1
|
Hubert DL, Bentz EJ, Mason RT. Increased offspring size and reduced gestation length in an ectothermic vertebrate under a worst-case climate change scenario. J Therm Biol 2024; 125:103990. [PMID: 39426089 DOI: 10.1016/j.jtherbio.2024.103990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 09/27/2024] [Accepted: 09/29/2024] [Indexed: 10/21/2024]
Abstract
As global temperatures continue to rise, understanding the impacts of warming environments has become increasingly important. Temperature is especially relevant for ectothermic organisms which depend upon consistent and predictable annual temperature cycles for reproduction and development. However, additional research is required in this area to elucidate the potential impacts of climate change on future generations. To understand how projected increases in environmental temperatures may impact reproductive outcomes within natural populations of ectothermic vertebrates, we manipulated minimum ambient temperatures during gestation in Red-sided garter snakes (Thamnophis sirtalis parietalis). Wild snakes were collected in the Interlake region of Manitoba, Canada during their spring mating season and allowed to mate in controlled conditions. For the duration of gestation, mated females were placed into one of two ambient thermal conditions: temperatures emulating those found in the species' natural habitat or temperatures with a consistent 5 °C increase to match end-of-century climate change projections. We recorded observations for each litter and all neonates resulting from controlled mating trials. We observed no difference in litter sizes or birth rates between thermal conditions. However, we observed a significant reduction in gestation length and significant increase to neonate body mass and body condition associated with increased ambient temperatures. These results suggest that increased minimum temperatures during gestation may confer reproductive benefits for the northern populations of this species even under the most extreme current modeled warming predictions. We discuss the broader implications of this effect, including possible negative ecological outcomes.
Collapse
Affiliation(s)
- David L Hubert
- Department of Integrative Biology, Oregon State University, Corvallis, OR, 97333, USA.
| | - Ehren J Bentz
- Department of Psychology, Cornell University, Ithaca, NY, USA
| | - Robert T Mason
- Department of Integrative Biology, Oregon State University, Corvallis, OR, 97333, USA
| |
Collapse
|
2
|
Palacios MG, Bronikowski AM, Amer A, Gangloff EJ. Transgenerational effects of maternal corticosterone across early life in a viviparous snake. Gen Comp Endocrinol 2023; 331:114162. [PMID: 36356645 DOI: 10.1016/j.ygcen.2022.114162] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022]
Abstract
Glucocorticoids (GCs) are central mediators of vertebrate responses to intrinsic and extrinsic stimuli. Among the sources of variation in circulating GCs are transgenerational effects mediated by mothers. Here we studied potential maternal effects mediated by GCs on offspring phenotype in a live-bearing reptile, the western terrestrial garter snake (Thamnophis elegans). We evaluated the association between baseline corticosterone (CORT) levels during gestation (i.e., preparturition) in field-captured mothers and 1) reproductive success and offspring sex ratios, 2) birth phenotypic traits of offspring born under common-garden laboratory conditions, and 3) neonate (age 3 months) and juvenile (age 12 months) traits of offspring raised under two thermal regimes ('warm' and 'cool') during their first year of life. Reproductive success and offspring sex ratios were not associated with preparturition maternal CORT, but pregnant snakes with higher CORT levels gave birth to smaller, lighter offspring, which tended to grow faster to age three months. Neonate baseline CORT varied with preparturition maternal CORT in a sex-specific manner (positive trend for females, negative for males). Maternal CORT effects on offspring phenotype were no longer detectable in juveniles at age one year. Instead, juvenile phenotypes were most influenced by rearing environment, with offspring raised under the cool regime showing higher baseline CORT and slower growth than those raised under warmer conditions. Our findings support the notion that offspring phenotype might be continuously adjusted in response to environmental cues -both pre- and post-natal- and that the strength of maternal CORT effects declines as offspring develop and experience unique environmental challenges. Our results contribute to a growing literature on transgenerational effects of hormones and help to fill a gap in our knowledge of these effects in ectothermic amniotes.
