, we discuss the distinction between fitness and welfare, the complexities of assessing welfare in wild populations, and the linkages between the gut microbiome and aspects of animal welfare such as behavior and cognition. We lastly elucidate how the gut microbiome could serve as a valuable tool for wildlife managers, with the potential to serve as a non-invasive yet informative window into the welfare of wild animals. As this nascent field evolves, it presents unique opportunities to enhance our understanding of the well-being of wild animals and to contribute to the preservation of ecosystems, biodiversity, and human health.
Collapse
Affiliation(s)
- Sam Sonnega
- Department of Biology, UMass Dartmouth, Dartmouth, MA, United States
| | | |
Collapse
|
3
|
Fountain-Jones NM, Giraud T, Zinger L, Bik H, Creer S, Videvall E. Molecular ecology of microbiomes in the wild: Common pitfalls, methodological advances and future directions. Mol Ecol 2024; 33:e17223. [PMID: 38014746 DOI: 10.1111/mec.17223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/12/2023] [Accepted: 11/15/2023] [Indexed: 11/29/2023]
Abstract
The study of microbiomes across organisms and environments has become a prominent focus in molecular ecology. This perspective article explores common challenges, methodological advancements, and future directions in the field. Key research areas include understanding the drivers of microbiome community assembly, linking microbiome composition to host genetics, exploring microbial functions, transience and spatial partitioning, and disentangling non-bacterial components of the microbiome. Methodological advancements, such as quantifying absolute abundances, sequencing complete genomes, and utilizing novel statistical approaches, are also useful tools for understanding complex microbial diversity patterns. Our aims are to encourage robust practices in microbiome studies and inspire researchers to explore the next frontier of this rapidly changing field.
Collapse
Affiliation(s)
| | - Tatiana Giraud
- Laboratoire Ecologie Systématique et Evolution, UMR 8079, Bâtiment 680, Université Paris-Saclay, CNRS, AgroParisTech, Gif-sur-Yvette, France
| | - Lucie Zinger
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Université Paris, Paris, France
- Laboratoire Evolution et Diversité Biologique (EDB), UMR5174, CNRS, Institut de Recherche pour le Développement (IRD), Université Toulouse 3 Paul Sabatier, Toulouse, France
| | - Holly Bik
- Department of Marine Sciences and Institute of Bioinformatics, University of Georgia, Athens, Georgia, USA
| | - Simon Creer
- School of Environmental and Natural Sciences, Bangor University, Bangor, UK
| | - Elin Videvall
- Department of Ecology, Evolution and Organismal Biology, Brown University, Providence, Rhode Island, USA
- Institute at Brown for Environment and Society, Brown University, Providence, Rhode Island, USA
- Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| |
Collapse
|
4
|
Stothart MR, McLoughlin PD, Poissant J. Shallow shotgun sequencing of the microbiome recapitulates 16S amplicon results and provides functional insights. Mol Ecol Resour 2023; 23:549-564. [PMID: 36112078 DOI: 10.1111/1755-0998.13713] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/17/2022] [Accepted: 09/09/2022] [Indexed: 11/30/2022]
Abstract
Prevailing 16S rRNA gene-amplicon methods for characterizing the bacterial microbiome of wildlife are economical, but result in coarse taxonomic classifications, are subject to primer and 16S copy number biases, and do not allow for direct estimation of microbiome functional potential. While deep shotgun metagenomic sequencing can overcome many of these limitations, it is prohibitively expensive for large sample sets. Here we evaluated the ability of shallow shotgun metagenomic sequencing to characterize taxonomic and functional patterns in the faecal microbiome of a model population of feral horses (Sable Island, Canada). Since 2007, this unmanaged population has been the subject of an individual-based, long-term ecological study. Using deep shotgun metagenomic sequencing, we determined the sequencing depth required to accurately characterize the horse microbiome. In comparing conventional vs. high-throughput shotgun metagenomic library preparation techniques, we validate the use of more cost-effective laboratory methods. Finally, we characterize similarities between 16S amplicon and shallow shotgun characterization of the microbiome, and demonstrate that the latter recapitulates biological patterns first described in a published amplicon data set. Unlike for amplicon data, we further demonstrate how shallow shotgun metagenomic data provide useful insights regarding microbiome functional potential which support previously hypothesized diet effects in this study system.
