1
|
Low GW, Pavlova A, Gan HM, Ko MC, Sadanandan KR, Lee YP, Amos JN, Austin L, Falk S, Dowling DK, Sunnucks P. Accelerated differentiation of neo-W nuclear-encoded mitochondrial genes between two climate-associated bird lineages signals potential co-evolution with mitogenomes. Heredity (Edinb) 2024; 133:342-354. [PMID: 39174672 PMCID: PMC11527876 DOI: 10.1038/s41437-024-00718-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 08/11/2024] [Accepted: 08/12/2024] [Indexed: 08/24/2024] Open
Abstract
There is considerable evidence for mitochondrial-nuclear co-adaptation as a key evolutionary driver. Hypotheses regarding the roles of sex-linkage have emphasized Z-linked nuclear genes with mitochondrial function (N-mt genes), whereas it remains contentious whether the perfect co-inheritance of W genes with mitogenomes could hinder or facilitate co-adaptation. Young (neo-) sex chromosomes that possess relatively many N-mt genes compared to older chromosomes provide unprecedented hypothesis-testing opportunities. Eastern Yellow Robin (EYR) lineages in coastal and inland habitats with different climates are diverged in mitogenomes, and in a ~ 15.4 Mb nuclear region enriched with N-mt genes, in contrast with otherwise-similar nuclear genomes. This nuclear region maps to passerine chromosome 1A, previously found to be neo-sex in the inland EYR genome. To compare sex-linked Chr1A-derived genes between lineages, we assembled and annotated the coastal EYR genome. We found that: (i) the coastal lineage shares a similar neo-sex system with the inland lineage, (ii) neo-W and neo-Z N-mt genes are not more diverged between lineages than are comparable non-N-mt genes, and showed little evidence for broad positive selection, (iii) however, W-linked N-mt genes are more diverged between lineages than are their Z-linked gametologs. The latter effect was ~7 times stronger for N-mt than non-N-mt genes, suggesting that W-linked N-mt genes might have diverged between lineages under environmental selection through co-evolution with mitogenomes. Finally, we identify a candidate gene driver for divergent selection, NDUFA12. Our data represent a rare example suggesting a possible role for W-associated mitochondrial-nuclear interactions in climate-associated adaptation and lineage differentiation.
Collapse
Affiliation(s)
- Gabriel Weijie Low
- School of Biological Sciences, Monash University, Melbourne, VIC 3800, Australia.
- Evolution of Sensory and Physiological Systems, Max Planck Institute for Biological Intelligence, 82319, Seewiesen, Germany.
- National Parks Board, 1 Cluny Road, Singapore Botanical Gardens, Singapore, 259569, Singapore.
| | - Alexandra Pavlova
- School of Biological Sciences, Monash University, Melbourne, VIC 3800, Australia
| | - Han Ming Gan
- Deakin Genomics Centre, Deakin University, Geelong, VIC 3220, Australia
- Patriot Biotech Sdn Bhd, 47500, Subang Jaya, Selangor, Malaysia
| | - Meng-Ching Ko
- Evolution of Sensory and Physiological Systems, Max Planck Institute for Biological Intelligence, 82319, Seewiesen, Germany
| | - Keren R Sadanandan
- Evolution of Sensory and Physiological Systems, Max Planck Institute for Biological Intelligence, 82319, Seewiesen, Germany
| | - Yin Peng Lee
- Deakin Genomics Centre, Deakin University, Geelong, VIC 3220, Australia
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC 3220, Australia
| | - J Nevil Amos
- School of Biological Sciences, Monash University, Melbourne, VIC 3800, Australia
- Arthur Rylah Institute for Environmental Research, Heidelberg, VIC 3084, Australia
| | - Lana Austin
- School of Biological Sciences, Monash University, Melbourne, VIC 3800, Australia
| | - Stephanie Falk
- School of Biological Sciences, Monash University, Melbourne, VIC 3800, Australia
- Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany
| | - Damian K Dowling
- School of Biological Sciences, Monash University, Melbourne, VIC 3800, Australia
| | - Paul Sunnucks
- School of Biological Sciences, Monash University, Melbourne, VIC 3800, Australia.