Collapse
Affiliation(s)
- Maria G Palacios
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA; Centro Para el Estudio de Sistemas Marinos, CCT CONICET-CENPAT, Blvd. Brown 2915, Puerto Madryn, Chubut, Argentina.
| | - Anne M Bronikowski
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA; Kellogg Biological Station, Michigan State University, Hickory Corners, MI, USA
| | - Ali Amer
- Department of Biological Sciences, Ohio Wesleyan University, Delaware, OH, USA
| | - Eric J Gangloff
- Department of Biological Sciences, Ohio Wesleyan University, Delaware, OH, USA
| |
Collapse
|
3
|
Blais BR, Wells SA, Poynter BM, Harris TR, Allard RA, Koprowski JL. Bridging conservation across the ex situ‐in situ spectrum: Insights into the reproductive ecology of the threatened narrow‐headed gartersnake (
Thamnophis rufipunctatus
). Zoo Biol 2022; 42:429-439. [DOI: 10.1002/zoo.21747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 10/28/2022] [Accepted: 12/03/2022] [Indexed: 12/24/2022]
Affiliation(s)
- Brian R. Blais
- School of Natural Resources and the Environment University of Arizona Tucson Arizona USA
| | - Stuart A. Wells
- School of Natural Resources and the Environment University of Arizona Tucson Arizona USA
- Department of Conservation and Science Arizona Center for Nature Conservation/Phoenix Zoo Phoenix Arizona USA
| | - Bradley M. Poynter
- Department of Conservation and Science Arizona Center for Nature Conservation/Phoenix Zoo Phoenix Arizona USA
| | - Tara R. Harris
- Department of Conservation and Science Arizona Center for Nature Conservation/Phoenix Zoo Phoenix Arizona USA
| | - Ruth A. Allard
- Department of Conservation and Science Arizona Center for Nature Conservation/Phoenix Zoo Phoenix Arizona USA
| | - John L. Koprowski
- School of Natural Resources and the Environment University of Arizona Tucson Arizona USA
| |
Collapse
|
4
|
Bronikowski AM, Meisel RP, Biga PR, Walters J, Mank JE, Larschan E, Wilkinson GS, Valenzuela N, Conard AM, de Magalhães JP, Duan J, Elias AE, Gamble T, Graze R, Gribble KE, Kreiling JA, Riddle NC. Sex-specific aging in animals: Perspective and future directions. Aging Cell 2022; 21:e13542. [PMID: 35072344 PMCID: PMC8844111 DOI: 10.1111/acel.13542] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/15/2021] [Accepted: 12/11/2021] [Indexed: 12/14/2022] Open
Abstract
Sex differences in aging occur in many animal species, and they include sex differences in lifespan, in the onset and progression of age-associated decline, and in physiological and molecular markers of aging. Sex differences in aging vary greatly across the animal kingdom. For example, there are species with longer-lived females, species where males live longer, and species lacking sex differences in lifespan. The underlying causes of sex differences in aging remain mostly unknown. Currently, we do not understand the molecular drivers of sex differences in aging, or whether they are related to the accepted hallmarks or pillars of aging or linked to other well-characterized processes. In particular, understanding the role of sex-determination mechanisms and sex differences in aging is relatively understudied. Here, we take a comparative, interdisciplinary approach to explore various hypotheses about how sex differences in aging arise. We discuss genomic, morphological, and environmental differences between the sexes and how these relate to sex differences in aging. Finally, we present some suggestions for future research in this area and provide recommendations for promising experimental designs.