Collapse
Affiliation(s)
- Mason R Stothart
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Philip D McLoughlin
- Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Jocelyn Poissant
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
5
|
Kramp RD, Kohl KD, Stephenson JF. Skin bacterial microbiome diversity predicts lower activity levels in female, but not male, guppies, Poecilia reticulata. Biol Lett 2022; 18:20220167. [PMID: 35975629 PMCID: PMC9382456 DOI: 10.1098/rsbl.2022.0167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 08/01/2022] [Indexed: 11/12/2022] Open
Abstract
While the link between the gut microbiome and host behaviour is well established, how the microbiomes of other organs correlate with behaviour remains unclear. Additionally, behaviour-microbiome correlations are likely sex-specific because of sex differences in behaviour and physiology, but this is rarely tested. Here, we tested whether the skin microbiome of the Trinidadian guppy, Poecilia reticulata, predicts fish activity level and shoaling tendency in a sex-specific manner. High-throughput sequencing revealed that the bacterial community richness on the skin (Faith's phylogenetic diversity) was correlated with both behaviours differently between males and females. Females with richer skin-associated bacterial communities spent less time actively swimming. Activity level was significantly correlated with community membership (unweighted UniFrac), with the relative abundances of 16 bacterial taxa significantly negatively correlated with activity level. We found no association between skin microbiome and behaviours among male fish. This sex-specific relationship between the skin microbiome and host behaviour may indicate sex-specific physiological interactions with the skin microbiome. More broadly, sex specificity in host-microbiome interactions could give insight into the forces shaping the microbiome and its role in the evolutionary ecology of the host.
Collapse
Affiliation(s)
- Rachael D. Kramp
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kevin D. Kohl
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | | |
Collapse
|
6
|
Galván I, Schwartz TS, Garland T. Evolutionary physiology at 30+: Has the promise been fulfilled?: Advances in Evolutionary Physiology: Advances in Evolutionary Physiology. Bioessays 2021; 44:e2100167. [PMID: 34802161 DOI: 10.1002/bies.202100167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 12/19/2022]
Abstract
Three decades ago, interactions between evolutionary biology and physiology gave rise to evolutionary physiology. This caused comparative physiologists to improve their research methods by incorporating evolutionary thinking. Simultaneously, evolutionary biologists began focusing more on physiological mechanisms that may help to explain constraints on and trade-offs during microevolutionary processes, as well as macroevolutionary patterns in physiological diversity. Here we argue that evolutionary physiology has yet to reach its full potential, and propose new avenues that may lead to unexpected advances. Viewing physiological adaptations in wild animals as potential solutions to human diseases offers enormous possibilities for biomedicine. New evidence of epigenetic modifications as mechanisms of phenotypic plasticity that regulate physiological traits may also arise in coming years, which may also represent an overlooked enhancer of adaptation via natural selection to explain physiological evolution. Synergistic interactions at these intersections and other areas will lead to a novel understanding of organismal biology.