| |
Collapse
|
2
|
Li N, Flanagan BA, Edmands S. The role of mitochondria in sex- and age-specific gene expression in a species without sex chromosomes. Proc Natl Acad Sci U S A 2024; 121:e2321267121. [PMID: 38838014 PMCID: PMC11181141 DOI: 10.1073/pnas.2321267121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 05/13/2024] [Indexed: 06/07/2024] Open
Abstract
Mitochondria perform an array of functions, many of which involve interactions with gene products encoded by the nucleus. These mitochondrial functions, particularly those involving energy production, can be expected to differ between sexes and across ages. Here, we measured mitochondrial effects on sex- and age-specific gene expression in parental and reciprocal F1 hybrids between allopatric populations of Tigriopus californicus with over 20% mitochondrial DNA divergence. Because the species lacks sex chromosomes, sex-biased mitochondrial effects are not confounded by the effects of sex chromosomes. Results revealed pervasive sex differences in mitochondrial effects, including effects on energetics and aging involving nuclear interactions throughout the genome. Using single-individual RNA sequencing, sex differences were found to explain more than 80% of the variance in gene expression. Males had higher expression of mitochondrial genes and mitochondrially targeted proteins (MTPs) involved in oxidative phosphorylation (OXPHOS), while females had elevated expression of non-OXPHOS MTPs, indicating strongly sex-dimorphic energy metabolism at the whole organism level. Comparison of reciprocal F1 hybrids allowed insights into the nature of mito-nuclear interactions, showing both mitochondrial effects on nuclear expression, and nuclear effects on mitochondrial expression. While based on a small set of crosses, sex-specific increases in mitochondrial expression with age were associated with longer life. Network analyses identified nuclear components of strong mito-nuclear interactions and found them to be sexually dimorphic. These results highlight the profound impact of mitochondria and mito-nuclear interactions on sex- and age-specific gene expression.
Collapse
Affiliation(s)
- Ning Li
- Department of Biological Sciences, University of Southern California, Los Angeles, CA90089
| | - Ben A. Flanagan
- Department of Biological Sciences, University of Southern California, Los Angeles, CA90089
| | - Suzanne Edmands
- Department of Biological Sciences, University of Southern California, Los Angeles, CA90089
| |
Collapse
|
3
|
McDiarmid CS, Hooper DM, Stier A, Griffith SC. Mitonuclear interactions impact aerobic metabolism in hybrids and may explain mitonuclear discordance in young, naturally hybridizing bird lineages. Mol Ecol 2024; 33:e17374. [PMID: 38727686 DOI: 10.1111/mec.17374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/26/2024] [Accepted: 03/20/2024] [Indexed: 06/07/2024]
Abstract
Understanding genetic incompatibilities and genetic introgression between incipient species are major goals in evolutionary biology. Mitochondrial genes evolve rapidly and exist in dense gene networks with coevolved nuclear genes, suggesting that mitochondrial respiration may be particularly susceptible to disruption in hybrid organisms. Mitonuclear interactions have been demonstrated to contribute to hybrid dysfunction between deeply divergent taxa crossed in the laboratory, but there are few empirical examples of mitonuclear interactions between younger lineages that naturally hybridize. Here, we use controlled hybrid crosses and high-resolution respirometry to provide the first experimental evidence in a bird that inter-lineage mitonuclear interactions impact mitochondrial aerobic metabolism. Specifically, respiration capacity of the two mitodiscordant backcrosses (with mismatched mitonuclear combinations) differs from one another, although they do not differ significantly from the parental groups or mitoconcordant backcrosses as we would expect of mitonuclear disruptions. In the wild hybrid zone between these subspecies, the mitochondrial cline centre is shifted west of the nuclear cline centre, which is consistent with the direction of our experimental results. Our results therefore demonstrate asymmetric mitonuclear interactions that impact the capacity of cellular mitochondrial respiration and may help to explain the geographic discordance between mitochondrial and nuclear genomes observed in the wild.
Collapse
Affiliation(s)
- Callum S McDiarmid
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Daniel M Hooper
- Institute for Comparative Genomics and Richard Gilder Graduate School, American Museum of Natural History, New York, New York, USA
| | - Antoine Stier
- Department of Biology, University of Turku, Turku, Finland
- Institut Pluridisciplinaire Hubert Curien, UMR7178, Université de Strasbourg, CNRS, Strasbourg, France
| | - Simon C Griffith
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| |
Collapse
|
4
|
Edmands S. Mother's Curse effects on lifespan and aging. FRONTIERS IN AGING 2024; 5:1361396. [PMID: 38523670 PMCID: PMC10957651 DOI: 10.3389/fragi.2024.1361396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 02/20/2024] [Indexed: 03/26/2024]
Abstract
The Mother's Curse hypothesis posits that mothers curse their sons with harmful mitochondria, because maternal mitochondrial inheritance makes selection blind to mitochondrial mutations that harm only males. As a result, mitochondrial function may be evolutionarily optimized for females. This is an attractive explanation for ubiquitous sex differences in lifespan and aging, given the prevalence of maternal mitochondrial inheritance and the established relationship between mitochondria and aging. This review outlines patterns expected under the hypothesis, and traits most likely to be affected, chiefly those that are sexually dimorphic and energy intensive. A survey of the literature shows that evidence for Mother's Curse is limited to a few taxonomic groups, with the strongest support coming from experimental crosses in Drosophila. Much of the evidence comes from studies of fertility, which is expected to be particularly vulnerable to male-harming mitochondrial mutations, but studies of lifespan and aging also show evidence of Mother's Curse effects. Despite some very compelling studies supporting the hypothesis, the evidence is quite patchy overall, with contradictory results even found for the same traits in the same taxa. Reasons for this scarcity of evidence are discussed, including nuclear compensation, factors opposing male-specific mutation load, effects of interspecific hybridization, context dependency and demographic effects. Mother's Curse effects may indeed contribute to sex differences, but the complexity of other contributing factors make Mother's Curse a poor general predictor of sex-specific lifespan and aging.
