1
|
Giustino V, Bonaventura RE, Messina G, Patti A, Pillitteri G, Pajaujiene S, Paoli A, Palma A, Bianco A, Oliveri M, Battaglia G. Acute effects of prismatic adaptation on penalty kick accuracy and postural control in young soccer players: A pilot study. Heliyon 2024; 10:e30515. [PMID: 38742074 PMCID: PMC11089356 DOI: 10.1016/j.heliyon.2024.e30515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 05/16/2024] Open
Abstract
Background Prismatic adaptation (PA) is a visuomotor technique using prismatic glasses that are capable of moving the visual field and to affect the excitability of certain brain areas. The aim of this pilot study was to explore potential acute effects of PA on penalty kick accuracy and postural control in youth soccer players. Methods In this randomized crossover study, seven young male soccer players performed three PA sessions (rightward PA, r-PA; leftward PA, l-PA; sham PA, s-PA) with a washout period of 1-week between them. Immediately before and after each PA session, penalty kick accuracy and postural control were assessed. Results We detected an increase in penalty kick accuracy following PA, regardless of the deviation side of the prismatic glasses (F1,5 = 52.15; p = 0.08; ηp2 = 0.981). In detail, our results showed an increase in the penalty kick accuracy toward the right target of the football goal following r-PA and toward the left target of the football goal following l-PA. We detected a significant effect on the sway path length (F2,12 = 10.42; p = 0.002; ηp2 = 0.635) and the sway average speed (F2,12 = 9.17; p = 0.004; ηp2 = 0.605) parameters in the stabilometric test with open eyes following PA, regardless of the deviation side of the prismatic glasses. In detail, our results showed a significant difference in both the stabilometric parameters (p = 0.016 and p = 0.009, respectively) only following l-PA. Conclusion The findings of this pilot study indicate that PA could positively affect penalty kick accuracy and postural control suggesting that PA could be used as a visual training technique in athletes.
Collapse
Affiliation(s)
- Valerio Giustino
- Sport and Exercise Sciences Research Unit, Department of Psychology, Educational Science and Human Movement, University of Palermo, Palermo, Italy
| | | | - Giuseppe Messina
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele University, Rome, Italy
- PLab Research Institute, Palermo, Italy
| | - Antonino Patti
- Sport and Exercise Sciences Research Unit, Department of Psychology, Educational Science and Human Movement, University of Palermo, Palermo, Italy
| | - Guglielmo Pillitteri
- Sport and Exercise Sciences Research Unit, Department of Psychology, Educational Science and Human Movement, University of Palermo, Palermo, Italy
| | - Simona Pajaujiene
- Department of Coaching Science, Lithuanian Sports University, Kaunas, Lithuania
| | - Antonio Paoli
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Antonio Palma
- Sport and Exercise Sciences Research Unit, Department of Psychology, Educational Science and Human Movement, University of Palermo, Palermo, Italy
- Regional Sports School of Italian National Olympic Committee (CONI) Sicilia, Palermo, Italy
| | - Antonino Bianco
- Sport and Exercise Sciences Research Unit, Department of Psychology, Educational Science and Human Movement, University of Palermo, Palermo, Italy
| | - Massimiliano Oliveri
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Giuseppe Battaglia
- Sport and Exercise Sciences Research Unit, Department of Psychology, Educational Science and Human Movement, University of Palermo, Palermo, Italy
- Regional Sports School of Italian National Olympic Committee (CONI) Sicilia, Palermo, Italy
| |
Collapse
|
2
|
Westrick SE, Moss JB, Fischer EK. Who cares? An integrative approach to understanding the evolution of behavioural plasticity in parental care. Anim Behav 2022. [DOI: 10.1016/j.anbehav.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
3
|
Ehret G, Romand R. Awareness and consciousness in humans and animals - neural and behavioral correlates in an evolutionary perspective. Front Syst Neurosci 2022; 16:941534. [PMID: 35910003 PMCID: PMC9331465 DOI: 10.3389/fnsys.2022.941534] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/29/2022] [Indexed: 11/29/2022] Open
Abstract
Awareness or consciousness in the context of stimulus perception can directly be assessed in well controlled test situations with humans via the persons' reports about their subjective experiences with the stimuli. Since we have no direct access to subjective experiences in animals, their possible awareness or consciousness in stimulus perception tasks has often been inferred from behavior and cognitive abilities previously observed in aware and conscious humans. Here, we analyze published human data primarily on event-related potentials and brain-wave generation during perception and responding to sensory stimuli and extract neural markers (mainly latencies of evoked-potential peaks and of gamma-wave occurrence) indicating that a person became aware or conscious of the perceived stimulus. These neural correlates of consciousness were then applied to sets of corresponding data from various animals including several species of mammals, and one species each of birds, fish, cephalopods, and insects. We found that the neural markers from studies in humans could also successfully be applied to the mammal and bird data suggesting that species in these animal groups can become subjectively aware of and conscious about perceived stimuli. Fish, cephalopod and insect data remained inconclusive. In an evolutionary perspective we have to consider that both awareness of and consciousness about perceived stimuli appear as evolved, attention-dependent options added to the ongoing neural activities of stimulus processing and action generation. Since gamma-wave generation for functional coupling of brain areas in aware/conscious states is energetically highly cost-intensive, it remains to be shown which animal species under which conditions of lifestyle and ecological niche may achieve significant advantages in reproductive fitness by drawing upon these options. Hence, we started our discussion about awareness and consciousness in animals with the question in how far these expressions of brain activity are necessary attributes for perceiving stimuli and responding in an adaptive way.