Collapse
Affiliation(s)
- Ismael Galván
- Department of Evolutionary Ecology, National Museum of Natural Sciences, CSIC, Madrid, Spain
| | - Tonia S Schwartz
- Department of Biological Sciences, Auburn University, Auburn, Alabama, USA
| | - Theodore Garland
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, California, USA
| |
Collapse
|
7
|
MacLeod KJ, Kohl KD, Trevelline BK, Langkilde T. Context-dependent effects of glucocorticoids on the lizard gut microbiome. Mol Ecol 2021; 31:185-196. [PMID: 34661319 DOI: 10.1111/mec.16229] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/19/2021] [Accepted: 10/11/2021] [Indexed: 12/25/2022]
Abstract
The vertebrate gut microbiota (bacterial, archaeal and fungal communities of the gastrointestinal tract) can have profound effects on the physiological processes of their hosts. Although relatively stable, changes in microbiome structure and composition occur due to changes in the environment, including exposure to stressors and associated increases in glucocorticoid hormones. Although a growing number of studies have linked stressor exposure to microbiome changes, few studies have experimentally explored the specific influence of glucocorticoids on the microbiome in wild animals, or across ecologically important processes (e.g., reproductive stages). Here we tested the response of the gut microbiota of adult female Sceloporus undulatus across gestation to ecologically relevant elevations of a stress-relevant glucocorticoid hormone (CORT) in order to determine (i) how experimentally elevated CORT influenced microbiome characteristics, and (ii) whether this relationship was dependent on reproductive context (i.e., whether females were gravid or not, and, in those that were gravid, gestational stage). We show that the effects of CORT on gut microbiota are complex and depend on both gestational state and stage. CORT treatment altered microbial community membership and resulted in an increase in microbiome diversity in late-gestation females, and microbial community membership varied according to treatment. In nongravid females, CORT treatment decreased interindividual variation in microbial communities, but this effect was not observed in late-gestation females. Our results highlight the need for a more holistic understanding of the downstream physiological effects of glucocorticoids, as well as the importance of context (here, gestational state and stage) in interpreting stress effects in ecology.
Collapse
Affiliation(s)
- Kirsty J MacLeod
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, USA.,Department of Biology, Lund University, Lund, Sweden
| | - Kevin D Kohl
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Brian K Trevelline
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA.,Cornell Laboratory of Ornithology, Cornell University, Ithaca, New York, USA
| | - Tracy Langkilde
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, USA.,Center for Brain, Behavior and Cognition, Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
8
|
Ingala MR, Albert L, Addesso A, Watkins MJ, Knutie SA. Differential effects of elevated nest temperature and parasitism on the gut microbiota of wild avian hosts. Anim Microbiome 2021; 3:67. [PMID: 34600588 PMCID: PMC8487522 DOI: 10.1186/s42523-021-00130-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/22/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Changes in wild animal gut microbiotas may influence host health and fitness. While many studies have shown correlations between gut microbiota structure and external factors, few studies demonstrate causal links between environmental variables and microbiota shifts. Here, we use a fully factorial experiment to test the effects of elevated ambient temperature and natural nest parasitism by nest flies (Protocalliphora sialia) on the gut microbiotas of two species of wild birds, the eastern bluebird (Sialia sialis) and the tree swallow (Tachycineta bicolor). RESULTS We find that bacterial communities from the nestlings of each host species show idiosyncratic responses to both heat and parasitism, with gut microbiotas of eastern bluebirds more disrupted by heat and parasitism than those of tree swallows. Thus, we find that eastern bluebirds are unable to maintain stable associations with their gut bacteria in the face of both elevated temperature and parasitism. In contrast, tree swallow gut microbiotas are not significantly impacted by either heat or nest parasitism. CONCLUSIONS Our results suggest that excess heat (e.g., as a result of climate change) may destabilize natural host-parasite-microbiota systems, with the potential to affect host fitness and survival in the Anthropocene.