Collapse
Affiliation(s)
- Suzanne Edmands
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
5
|
Brand JA, Garcia-Gonzalez F, Dowling DK, Wong BBM. Mitochondrial genetic variation as a potential mediator of intraspecific behavioural diversity. Trends Ecol Evol 2024; 39:199-212. [PMID: 37839905 DOI: 10.1016/j.tree.2023.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/11/2023] [Accepted: 09/11/2023] [Indexed: 10/17/2023]
Abstract
Mitochondrial genes play an essential role in energy metabolism. Variation in the mitochondrial DNA (mtDNA) sequence often exists within species, and this variation can have consequences for energy production and organismal life history. Yet, despite potential links between energy metabolism and the expression of animal behaviour, mtDNA variation has been largely neglected to date in studies investigating intraspecific behavioural diversity. We outline how mtDNA variation and interactions between mitochondrial and nuclear genotypes may contribute to the expression of individual-to-individual behavioural differences within populations, and why such effects may lead to sex differences in behaviour. We contend that integration of the mitochondrial genome into behavioural ecology research may be key to fully understanding the evolutionary genetics of animal behaviour.
Collapse
Affiliation(s)
- Jack A Brand
- School of Biological Sciences, Monash University, Melbourne, VIC, Australia; Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden.
| | - Francisco Garcia-Gonzalez
- Doñana Biological Station-CSIC, Seville, Spain; Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Crawley, Western Australia, Australia
| | - Damian K Dowling
- School of Biological Sciences, Monash University, Melbourne, VIC, Australia
| | - Bob B M Wong
- School of Biological Sciences, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
6
|
Li N, Flanagan BA, Edmands S. The role of mitochondria in sex- and age-specific gene expression in a species without sex chromosomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.08.570893. [PMID: 38106076 PMCID: PMC10723445 DOI: 10.1101/2023.12.08.570893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Mitochondria perform an array of functions, many of which involve interactions with gene products encoded by the nucleus. These mitochondrial functions, particularly those involving energy production, can be expected to differ between sexes and across ages. Here we measured mitochondrial effects on sex- and age-specific gene expression in parental and reciprocal F1 hybrids between allopatric populations of Tigriopus californicus with over 20% mitochondrial DNA divergence. Because the species lacks sex chromosomes, sex-biased mitochondrial effects are not confounded by the effects of sex chromosomes. Using single-individual RNA sequencing, sex differences were found to explain more than 80% of the variance in gene expression. Males had higher expression of mitochondrial genes and mitochondrially targeted proteins (MTPs) involved in oxidative phosphorylation (OXPHOS), while females had elevated expression of non-OXPHOS MTPs, indicating strongly sex-dimorphic energy metabolism at the whole organism level. Comparison of reciprocal F1 hybrids allowed insights into the nature of mito-nuclear interactions, showing both mitochondrial effects on nuclear expression, as well as nuclear effects on mitochondrial expression. Across both sexes, increases in mitochondrial expression with age were associated with longer life. Network analyses identified nuclear components of strong mito-nuclear interactions, and found them to be sexually dimorphic. These results highlight the profound impact of mitochondria and mito-nuclear interactions on sex- and age-specific gene expression.
Collapse
Affiliation(s)
- Ning Li
- Department of Biological Sciences, University of Southern California, 3616 Trousdale Parkway, Los Angeles, CA 90089, USA
| | | | - Suzanne Edmands
- Department of Biological Sciences, University of Southern California, 3616 Trousdale Parkway, Los Angeles, CA 90089, USA
| |
Collapse
|
7
|
Dowling DK, Wolff JN. Evolutionary genetics of the mitochondrial genome: insights from Drosophila. Genetics 2023; 224:iyad036. [PMID: 37171259 PMCID: PMC10324950 DOI: 10.1093/genetics/iyad036] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 02/05/2023] [Indexed: 05/13/2023] Open
Abstract
Mitochondria are key to energy conversion in virtually all eukaryotes. Intriguingly, despite billions of years of evolution inside the eukaryote, mitochondria have retained their own small set of genes involved in the regulation of oxidative phosphorylation (OXPHOS) and protein translation. Although there was a long-standing assumption that the genetic variation found within the mitochondria would be selectively neutral, research over the past 3 decades has challenged this assumption. This research has provided novel insight into the genetic and evolutionary forces that shape mitochondrial evolution and broader implications for evolutionary ecological processes. Many of the seminal studies in this field, from the inception of the research field to current studies, have been conducted using Drosophila flies, thus establishing the species as a model system for studies in mitochondrial evolutionary biology. In this review, we comprehensively review these studies, from those focusing on genetic processes shaping evolution within the mitochondrial genome, to those examining the evolutionary implications of interactions between genes spanning mitochondrial and nuclear genomes, and to those investigating the dynamics of mitochondrial heteroplasmy. We synthesize the contribution of these studies to shaping our understanding of the evolutionary and ecological implications of mitochondrial genetic variation.