Collapse
Affiliation(s)
- Anne M. Bronikowski
- Department of Ecology, Evolution, and Organismal BiologyIowa State UniversityAmesIowaUSA
| | - Richard P. Meisel
- Department of Biology and BiochemistryUniversity of HoustonHoustonTexasUSA
| | - Peggy R. Biga
- Department of BiologyThe University of Alabama at BirminghamBirminghamAlabamaUSA
| | - James R. Walters
- Department of Ecology and Evolutionary BiologyThe University of KansasLawrenceKansasUSA
| | - Judith E. Mank
- Department of ZoologyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Department of BioscienceUniversity of ExeterPenrynUK
| | - Erica Larschan
- Department of Molecular Biology, Cell Biology and BiochemistryBrown UniversityProvidenceRhode IslandUSA
| | | | - Nicole Valenzuela
- Department of Ecology, Evolution, and Organismal BiologyIowa State UniversityAmesIowaUSA
| | - Ashley Mae Conard
- Department of Computer ScienceCenter for Computational and Molecular BiologyBrown UniversityProvidenceRhode IslandUSA
| | - João Pedro de Magalhães
- Integrative Genomics of Ageing GroupInstitute of Ageing and Chronic DiseaseUniversity of LiverpoolLiverpoolUK
| | | | - Amy E. Elias
- Department of Molecular Biology, Cell Biology and BiochemistryBrown UniversityProvidenceRhode IslandUSA
| | - Tony Gamble
- Department of Biological SciencesMarquette UniversityMilwaukeeWisconsinUSA
- Milwaukee Public MuseumMilwaukeeWisconsinUSA
- Bell Museum of Natural HistoryUniversity of MinnesotaSaint PaulMinnesotaUSA
| | - Rita M. Graze
- Department of Biological SciencesAuburn UniversityAuburnAlabamaUSA
| | - Kristin E. Gribble
- Josephine Bay Paul Center for Comparative Molecular Biology and EvolutionMarine Biological LaboratoryWoods HoleMassachusettsUSA
| | - Jill A. Kreiling
- Department of Molecular Biology, Cell Biology and BiochemistryBrown UniversityProvidenceRhode IslandUSA
| | - Nicole C. Riddle
- Department of BiologyThe University of Alabama at BirminghamBirminghamAlabamaUSA
| |
Collapse
|
5
|
Gangloff EJ, Leos-Barajas V, Demuth G, Zhang H, Kelly CD, Bronikowski AM. Movement modeling and patterns of within- and among-individual behavioral variation across time scales in neonate garter snakes (Thamnophis elegans). Behav Ecol Sociobiol 2021. [DOI: 10.1007/s00265-021-03099-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
6
|
Gangloff EJ, Manes MB, Schwartz TS, Robert KA, Huebschman N, Bronikowski AM. Multiple Paternity in Garter Snakes With Evolutionarily Divergent Life Histories. J Hered 2021; 112:508-518. [PMID: 34351393 PMCID: PMC8558580 DOI: 10.1093/jhered/esab043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 08/04/2021] [Indexed: 11/25/2022] Open
Abstract
Many animal species exhibit multiple paternity, defined as multiple males genetically contributing to a single female reproductive event, such as a clutch or litter. Although this phenomenon is well documented across a broad range of taxa, the underlying causes and consequences remain poorly understood. For example, it is unclear how multiple paternity correlates with life-history strategies. Furthermore, males and females may differ in mating strategies and these patterns may shift with ecological context and life-history variation. Here, we take advantage of natural life-history variation in garter snakes (Thamnophis elegans) to address these questions in a robust field setting where populations have diverged along a slow-to-fast life-history continuum. We determine both female (observed) and male (using molecular markers) reproductive success in replicate populations of 2 life-history strategies. We find that despite dramatic differences in annual female reproductive output: 1) females of both life-history ecotypes average 1.5 sires per litter and equivalent proportions of multiply-sired litters, whereas 2) males from the slow-living ecotype experience greater reproductive skew and greater variance in reproductive success relative to males from the fast-living ecotype males despite having equivalent average reproductive success. Together, these results indicate strong intrasexual competition among males, particularly in the fast-paced life-history ecotype. We discuss these results in the context of competing hypotheses for multiple paternity related to population density, resource variability, and life-history strategy.