Collapse
Affiliation(s)
- Melissa R Ingala
- Department of Vertebrate Zoology, National Museum of Natural History, Washington, D.C., USA.
| | - Lauren Albert
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | - Alyssa Addesso
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | - Mackenzie J Watkins
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | - Sarah A Knutie
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
9
|
Henry LP, Bruijning M, Forsberg SKG, Ayroles JF. The microbiome extends host evolutionary potential. Nat Commun 2021; 12:5141. [PMID: 34446709 PMCID: PMC8390463 DOI: 10.1038/s41467-021-25315-x] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 08/03/2021] [Indexed: 02/07/2023] Open
Abstract
The microbiome shapes many host traits, yet the biology of microbiomes challenges traditional evolutionary models. Here, we illustrate how integrating the microbiome into quantitative genetics can help untangle complexities of host-microbiome evolution. We describe two general ways in which the microbiome may affect host evolutionary potential: by shifting the mean host phenotype and by changing the variance in host phenotype in the population. We synthesize the literature across diverse taxa and discuss how these scenarios could shape the host response to selection. We conclude by outlining key avenues of research to improve our understanding of the complex interplay between hosts and microbiomes.
Collapse
Affiliation(s)
- Lucas P. Henry
- grid.16750.350000 0001 2097 5006Dept. of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ USA ,grid.16750.350000 0001 2097 5006Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ USA
| | - Marjolein Bruijning
- grid.16750.350000 0001 2097 5006Dept. of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ USA
| | - Simon K. G. Forsberg
- grid.16750.350000 0001 2097 5006Dept. of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ USA ,grid.16750.350000 0001 2097 5006Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ USA ,grid.8993.b0000 0004 1936 9457Dept. of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Julien F. Ayroles
- grid.16750.350000 0001 2097 5006Dept. of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ USA ,grid.16750.350000 0001 2097 5006Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ USA
| |
Collapse
|
10
|
Bo TB, Kohl KD. Stabilization and optimization of host-microbe-environment interactions as a potential reason for the behavior of natal philopatry. Anim Microbiome 2021; 3:26. [PMID: 33785073 PMCID: PMC8011129 DOI: 10.1186/s42523-021-00087-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 03/15/2021] [Indexed: 02/07/2023] Open
Abstract
Many animals engage in a behavior known as natal philopatry, where after sexual maturity they return to their own birthplaces for subsequent reproduction. There are many proposed ultimate factors that may underlie the evolution of natal philopatry, such as genetic optimization, suitable living conditions, and friendly neighbors, which can improve the survival rates of offspring. However, here we propose that a key factor that has been overlooked could be the colonization of gut microbiota during early life and the effects these microorganisms have on host performance and fitness. In addition to the bacteria transmitted from the mother to offspring, microbes from the surrounding environment also account for a large proportion of the developing gut microbiome. While it was long believed that microbial species all have global distributions, we now know that there are substantial geographic differences and dispersal limitations to environmental microbes. The establishment of gut microbiota during early life has enormous impacts on animal development, including energy metabolism, training of the immune system, and cognitive development. Moreover, these microbial effects scale to influence animal performance and fitness, raising the possibility for natural selection to act on the integrated combination of gut microbial communities and host genetics (i.e. the holobiont). Therefore, in this paper, we propose a hypothesis: that optimization of host-microbe-environment interactions represents a potentially important yet overlooked reason for natal philopatry. Microbiota obtained by natal philopatry could help animals adapt to the environment and improve the survival rates of their young. We propose future directions to test these ideas, and the implications that this hypothesis has for our understanding of host-microbe interactions.