Collapse
Affiliation(s)
- Damian K Dowling
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
| | - Jonci N Wolff
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
| |
Collapse
|
8
|
Cayuela H, Gaillard JM, Vieira C, Ronget V, Gippet JMW, Garcia TC, Marais GAB, Lemaître JF. Sex differences in adult lifespan and aging rate across mammals: a test of the 'Mother Curse hypothesis'. Mech Ageing Dev 2023; 212:111799. [PMID: 36948470 DOI: 10.1016/j.mad.2023.111799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 03/24/2023]
Abstract
In many animal species, including humans, males have shorter lifespan and show faster survival aging than females. This differential increase in mortality between sexes could result from the accumulation of deleterious mutations in the mitochondrial genome of males due to the maternal mode of mtDNA inheritance. To date, empirical evidence supporting the existence of this mechanism - called the Mother Curse hypothesis - remains largely limited to a few study cases in humans and Drosophila. In this study, we tested whether the Mother Curse hypothesis accounts for sex differences in lifespan and aging rate across 128 populations of mammals (60 and 68 populations studied in wild and captive conditions, respectively) encompassing 104 species. We found that adult lifespan decreases with increasing mtDNA neutral substitution rate in both sexes in a similar way in the wild - but not in captivity. Moreover, the aging rate marginally increased with neutral substitution rate in males and females in the wild. Overall, these results indicate that the Mother Curse hypothesis is not supported across mammals. We further discuss the implication of these findings for our understanding of the evolution of sex differences in mortality and aging.
Collapse
Affiliation(s)
- Hugo Cayuela
- Université Lyon 1, CNRS, UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, F-769622, Villeurbanne, France.
| | - Jean-Michel Gaillard
- Université Lyon 1, CNRS, UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, F-769622, Villeurbanne, France
| | - Cristina Vieira
- Université Lyon 1, CNRS, UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, F-769622, Villeurbanne, France
| | - Victor Ronget
- Université Lyon 1, CNRS, UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, F-769622, Villeurbanne, France
| | - Jérôme M W Gippet
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| | - Thamar Conde Garcia
- Université Lyon 1, CNRS, UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, F-769622, Villeurbanne, France
| | - Gabriel A B Marais
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal; Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4099-002 Porto, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
| | - Jean-François Lemaître
- Université Lyon 1, CNRS, UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, F-769622, Villeurbanne, France
| |
Collapse
|
9
|
Watson ET, Flanagan BA, Pascar JA, Edmands S. Mitochondrial effects on fertility and longevity in Tigriopus californicus contradict predictions of the mother's curse hypothesis. Proc Biol Sci 2022; 289:20221211. [PMID: 36382523 PMCID: PMC9667352 DOI: 10.1098/rspb.2022.1211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/20/2022] [Indexed: 11/17/2022] Open
Abstract
Strict maternal inheritance of mitochondria favours the evolutionary accumulation of sex-biased fitness effects, as mitochondrial evolution occurs exclusively in female lineages. The 'mother's curse' hypothesis proposes that male-harming mutations should accumulate in mitochondrial genomes when they have neutral or beneficial effects on female fitness. Rigorous empirical tests have largely focused on Drosophila, where support for the predictions of mother's curse has been mixed. We investigated the impact of mother's curse mutations in Tigriopus californicus, a minute crustacean. Using non-recombinant backcrosses, we introgressed four divergent mitochondrial haplotypes into two nuclear backgrounds and recorded measures of fertility and longevity. We found that the phenotypic effects of mitochondrial mutations were context dependent, being influenced by the nuclear background in which they were expressed, as well as the sex of the individual and rearing temperature. Mitochondrial haplotype effects were greater for fertility than longevity, and temperature effects were greater for longevity. However, in opposition to mother's curse expectations, females had higher mitochondrial genetic variance than males for fertility and longevity, little evidence of sexual antagonism favouring females was found, and the impacts of mitonuclear mismatch harmed females but not males. Together, this indicates that selection on mitochondrial variation has not resulted in the accumulation of male mutation load in Tigriopus californicus.