Collapse
Affiliation(s)
- Eric J Gangloff
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
- Department of Zoology, Ohio Wesleyan University, Delaware, OH, USA
| | - Megan B Manes
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Tonia S Schwartz
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
- Department of Biological Sciences, Auburn University, Auburn, AL, USA
| | - Kylie A Robert
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
- Department of Ecology, Environment and Evolution, La Trobe University, Bundoora, VIC, Australia
| | | | - Anne M Bronikowski
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| |
Collapse
|
7
|
Mehta RS, Dale KE, Higgins BA. Marine Protection Induces Morphological Variation in the California Moray, Gymnothorax mordax. Integr Comp Biol 2021; 60:522-534. [PMID: 32497193 DOI: 10.1093/icb/icaa061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The effectiveness of marine protected areas (MPAs) on the general health and conservation of species, habitats, and community interactions is of great interest to researchers, managers, and recreationalists. However, the ecological and behavioral diversity of vertebrate predators of southern California kelp forests limits our ability to make general conclusions about MPA effectiveness across a variety of species. Identifying and studying species with extreme feeding habits or prey-capture strategies may offer greater insight into predator-prey relationships and reveal the trophic importance of an animal in the larger community. Moray eels (family Muraenidae) have been shown to have morphological and behavioral adaptations that allow them to consume large prey whole, identifying them as important predators. From 2015 to 2018, we studied the health and feeding behavior of a long-lived, elusive, and benthic kelp forest predator, the California moray eel (Gymnothorax mordax). We trapped eels inside and outside of Blue Cavern Onshore State Marine Conservation Area, an MPA on the northwest side of Santa Catalina Island, CA which prohibits the take of any species. Over 4 years, we captured 1736 eels. Overall, we found that morays were longer, older, heavier, had higher body condition, and were found in greater abundance within the MPA. Although fish comprised the majority of their summer diet, morays outside of the MPA were consuming a more diverse set of fish, while kelp bass comprised more than half of the diet for morays inhabiting the MPA. Additionally, we found that morays within the MPA had larger relative vertical gape distances (VGDs) and narrower heads. Our recapture data support the high site fidelity of morays, indicating that their diet and morphology are influenced by their local community. While the majority of morays are thriving in the MPA, as suggested by their robust sizes and longevity, high abundance appears to result in higher frequencies of cannibalism, the presence of an undescribed disease, and lower growth rates. Our results suggest that the MPA affects the life history of morays and may select for an alternative feeding strategy in which eels develop larger VGDs, smaller adductor muscles, and a specialized diet which is presumably influenced by the local environment. In addition, observations of cannibalistic behavior and species-specific disease provide us with important insight into natural factors that may still regulate populations removed from anthropogenic disturbances such as fishing.
Collapse
Affiliation(s)
- Rita S Mehta
- Ecology and Evolutionary Biology, University of California, 130 McAllister Way, Santa Cruz, CA 95060, USA
| | - Katherine E Dale
- Ecology and Evolutionary Biology, University of California, 130 McAllister Way, Santa Cruz, CA 95060, USA
| | - Benjamin A Higgins
- Ecology and Evolutionary Biology, University of California, 130 McAllister Way, Santa Cruz, CA 95060, USA
| |
Collapse
|
8
|
Schwanz LE, Crawford-Ash J, Gale T. Context dependence of transgenerational plasticity: the influence of parental temperature depends on offspring environment and sex. Oecologia 2020; 194:391-401. [DOI: 10.1007/s00442-020-04783-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 10/09/2020] [Indexed: 01/13/2023]
|
9
|