Collapse
Affiliation(s)
- Ting-Bei Bo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kevin D Kohl
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
11
|
Zhuang M, Sanganyado E, Xu L, Zhu J, Li P, Liu W. High Throughput Sediment DNA Sequencing Reveals Azo Dye Degrading Bacteria Inhabit Nearshore Sediments. Microorganisms 2020; 8:microorganisms8020233. [PMID: 32050437 PMCID: PMC7074817 DOI: 10.3390/microorganisms8020233] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 11/24/2022] Open
Abstract
Estuaries and coastal environments are often regarded as a critical resource for the bioremediation of organic pollutants such as azo dyes due to their high abundance and diversity of extremophiles. Bioremediation through the activities of azoreductase, laccase, and other associated enzymes plays a critical role in the removal of azo dyes in built and natural environments. However, little is known about the biodegradation genes and azo dye degradation genes residing in sediments from coastal and estuarine environments. In this study, high-throughput sequencing (16S rRNA) of sediment DNA was used to explore the distribution of azo-dye degrading bacteria and their functional genes in estuaries and coastal environments. Unlike laccase genes, azoreductase (azoR), and naphthalene degrading genes were ubiquitous in the coastal and estuarine environments. The relative abundances of most functional genes were higher in the summer compared to winter at locations proximal to the mouths of the Hanjiang River and its distributaries. These results suggested inland river discharges influenced the occurrence and abundance of azo dye degrading genes in the nearshore environments. Furthermore, the azoR genes had a significant negative relationship with total organic carbon, Hg, and Cr (p < 0.05). This study provides critical insights into the biodegradation potential of indigenous microbial communities in nearshore environments and the influence of environmental factors on microbial structure, composition, and function which is essential for the development of technologies for bioremediation in azo dye contaminated sites.
Collapse
Affiliation(s)
- Mei Zhuang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Science, Shantou University, Shantou 515063, China; (M.Z.); (L.X.); (P.L.)
| | - Edmond Sanganyado
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Science, Shantou University, Shantou 515063, China; (M.Z.); (L.X.); (P.L.)
- Correspondence: (E.S.); (W.L.)
| | - Liang Xu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Science, Shantou University, Shantou 515063, China; (M.Z.); (L.X.); (P.L.)
| | - Jianming Zhu
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China;
| | - Ping Li
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Science, Shantou University, Shantou 515063, China; (M.Z.); (L.X.); (P.L.)
| | - Wenhua Liu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Science, Shantou University, Shantou 515063, China; (M.Z.); (L.X.); (P.L.)
- Correspondence: (E.S.); (W.L.)
| |
Collapse
|
12
|
Bird S, Prewer E, Kutz S, Leclerc L, Vilaça ST, Kyle CJ. Geography, seasonality, and host-associated population structure influence the fecal microbiome of a genetically depauparate Arctic mammal. Ecol Evol 2019; 9:13202-13217. [PMID: 31871639 PMCID: PMC6912892 DOI: 10.1002/ece3.5768] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 09/19/2019] [Accepted: 09/25/2019] [Indexed: 12/17/2022] Open
Abstract
The Canadian Arctic is an extreme environment with low floral and faunal diversity characterized by major seasonal shifts in temperature, moisture, and daylight. Muskoxen (Ovibos moschatus) are one of few large herbivores able to survive this harsh environment. Microbiome research of the gastrointestinal tract may hold clues as to how muskoxen exist in the Arctic, but also how this species may respond to rapid environmental changes. In this study, we investigated the effects of season (spring/summer/winter), year (2007-2016), and host genetic structure on population-level microbiome variation in muskoxen from the Canadian Arctic. We utilized 16S rRNA gene sequencing to characterize the fecal microbial communities of 78 male muskoxen encompassing two population genetic clusters. These clusters are defined by Arctic Mainland and Island populations, including the following: (a) two mainland sampling locations of the Northwest Territories and Nunavut and (b) four locations of Victoria Island. Between these geographic populations, we found that differences in the microbiome reflected host-associated genetic cluster with evidence of migration. Within populations, seasonality influenced bacterial diversity with no significant differences between years of sampling. We found evidence of pathogenic bacteria, with significantly higher presence in mainland samples. Our findings demonstrate the effects of seasonality and the role of host population-level structure in driving fecal microbiome differences in a large Arctic mammal.