Collapse
Affiliation(s)
- Eric T. Watson
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089-0001, USA
| | - Ben A. Flanagan
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089-0001, USA
| | - Jane A. Pascar
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089-0001, USA
| | - Suzanne Edmands
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089-0001, USA
| |
Collapse
|
10
|
Koch RE, Dowling DK. Effects of mitochondrial haplotype on pre-copulatory mating success in male fruit flies (Drosophila melanogaster). J Evol Biol 2022; 35:1396-1402. [PMID: 35988150 DOI: 10.1111/jeb.14080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/11/2022] [Accepted: 07/19/2022] [Indexed: 01/07/2023]
Abstract
While mitochondria have long been understood to be critical to cellular function, questions remain as to how genetic variation within mitochondria may underlie variation in general metrics of organismal function. To date, studies investigating links between mitochondrial genotype and phenotype have largely focused on differences in expression of genes and physiological and life-history traits across haplotypes. Mating display behaviours may also be sensitive to mitochondrial functionality and so may also be affected by sequence variation in mitochondrial DNA, with consequences for sexual selection and fitness. Here, we tested whether the pre-copulatory mating success of male fruit flies (Drosophila melanogaster) varies across six different mitochondrial haplotypes expressed alongside a common nuclear genetic background. We found a significant effect of mitochondrial haplotype on our measure of competitive mating success, driven largely by the relatively poor performance of males with one particular haplotype. This haplotype, termed 'Brownsville', has previously been shown to have complex and sex-specific effects, most notably including depressed fertility in males but not females. Our study extends this disproportionate effect on male reproductive success to pre-copulatory aspects of reproduction. Our results demonstrate that mutations in mitochondrial DNA can plausibly affect pre-copulatory mating success, with implications for future study into the subcellular underpinnings of such behaviours and the information they may communicate.
Collapse
Affiliation(s)
- Rebecca E Koch
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia.,Department of Biological Science, The University of Tulsa, Tulsa, Oklahoma, USA
| | - Damian K Dowling
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
11
|
Dunleavy JEM, Dinh DT, Filby CE, Green E, Hofstee P, Pini T, Rivers N, Skerrett-Byrne DA, Wijayarathna R, Winstanley YE, Zhou W, Richani D. Reproductive biology research down under: highlights from the Australian and New Zealand Annual Meeting of the Society for Reproductive Biology, 2021. Reprod Fertil Dev 2022; 34:855-866. [PMID: 35836362 DOI: 10.1071/rd22115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/17/2022] [Indexed: 11/23/2022] Open
Abstract
Against the backdrop of a global pandemic, the Society for Reproductive Biology (SRB) 2021 meeting reunited the Australian and New Zealand reproductive research community for the first time since 2019 and was the first virtual SRB meeting. Despite the recent global research disruptions, the conference revealed significant advancements in reproductive research, the importance of which span human health, agriculture, and conservation. A core theme was novel technologies, including the use of medical microrobots for therapeutic and sperm delivery, diagnostic hyperspectral imaging, and hydrogel condoms with potential beyond contraception. The importance of challenging the contraceptive status quo was further highlighted with innovations in gene therapies, non-hormonal female contraceptives, epigenetic semen analysis, and in applying evolutionary theory to suppress pest population reproduction. How best to support pregnancies, particularly in the context of global trends of increasing maternal age, was also discussed, with several promising therapies for improved outcomes in assisted reproductive technology, pre-eclampsia, and pre-term birth prevention. The unique insights gained via non-model species was another key focus and presented research emphasised the importance of studying diverse systems to understand fundamental aspects of reproductive biology and evolution. Finally, the meeting highlighted how to effectively translate reproductive research into policy and industry practice.