Collapse
Affiliation(s)
- Günter Ehret
- Institute of Neurobiology, University of Ulm, Ulm, Germany
| | - Raymond Romand
- Faculty of Medicine, Institute de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), University of Strasbourg and Centre National de la Recherche Scientifique (CNRS), Strasbourg, France
| |
Collapse
|
4
|
Solari P, Sollai G, Palmas F, Sabatini A, Crnjar R. A method for selective stimulation of leg chemoreceptors in whole crustaceans. J Exp Biol 2021; 224:273419. [PMID: 34761803 DOI: 10.1242/jeb.243636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/05/2021] [Indexed: 11/20/2022]
Abstract
The integration of sensory information with adequate motor outputs is critical for animal survival. Here, we present an innovative technique based on a non-invasive closed-circuit device consisting of a perfusion/stimulation chamber chronically applied on a single leg of the crayfish Procambarus clarkii. Using this technique, we focally stimulated the leg inside the chamber and studied the leg-dependent sensory-motor integration involving other sensory appendages, such as antennules and maxillipeds, which remain unstimulated outside the chamber. Results show that the stimulation of a single leg with chemicals, such as disaccharides, is sufficient to trigger a complex search behaviour involving locomotion coupled with the reflex activation of antennules and maxillipeds. This technique can be easily adapted to other decapods and/or other sensory appendages. Thus, it has opened possibilities for studying sensory-motor integration evoked by leg stimulation in whole aquatic animals under natural conditions to complement, with a direct approach, current ablation or silencing techniques.
Collapse
Affiliation(s)
- Paolo Solari
- Department of Biomedical Sciences, Section of Physiology, University of Cagliari, University Campus, S.P. 8, 09042 Monserrato, CA, Italy
| | - Giorgia Sollai
- Department of Biomedical Sciences, Section of Physiology, University of Cagliari, University Campus, S.P. 8, 09042 Monserrato, CA, Italy
| | - Francesco Palmas
- Department of Life and Environmental Sciences, University of Cagliari, Via Fiorelli 1, 09126 Cagliari, CA, Italy
| | - Andrea Sabatini
- Department of Life and Environmental Sciences, University of Cagliari, Via Fiorelli 1, 09126 Cagliari, CA, Italy
| | - Roberto Crnjar
- Department of Biomedical Sciences, Section of Physiology, University of Cagliari, University Campus, S.P. 8, 09042 Monserrato, CA, Italy
| |
Collapse
|
5
|
Abstract
Abstract
The expression of an individual animal’s behaviour can be placed along many different personality spectra. Parasite load can alter animal behaviour and, thus, fitness. The personality traits of rusty crayfish, Faxonius rusticus, were analysed in three different behavioural contexts: foraging, exploration, and threatened. Each crayfish was tested in each context 3 times, giving a total of 9 assays per crayfish. After assays were completed, crayfish were dissected, and the hepatopancreas of each crayfish was photo analysed to determine the parasite load of the trematode, Microphallus spp. A composite personality score for each assay and parasite load was loaded into a PCA. The PCA model showed that as parasite load increased, crayfish became bolder in threatening contexts and less exploratory in novel environments, whether or not a food stimulus was present. Thus, parasite load alters the placement of crayfish on different personality spectra, but this change is context specific.
Collapse
Affiliation(s)
- Rebecca Noel MacKay
- Department of Biological Sciences, Bowling Green State University, 217 Life Sciences, N College Drive, Bowling Green, OH 43403, USA
- University of Michigan Biological Station, University of Michigan, 9133 Biological Road, Pellston, MI 49769, USA
| | - Paul A. Moore
- Department of Biological Sciences, Bowling Green State University, 217 Life Sciences, N College Drive, Bowling Green, OH 43403, USA
- University of Michigan Biological Station, University of Michigan, 9133 Biological Road, Pellston, MI 49769, USA
- J.P. Scott Center for Neurosciences, Mind, and Behavior, Bowling Green State University, Bowling Green, OH 43403, USA
| |
Collapse
|
6
|
Scaplen KM, Talay M, Nunez KM, Salamon S, Waterman AG, Gang S, Song SL, Barnea G, Kaun KR. Circuits that encode and guide alcohol-associated preference. eLife 2020; 9:48730. [PMID: 32497004 PMCID: PMC7272191 DOI: 10.7554/elife.48730] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 05/18/2020] [Indexed: 12/21/2022] Open
Abstract
A powerful feature of adaptive memory is its inherent flexibility. Alcohol and other addictive substances can remold neural circuits important for memory to reduce this flexibility. However, the mechanism through which pertinent circuits are selected and shaped remains unclear. We show that circuits required for alcohol-associated preference shift from population level dopaminergic activation to select dopamine neurons that predict behavioral choice in Drosophila melanogaster. During memory expression, subsets of dopamine neurons directly and indirectly modulate the activity of interconnected glutamatergic and cholinergic mushroom body output neurons (MBON). Transsynaptic tracing of neurons important for memory expression revealed a convergent center of memory consolidation within the mushroom body (MB) implicated in arousal, and a structure outside the MB implicated in integration of naïve and learned responses. These findings provide a circuit framework through which dopamine neuronal activation shifts from reward delivery to cue onset, and provide insight into the maladaptive nature of memory.