Collapse
Affiliation(s)
- Samantha Bird
- Forensic Science ProgramTrent UniversityPeterboroughONCanada
| | - Erin Prewer
- Environmental and Life Sciences Graduate ProgramTrent UniversityPeterboroughONCanada
| | - Susan Kutz
- Faculty of Veterinary MedicineUniversity of CalgaryCalgaryABCanada
- Canadian Wildlife Health CooperativeAlberta NodeFaculty of Veterinary MedicineUniversity of CalgaryCalgaryABCanada
| | | | - Sibelle T. Vilaça
- Environmental and Life Sciences Graduate ProgramTrent UniversityPeterboroughONCanada
- Biology DepartmentTrent UniversityPeterboroughONCanada
| | - Christopher J. Kyle
- Forensic Science ProgramTrent UniversityPeterboroughONCanada
- Environmental and Life Sciences Graduate ProgramTrent UniversityPeterboroughONCanada
| |
Collapse
|
13
|
Knutie SA, Chaves JA, Gotanda KM. Human activity can influence the gut microbiota of Darwin's finches in the Galapagos Islands. Mol Ecol 2019; 28:2441-2450. [DOI: 10.1111/mec.15088] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 03/21/2019] [Accepted: 03/22/2019] [Indexed: 12/25/2022]
Affiliation(s)
- Sarah A. Knutie
- Department of Ecology and Evolutionary Biology University of Connecticut Storrs Connecticut
| | - Jaime A. Chaves
- Colegio de Ciencias Biológicas y Ambientales Universidad San Francisco de Quito Cumbayá Quito Ecuador
- Galápagos Science Center Puerto Baquerizo Moreno Ecuador
| | | |
Collapse
|
14
|
|
15
|
Knutie SA, Gotanda KM. A Non-invasive Method to Collect Fecal Samples from Wild Birds for Microbiome Studies. MICROBIAL ECOLOGY 2018; 76:851-855. [PMID: 29623358 DOI: 10.1007/s00248-018-1182-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 03/22/2018] [Indexed: 06/08/2023]
Abstract
Over the past few decades, studies have demonstrated that the gut microbiota strongly influences the physiology, behavior, and fitness of its host. Such studies have been conducted primarily in humans and model organisms under controlled laboratory conditions. More recently, researchers have realized the importance of placing host-associated microbiota studies into a more ecological context; however, few non-destructive methods have been established to collect fecal samples from wild birds. Here, we present an inexpensive and easy-to-use kit for the non-invasive collection of feces from small birds. The portability of the collection kit makes this method amenable to field studies, especially those in remote areas. The main components of the collection kit include a flat-bottomed paper bag, a large modified weigh boat (tray), vinyl-coated hardware cloth fencing (grate), a clothespin, and a 10% bleach solution (to sterilize the tray and grate). In the paper bag, a sterile tray is placed under a small grate, which prevents the birds from contacting the feces and reduces the risk of contamination. After capture, the bird is placed in the bag for 3-5 min until it defecates. After the bird is removed from the bag, the tray is extracted and the fecal sample is moved to a collection tube and frozen or preserved. We believe that our method is an affordable and easy option for researchers studying the gut microbiota of wild birds.
Collapse
Affiliation(s)
- Sarah A Knutie
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, 06269, USA.
| | | |
Collapse
|
16
|
Abstract
Mammals evolved in a microbial world, and consequently, microbial symbionts have played a role in their evolution. An exciting new subdiscipline of metagenomics considers the ways in which microbes, particularly those found in the gut, have facilitated the ecological and phylogenetic radiation of mammals. However, the vast majority of such studies focus on domestic animals, laboratory models, or charismatic megafauna (e.g., pandas and chimpanzees). The result is a plethora of studies covering few taxa across the mammal tree of life, leaving broad patterns of microbiome function and evolution unclear. Wildlife microbiome research urgently needs a model system in which to test hypotheses about metagenomic involvement in host ecology and evolution. We propose that bats (Order: Chiroptera) represent a model system ideal for comparative microbiome research, affording opportunities to examine host phylogeny, diet, and other natural history characteristics in relation to the evolution of the gut microbiome.