Collapse
Affiliation(s)
- Jessica E M Dunleavy
- School of BioSciences, Faculty of Science, The University of Melbourne, Parkville, Vic. 3010, Australia
| | - Doan Thao Dinh
- Robinson Research Institute, School of Biomedicine, Faculty of Health Sciences, The University of Adelaide, Adelaide, SA 5006, Australia
| | - Caitlin E Filby
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Vic. 3168, Australia; and Department of Obstetrics and Gynaecology, School of Clinical Sciences, Monash University, Clayton, Vic. 3168, Australia
| | - Ella Green
- Robinson Research Institute and Adelaide Medical School, The University of Adelaide, Adelaide, SA 5006, Australia
| | - Pierre Hofstee
- Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Taylor Pini
- School of Veterinary Science, The University of Queensland, Gatton, Qld 4343, Australia
| | - Nicola Rivers
- Department of Obstetrics and Gynaecology, School of Clinical Sciences, Monash University, Clayton, Vic. 3168, Australia
| | - David A Skerrett-Byrne
- School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW 2308, Australia; and Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton, NSW 2305, Australia
| | - Rukmali Wijayarathna
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, Vic. 3168, Australia; and Department of Molecular and Translational Sciences, School of Clinical Sciences, Monash University, Clayton, Vic. 3800, Australia
| | - Yasmyn E Winstanley
- Robinson Research Institute, School of Biomedicine, Faculty of Health Sciences, The University of Adelaide, Adelaide, SA 5006, Australia
| | - Wei Zhou
- Department of Obstetrics and Gynaecology, The University of Melbourne, Parkville, Vic. 3010, Australia; and Gynaecology Research Centre, Royal Women's Hospital, Parkville, Vic. 3052, Australia
| | - Dulama Richani
- Fertility & Research Centre, School of Women's and Children's Health, University of New South Wales, Sydney, NSW 2031, Australia
| |
Collapse
|
12
|
Anderson L, Camus MF, Monteith KM, Salminen TS, Vale PF. Variation in mitochondrial DNA affects locomotor activity and sleep in Drosophila melanogaster. Heredity (Edinb) 2022; 129:225-232. [PMID: 35764697 PMCID: PMC9519576 DOI: 10.1038/s41437-022-00554-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 06/15/2022] [Accepted: 06/20/2022] [Indexed: 01/20/2023] Open
Abstract
Mitochondria are organelles that produce cellular energy in the form of ATP through oxidative phosphorylation, and this primary function is conserved among many taxa. Locomotion is a trait that is highly reliant on metabolic function and expected to be greatly affected by disruptions to mitochondrial performance. To this end, we aimed to examine how activity and sleep vary between Drosophila melanogaster strains with different geographic origins, how these patterns are affected by mitochondrial DNA (mtDNA) variation, and how breaking up co-evolved mito-nuclear gene combinations affect the studied activity traits. Our results demonstrate that Drosophila strains from different locations differ in sleep and activity, and that females are generally more active than males. By comparing activity and sleep of mtDNA variants introgressed onto a common nuclear background in cytoplasmic hybrid (cybrid) strains, we were able to quantify the among-line variance attributable to mitochondrial DNA, and we establish that mtDNA variation affects both activity and sleep, in a sex-specific manner. Altogether our study highlights the important role that mitochondrial genome variation plays on organismal physiology and behaviour.
Collapse
Affiliation(s)
- Lucy Anderson
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - M Florencia Camus
- Research Department of Genetics, Evolution and Environment, University College London, Gower Street, London, WC1E 6BT, UK
| | - Katy M Monteith
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Tiina S Salminen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Pedro F Vale
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
13
|
Sandovici I, Fernandez-Twinn DS, Hufnagel A, Constância M, Ozanne SE. Sex differences in the intergenerational inheritance of metabolic traits. Nat Metab 2022; 4:507-523. [PMID: 35637347 DOI: 10.1038/s42255-022-00570-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 04/05/2022] [Indexed: 02/02/2023]
Abstract
Strong evidence suggests that early-life exposures to suboptimal environmental factors, including those in utero, influence our long-term metabolic health. This has been termed developmental programming. Mounting evidence suggests that the growth and metabolism of male and female fetuses differ. Therefore, sexual dimorphism in response to pre-conception or early-life exposures could contribute to known sex differences in susceptibility to poor metabolic health in adulthood. However, until recently, many studies, especially those in animal models, focused on a single sex, or, often in the case of studies performed during intrauterine development, did not report the sex of the animal at all. In this review, we (a) summarize the evidence that male and females respond differently to a suboptimal pre-conceptional or in utero environment, (b) explore the potential biological mechanisms that underlie these differences and (c) review the consequences of these differences for long-term metabolic health, including that of subsequent generations.
Collapse
Affiliation(s)
- Ionel Sandovici
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Denise S Fernandez-Twinn
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Antonia Hufnagel
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Miguel Constância
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK.
- Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK.
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
| | - Susan E Ozanne
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK.
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
| |
Collapse
|
14
|
Bronikowski AM, Meisel RP, Biga PR, Walters J, Mank JE, Larschan E, Wilkinson GS, Valenzuela N, Conard AM, de Magalhães JP, Duan J, Elias AE, Gamble T, Graze R, Gribble KE, Kreiling JA, Riddle NC. Sex-specific aging in animals: Perspective and future directions. Aging Cell 2022; 21:e13542. [PMID: 35072344 PMCID: PMC8844111 DOI: 10.1111/acel.13542] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/15/2021] [Accepted: 12/11/2021] [Indexed: 12/14/2022] Open
Abstract
Sex differences in aging occur in many animal species, and they include sex differences in lifespan, in the onset and progression of age-associated decline, and in physiological and molecular markers of aging. Sex differences in aging vary greatly across the animal kingdom. For example, there are species with longer-lived females, species where males live longer, and species lacking sex differences in lifespan. The underlying causes of sex differences in aging remain mostly unknown. Currently, we do not understand the molecular drivers of sex differences in aging, or whether they are related to the accepted hallmarks or pillars of aging or linked to other well-characterized processes. In particular, understanding the role of sex-determination mechanisms and sex differences in aging is relatively understudied. Here, we take a comparative, interdisciplinary approach to explore various hypotheses about how sex differences in aging arise. We discuss genomic, morphological, and environmental differences between the sexes and how these relate to sex differences in aging. Finally, we present some suggestions for future research in this area and provide recommendations for promising experimental designs.