Collapse
Affiliation(s)
- Kristin M Scaplen
- Department of Neuroscience, Brown University, Providence, United States
| | - Mustafa Talay
- Department of Neuroscience, Brown University, Providence, United States
| | - Kavin M Nunez
- Department of Molecular Pharmacology and Physiology, Brown University, Providence, United States
| | - Sarah Salamon
- Department of Pharmacology, University of Cologne, Cologne, Germany
| | - Amanda G Waterman
- Department of Neuroscience, Brown University, Providence, United States
| | - Sydney Gang
- Department of Biochemistry, Brown University, Providence, United States
| | - Sophia L Song
- Department of Neuroscience, Brown University, Providence, United States
| | - Gilad Barnea
- Department of Neuroscience, Brown University, Providence, United States
| | - Karla R Kaun
- Department of Neuroscience, Brown University, Providence, United States
| |
Collapse
|
7
|
Caves EM, Nowicki S, Johnsen S. Von Uexküll Revisited: Addressing Human Biases in the Study of Animal Perception. Integr Comp Biol 2020; 59:1451-1462. [PMID: 31127268 DOI: 10.1093/icb/icz073] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
More than 100 years ago, the biologist Jakob von Uexküll suggested that, because sensory systems are diverse, animals likely inhabit different sensory worlds (umwelten) than we do. Since von Uexküll, work across sensory modalities has confirmed that animals sometimes perceive sensory information that humans cannot, and it is now well-established that one must account for this fact when studying an animal's behavior. We are less adept, however, at recognizing cases in which non-human animals may not detect or perceive stimuli the same way we do, which is our focus here. In particular, we discuss three ways in which our own perception can result in misinformed hypotheses about the function of various stimuli. In particular, we may (1) make untested assumptions about how sensory information is perceived, based on how we perceive or measure it, (2) attribute undue significance to stimuli that we perceive as complex or striking, and (3) assume that animals divide the sensory world in the same way that we as scientists do. We discuss each of these biases and provide examples of cases where animals cannot perceive or are not attending to stimuli in the same way that we do, and how this may lead us to mistaken assumptions. Because what an animal perceives affects its behavior, we argue that these biases are especially important for researchers in sensory ecology, cognition, and animal behavior and communication to consider. We suggest that studying animal umwelten requires integrative approaches that combine knowledge of sensory physiology with behavioral assays.
Collapse
Affiliation(s)
| | | | - Sönke Johnsen
- Biology Department, Duke University, Durham, NC, USA
| |
Collapse
|
8
|
Hebets EA, Anderson A. Using cross-disciplinary knowledge to facilitate advancements in animal communication and science communication research. J Exp Biol 2018; 221:221/18/jeb179978. [DOI: 10.1242/jeb.179978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Farnsworth KD. How Organisms Gained Causal Independence and How It Might Be Quantified. BIOLOGY 2018; 7:E38. [PMID: 29966241 PMCID: PMC6163937 DOI: 10.3390/biology7030038] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/30/2018] [Accepted: 06/23/2018] [Indexed: 12/20/2022]
Abstract
Two broad features are jointly necessary for autonomous agency: organisational closure and the embodiment of an objective-function providing a ‘goal’: so far only organisms demonstrate both. Organisational closure has been studied (mostly in abstract), especially as cell autopoiesis and the cybernetic principles of autonomy, but the role of an internalised ‘goal’ and how it is instantiated by cell signalling and the functioning of nervous systems has received less attention. Here I add some biological ‘flesh’ to the cybernetic theory and trace the evolutionary development of step-changes in autonomy: (1) homeostasis of organisationally closed systems; (2) perception-action systems; (3) action selection systems; (4) cognitive systems; (5) memory supporting a self-model able to anticipate and evaluate actions and consequences. Each stage is characterised by the number of nested goal-directed control-loops embodied by the organism, summarised as will-nestedness N. Organism tegument, receptor/transducer system, mechanisms of cellular and whole-organism re-programming and organisational integration, all contribute to causal independence. CONCLUSION organisms are cybernetic phenomena whose identity is created by the information structure of the highest level of causal closure (maximum N), which has increased through evolution, leading to increased causal independence, which might be quantifiable by ‘Integrated Information Theory’ measures.
Collapse
|