Collapse
Affiliation(s)
- Melissa R Ingala
- Richard Gilder Graduate School, American Museum of Natural History, New York, New York, USA
- Department of Mammalogy, Division of Vertebrate Zoology, American Museum of Natural History, New York, New York, USA
- Division of Invertebrate Zoology, American Museum of Natural History, New York, New York, USA
| | - Nancy B Simmons
- Richard Gilder Graduate School, American Museum of Natural History, New York, New York, USA
- Department of Mammalogy, Division of Vertebrate Zoology, American Museum of Natural History, New York, New York, USA
| | - Susan L Perkins
- Richard Gilder Graduate School, American Museum of Natural History, New York, New York, USA
- Division of Invertebrate Zoology, American Museum of Natural History, New York, New York, USA
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, New York, USA
| |
Collapse
|
17
|
Knutie SA. Relationships among introduced parasites, host defenses, and gut microbiota of Galapagos birds. Ecosphere 2018. [DOI: 10.1002/ecs2.2286] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Sarah A. Knutie
- Department of Ecology and Evolutionary Biology University of Connecticut Storrs Connecticut 06269 USA
| |
Collapse
|
18
|
Ingala MR, Simmons NB, Wultsch C, Krampis K, Speer KA, Perkins SL. Comparing Microbiome Sampling Methods in a Wild Mammal: Fecal and Intestinal Samples Record Different Signals of Host Ecology, Evolution. Front Microbiol 2018; 9:803. [PMID: 29765359 PMCID: PMC5938605 DOI: 10.3389/fmicb.2018.00803] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 04/10/2018] [Indexed: 12/27/2022] Open
Abstract
The gut microbiome is a community of host-associated symbiotic microbes that fulfills multiple key roles in host metabolism, immune function, and tissue development. Given the ability of the microbiome to impact host fitness, there is increasing interest in studying the microbiome of wild animals to better understand these communities in the context of host ecology and evolution. Human microbiome research protocols are well established, but wildlife microbiome research is still a developing field. Currently, there is no standardized set of best practices guiding the collection of microbiome samples from wildlife. Gut microflora are typically sampled either by fecal collection, rectal swabbing, or by destructively sampling the intestinal contents of the host animal. Studies rarely include more than one sampling technique and no comparison of these methods currently exists for a wild mammal. Although some studies have hypothesized that the fecal microbiome is a nested subset of the intestinal microbiome, this hypothesis has not been formally tested. To address these issues, we examined guano (feces) and distal intestinal mucosa from 19 species of free-ranging bats from Lamanai, Belize, using 16S rRNA amplicon sequencing to compare microbial communities across sample types. We found that the diversity and composition of intestine and guano samples differed substantially. In addition, we conclude that signatures of host evolution are retained by studying gut microbiomes based on mucosal tissue samples, but not fecal samples. Conversely, fecal samples retained more signal of host diet than intestinal samples. These results suggest that fecal and intestinal sampling methods are not interchangeable, and that these two microbiotas record different information about the host from which they are isolated.