Collapse
Affiliation(s)
- Anne M. Bronikowski
- Department of Ecology, Evolution, and Organismal BiologyIowa State UniversityAmesIowaUSA
| | - Richard P. Meisel
- Department of Biology and BiochemistryUniversity of HoustonHoustonTexasUSA
| | - Peggy R. Biga
- Department of BiologyThe University of Alabama at BirminghamBirminghamAlabamaUSA
| | - James R. Walters
- Department of Ecology and Evolutionary BiologyThe University of KansasLawrenceKansasUSA
| | - Judith E. Mank
- Department of ZoologyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Department of BioscienceUniversity of ExeterPenrynUK
| | - Erica Larschan
- Department of Molecular Biology, Cell Biology and BiochemistryBrown UniversityProvidenceRhode IslandUSA
| | | | - Nicole Valenzuela
- Department of Ecology, Evolution, and Organismal BiologyIowa State UniversityAmesIowaUSA
| | - Ashley Mae Conard
- Department of Computer ScienceCenter for Computational and Molecular BiologyBrown UniversityProvidenceRhode IslandUSA
| | - João Pedro de Magalhães
- Integrative Genomics of Ageing GroupInstitute of Ageing and Chronic DiseaseUniversity of LiverpoolLiverpoolUK
| | | | - Amy E. Elias
- Department of Molecular Biology, Cell Biology and BiochemistryBrown UniversityProvidenceRhode IslandUSA
| | - Tony Gamble
- Department of Biological SciencesMarquette UniversityMilwaukeeWisconsinUSA
- Milwaukee Public MuseumMilwaukeeWisconsinUSA
- Bell Museum of Natural HistoryUniversity of MinnesotaSaint PaulMinnesotaUSA
| | - Rita M. Graze
- Department of Biological SciencesAuburn UniversityAuburnAlabamaUSA
| | - Kristin E. Gribble
- Josephine Bay Paul Center for Comparative Molecular Biology and EvolutionMarine Biological LaboratoryWoods HoleMassachusettsUSA
| | - Jill A. Kreiling
- Department of Molecular Biology, Cell Biology and BiochemistryBrown UniversityProvidenceRhode IslandUSA
| | - Nicole C. Riddle
- Department of BiologyThe University of Alabama at BirminghamBirminghamAlabamaUSA
| |
Collapse
|
15
|
Erić P, Patenković A, Erić K, Tanasković M, Davidović S, Rakić M, Savić Veselinović M, Stamenković-Radak M, Jelić M. Temperature-Specific and Sex-Specific Fitness Effects of Sympatric Mitochondrial and Mito-Nuclear Variation in Drosophila obscura. INSECTS 2022; 13:insects13020139. [PMID: 35206713 PMCID: PMC8880146 DOI: 10.3390/insects13020139] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/20/2022] [Accepted: 01/22/2022] [Indexed: 12/28/2022]
Abstract
Simple Summary Does variation in the mitochondrial DNA sequence influence the survival and reproduction of an individual? What is the purpose of genetic variation of the mitochondrial DNA between individuals from the same population? As a simple laboratory model, Drosophila species can give us the answer to this question. Creating experimental lines with different combinations of mitochondrial and nuclear genomic DNA and testing how successful these lines were in surviving in different experimental set-ups enables us to deduce the effect that both genomes have on fitness. This study on D. obscura experimentally validates theoretical models that explain the persistence of mitochondrial DNA variation within populations. Our results shed light on the various mechanisms that maintain this type of variation. Finally, by conducting the experiments on two experimental temperatures, we have shown that environmental variations can support mitochondrial DNA variation within populations. Abstract The adaptive significance of sympatric mitochondrial (mtDNA) variation and the role of selective mechanisms that maintain it are debated to this day. Isofemale lines of Drosophila obscura collected from four populations were backcrossed within populations to construct experimental lines, with all combinations of mtDNA Cyt b haplotypes and nuclear genetic backgrounds (nuDNA). Individuals of both sexes from these lines were then subjected to four fitness assays (desiccation resistance, developmental time, egg-to-adult viability and sex ratio) on two experimental temperatures to examine the role of temperature fluctuations and sex-specific selection, as well as the part that interactions between the two genomes play in shaping mtDNA variation. The results varied across populations and fitness components. In the majority of comparisons, they show that sympatric mitochondrial variants affect fitness. However, their effect should be examined in light of interactions with nuDNA, as mito-nuclear genotype was even more influential on fitness across all components. We found both sex-specific and temperature-specific differences in mitochondrial and mito-nuclear genotype ranks in all fitness components. The effect of temperature-specific selection was found to be more prominent, especially in desiccation resistance. From the results of different components tested, we can also infer that temperature-specific mito-nuclear interactions rather than sex-specific selection on mito-nuclear genotypes have a more substantial role in preserving mtDNA variation in this model species.