Bodensteiner BL, Agudelo‐Cantero GA, Arietta AZA, Gunderson AR, Muñoz MM, Refsnider JM, Gangloff EJ. Thermal adaptation revisited: How conserved are thermal traits of reptiles and amphibians? JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2020; 335:173-194. [DOI: 10.1002/jez.2414] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/17/2020] [Accepted: 09/04/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Brooke L. Bodensteiner
- Department of Ecology and Evolutionary Biology Yale University New Haven Connecticut USA
| | - Gustavo A. Agudelo‐Cantero
- Department of Physiology, Institute of Biosciences University of São Paulo São Paulo Brazil
- Department of Biology ‐ Genetics, Ecology, and Evolution Aarhus University Aarhus Denmark
| | | | - Alex R. Gunderson
- Department of Ecology and Evolutionary Biology Tulane University New Orleans Louisiana USA
| | - Martha M. Muñoz
- Department of Ecology and Evolutionary Biology Yale University New Haven Connecticut USA
| | | | - Eric J. Gangloff
- Department of Zoology Ohio Wesleyan University Delaware Ohio USA
| |
Collapse
|
10
|
Gangloff EJ, Schwartz TS, Klabacka R, Huebschman N, Liu AY, Bronikowski AM. Mitochondria as central characters in a complex narrative: Linking genomics, energetics, pace-of-life, and aging in natural populations of garter snakes. Exp Gerontol 2020; 137:110967. [DOI: 10.1016/j.exger.2020.110967] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 04/11/2020] [Accepted: 05/01/2020] [Indexed: 12/18/2022]
|
11
|
Palacios MG, Gangloff EJ, Reding DM, Bronikowski AM. Genetic background and thermal environment differentially influence the ontogeny of immune components during early life in an ectothermic vertebrate. J Anim Ecol 2020; 89:1883-1894. [PMID: 32472604 DOI: 10.1111/1365-2656.13271] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/12/2020] [Indexed: 12/26/2022]
Abstract
An understudied aspect of vertebrate ecoimmunology has been the relative contributions of environmental factors (E), genetic background (G) and their interaction (G × E) in shaping immune development and function. Environmental temperature is known to affect many aspects of immune function and alterations in temperature regimes have been implicated in emergent disease outbreaks, making it a critical environmental factor to study in the context of immune phenotype determinants of wild animals. We assessed the relative influences of environmental temperature, genetic background and their interaction on first-year development of innate and adaptive immune defences of captive-born garter snakes Thamnophis elegans using a reciprocal transplant laboratory experiment. We used a full-factorial design with snakes from two divergent life-history ecotypes, which are known to differ in immune function in their native habitats, raised under conditions mimicking the natural thermal regime-that is, warmer and cooler-of each habitat. Genetic background (ecotype) and thermal regime influenced innate and adaptive immune parameters of snakes, but in an immune-component specific manner. We found some evidence of G × E interactions but no indication of adaptive plasticity with respect to thermal environment. At the individual level, the effects of thermal environment on resource allocation decisions varied between the fast- and the slow-paced life-history ecotypes. Under warmer conditions, which increased food consumption of individuals in both ecotypes, the former invested mostly in growth, whereas the latter invested more evenly between growth and immune development. Overall, immune parameters were highly flexible, but results suggest that other environmental factors are likely more important than temperature per se in driving the ecotype differences in immunity previously documented in the snakes under field conditions. Our results also add to the understanding of investment in immune development and growth during early postnatal life under different thermal environments. Our finding of immune-component specific patterns strongly cautions against oversimplification of the highly complex immune system in ecoimmunological studies. In conjunction, these results deepen our understanding of the degree of immunological flexibility wild animals present, information that is ever more vital in the context of rapid global environmental change.