Collapse
Affiliation(s)
- Melissa R Ingala
- The Richard Gilder Graduate School, American Museum of Natural History, New York, NY, United States.,Department of Mammalogy, American Museum of Natural History, New York, NY, United States.,Division of Invertebrate Zoology, American Museum of Natural History, New York, NY, United States
| | - Nancy B Simmons
- The Richard Gilder Graduate School, American Museum of Natural History, New York, NY, United States.,Department of Mammalogy, American Museum of Natural History, New York, NY, United States
| | - Claudia Wultsch
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY, United States
| | - Konstantinos Krampis
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY, United States.,Center for Translational and Basic Research, Hunter College, New York, NY, United States.,Institute of Computational Biomedicine, Weill Cornell Medical College, New York, NY, United States
| | - Kelly A Speer
- The Richard Gilder Graduate School, American Museum of Natural History, New York, NY, United States.,Department of Mammalogy, American Museum of Natural History, New York, NY, United States.,Division of Invertebrate Zoology, American Museum of Natural History, New York, NY, United States
| | - Susan L Perkins
- The Richard Gilder Graduate School, American Museum of Natural History, New York, NY, United States.,Division of Invertebrate Zoology, American Museum of Natural History, New York, NY, United States.,Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY, United States
| |
Collapse
|
19
|
A Microbial Perspective on the Grand Challenges in Comparative Animal Physiology. mSystems 2018; 3:mSystems00146-17. [PMID: 29556549 PMCID: PMC5853186 DOI: 10.1128/msystems.00146-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 11/13/2017] [Indexed: 01/23/2023] Open
Abstract
Interactions with microbial communities can have profound influences on animal physiology, thereby impacting animal performance and fitness. Therefore, it is important to understand the diversity and nature of host-microbe interactions in various animal groups (invertebrates, fish, amphibians, reptiles, birds, and mammals). Interactions with microbial communities can have profound influences on animal physiology, thereby impacting animal performance and fitness. Therefore, it is important to understand the diversity and nature of host-microbe interactions in various animal groups (invertebrates, fish, amphibians, reptiles, birds, and mammals). In this perspective, I discuss how the field of host-microbe interactions can be used to address topics that have been identified as grand challenges in comparative animal physiology: (i) horizontal integration of physiological processes across organisms, (ii) vertical integration of physiological processes across organizational levels within organisms, and (iii) temporal integration of physiological processes during evolutionary change. Addressing these challenges will require the use of a variety of animal models and the development of systems approaches that can integrate large, multiomic data sets from both microbial communities and animal hosts. Integrating host-microbe interactions into the established field of comparative physiology represents an exciting frontier for both fields.
Collapse
|
20
|
van Veelen HPJ, Salles JF, Tieleman BI. Microbiome assembly of avian eggshells and their potential as transgenerational carriers of maternal microbiota. ISME JOURNAL 2018; 12:1375-1388. [PMID: 29445132 DOI: 10.1038/s41396-018-0067-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 12/01/2017] [Accepted: 12/21/2017] [Indexed: 02/07/2023]
Abstract
The microbiome is essential for development, health and homeostasis throughout an animal's life. Yet, the origins and transmission processes governing animal microbiomes remain elusive for non-human vertebrates, oviparous vertebrates in particular. Eggs may function as transgenerational carriers of the maternal microbiome, warranting characterisation of egg microbiome assembly. Here, we investigated maternal and environmental contributions to avian eggshell microbiota in wild passerine birds: woodlark Lullula arborea and skylark Alauda arvensis. Using 16S rRNA gene sequencing, we demonstrated in both lark species, at the population and within-nest levels, that bacterial communities of freshly laid eggs were distinct from the female cloacal microbiome. Instead, soil-borne bacteria appeared to thrive on freshly laid eggs, and eggshell microbiota composition strongly resembled maternal skin, body feather and nest material communities, sources in direct contact with laid eggs. Finally, phylogenetic structure analysis and microbial source tracking underscored species sorting from directly contacting sources rather than in vivo-transferred symbionts. The female-egg-nest system allowed an integrative assessment of avian egg microbiome assembly, revealing mixed modes of symbiont acquisition not previously documented for vertebrate eggs. Our findings illuminated egg microbiome origins, which suggested a limited potential of eggshells for transgenerational transmission, encouraging further investigation of eggshell microbiome functions in vertebrates.
Collapse
Affiliation(s)
- H Pieter J van Veelen
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, P.O. box 11103, 9700 CC, Groningen, The Netherlands.
| | - Joana Falcão Salles
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, P.O. box 11103, 9700 CC, Groningen, The Netherlands
| | - B Irene Tieleman
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, P.O. box 11103, 9700 CC, Groningen, The Netherlands
| |
Collapse
|