Collapse
Affiliation(s)
- Maria G Palacios
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Eric J Gangloff
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Dawn M Reding
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Anne M Bronikowski
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| |
Collapse
|
12
|
Tüzün N, De Block M, Stoks R. Live fast, die old: oxidative stress as a potential mediator of an unexpected life‐history evolution. OIKOS 2020. [DOI: 10.1111/oik.07183] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Nedim Tüzün
- Evolutionary Stress Ecology and Ecotoxicology, Univ. of Leuven Deberiotstraat 32 BE‐3000 Leuven Belgium
| | - Marjan De Block
- Evolutionary Stress Ecology and Ecotoxicology, Univ. of Leuven Deberiotstraat 32 BE‐3000 Leuven Belgium
| | - Robby Stoks
- Evolutionary Stress Ecology and Ecotoxicology, Univ. of Leuven Deberiotstraat 32 BE‐3000 Leuven Belgium
| |
Collapse
|
13
|
Regan JC, Froy H, Walling CA, Moatt JP, Nussey DH. Dietary restriction and insulin‐like signalling pathways as adaptive plasticity: A synthesis and re‐evaluation. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13418] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Jennifer C. Regan
- Institute of Immunology and Infection Research, School of Biological Sciences University of Edinburgh Edinburgh UK
| | - Hannah Froy
- Centre for Biodiversity Dynamics Norwegian University of Science and Technology Trondheim Norway
| | - Craig A. Walling
- Institute for Evolutionary Biology, School of Biological Sciences University of Edinburgh Edinburgh UK
| | - Joshua P. Moatt
- Institute for Evolutionary Biology, School of Biological Sciences University of Edinburgh Edinburgh UK
| | - Daniel H. Nussey
- Institute of Immunology and Infection Research, School of Biological Sciences University of Edinburgh Edinburgh UK
- Institute for Evolutionary Biology, School of Biological Sciences University of Edinburgh Edinburgh UK
| |
Collapse
|
14
|
Holden KG, Reding DM, Ford NB, Bronikowski AM. Effects of early nutritional stress on physiology, life-histories and their trade-offs in a model ectothermic vertebrate. J Exp Biol 2019; 222:jeb.200220. [DOI: 10.1242/jeb.200220] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 05/14/2019] [Indexed: 12/21/2022]
Abstract
Early-life experiences can have far-reaching consequences for phenotypes into adulthood. The effect of early-life experiences on fitness, particularly under adverse conditions, is mediated by resource allocation to particular life-history traits. Reptiles exhibit great variation in life-histories (e.g., indeterminate growth) thus selective pressures often mitigate the effects of early-life stress, particularly on growth and maturation. We examined the effects of early-life food restriction on growth, adult body size, physiology and reproduction in the checkered garter snake. Animals were placed on one of two early-life diet treatments: normal-diet (approximating ad libitum feeding) or low-diet (restricted to 20% of body mass in food weekly). At 15 weeks of age low-diet animals were switched to the normal-diet treatment. Individuals fed a restricted diet showed reduced growth rates, depressed immunocompetence and a heightened glucocorticoid response. Once food restriction was lifted, animals experiencing nutritional stress early in life (low-diet) caught up to the normal-diet group by increasing their growth, and were able to recover from the negative effects of nutritional stress on immune function and physiology. Growth restriction and the subsequent allocation of resources into increasing growth rates, however, had a negative effect on fitness. Mating success was reduced in low-diet males, while low-diet females gave birth to smaller offspring. In addition, although not a direct goal of our study, we found a sex-specific effect of early-life nutritional stress on median age of survival. Our study demonstrates both immediate and long-term effects of nutritional stress on physiology and growth, reproduction, and trade-offs among them.
Collapse
Affiliation(s)
- Kaitlyn G. Holden
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
- Department of Biology, University of Texas at Tyler, Tyler, TX 75799, USA
| | - Dawn M. Reding
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
- Department of Biology, Luther College, Decora, IA 52101, USA
| | - Neil B. Ford
- Department of Biology, University of Texas at Tyler, Tyler, TX 75799, USA
| | - Anne M. Bronikowski
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
15
|
Gangloff EJ, Sparkman AM, Bronikowski AM. Among-individual heterogeneity in maternal behaviour and physiology affects reproductive allocation and offspring life-history traits in the garter snakeThamnophis elegans. OIKOS 2017. [DOI: 10.1111/oik.04204] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Eric J. Gangloff
- Dept. of Ecology; Evolution and Organismal Biology, Iowa State Univ.; Ames IA USA
- Station d'Ecologie Théorique et Expérimentale du CNRS; FR-09200 Moulis France
| | | | - Anne M. Bronikowski
- Dept. of Ecology; Evolution and Organismal Biology, Iowa State Univ.; Ames IA USA
| |
Collapse
|