Collapse
Affiliation(s)
- Pavle Erić
- Department of Genetics of Populations and Ecogenotoxicology, Institute for Biological Research “Siniša Stanković”–National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (A.P.); (K.E.); (M.T.); (S.D.); (M.R.)
- Correspondence: ; Tel.: +381-112-078-334
| | - Aleksandra Patenković
- Department of Genetics of Populations and Ecogenotoxicology, Institute for Biological Research “Siniša Stanković”–National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (A.P.); (K.E.); (M.T.); (S.D.); (M.R.)
| | - Katarina Erić
- Department of Genetics of Populations and Ecogenotoxicology, Institute for Biological Research “Siniša Stanković”–National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (A.P.); (K.E.); (M.T.); (S.D.); (M.R.)
| | - Marija Tanasković
- Department of Genetics of Populations and Ecogenotoxicology, Institute for Biological Research “Siniša Stanković”–National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (A.P.); (K.E.); (M.T.); (S.D.); (M.R.)
| | - Slobodan Davidović
- Department of Genetics of Populations and Ecogenotoxicology, Institute for Biological Research “Siniša Stanković”–National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (A.P.); (K.E.); (M.T.); (S.D.); (M.R.)
| | - Mina Rakić
- Department of Genetics of Populations and Ecogenotoxicology, Institute for Biological Research “Siniša Stanković”–National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (A.P.); (K.E.); (M.T.); (S.D.); (M.R.)
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia; (M.S.V.); (M.S.-R.); (M.J.)
| | - Marija Savić Veselinović
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia; (M.S.V.); (M.S.-R.); (M.J.)
| | - Marina Stamenković-Radak
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia; (M.S.V.); (M.S.-R.); (M.J.)
| | - Mihailo Jelić
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia; (M.S.V.); (M.S.-R.); (M.J.)
| |
Collapse
|
16
|
Flanagan BA, Li N, Edmands S. Mitonuclear interactions alter sex-specific longevity in a species without sex chromosomes. Proc Biol Sci 2021; 288:20211813. [PMID: 34727715 PMCID: PMC8564613 DOI: 10.1098/rspb.2021.1813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/11/2021] [Indexed: 12/28/2022] Open
Abstract
Impaired mitochondrial function can lead to senescence and the ageing phenotype. Theory predicts degenerative ageing phenotypes and mitochondrial pathologies may occur more frequently in males due to the matrilineal inheritance pattern of mitochondrial DNA observed in most eukaryotes. Here, we estimated the sex-specific longevity for parental and reciprocal F1 hybrid crosses for inbred lines derived from two allopatric Tigriopus californicus populations with over 20% mitochondrial DNA divergence. T. californicus lacks sex chromosomes allowing for more direct testing of mitochondrial function in sex-specific ageing. To better understand the ageing mechanism, we estimated two age-related phenotypes (mtDNA content and 8-hydroxy-20-deoxyguanosine (8-OH-dG) DNA damage) at two time points in the lifespan. Sex differences in lifespan depended on the mitochondrial and nuclear backgrounds, including differences between reciprocal F1 crosses which have different mitochondrial haplotypes on a 50 : 50 nuclear background, with nuclear contributions coming from alternative parents. Young females showed the highest mtDNA content which decreased with age, while DNA damage in males increased with age and exceed that of females 56 days after hatching. The adult sex ratio was male-biased and was attributed to complex mitonuclear interactions. Results thus demonstrate that sex differences in ageing depend on mitonuclear interactions in the absence of sex chromosomes.
Collapse
Affiliation(s)
- Ben A. Flanagan
- Department of Biological Sciences, University of Southern California, 3616 Trousdale Parkway, AHF 130, Los Angeles, CA 90089, USA
| | - Ning Li
- Department of Biological Sciences, University of Southern California, 3616 Trousdale Parkway, AHF 130, Los Angeles, CA 90089, USA
| | - Suzanne Edmands
- Department of Biological Sciences, University of Southern California, 3616 Trousdale Parkway, AHF 130, Los Angeles, CA 90089, USA
| |
Collapse
|
17
|
Leeflang HL, Van Dongen S, Helsen P. Mother’s curse on conservation: assessing the role of mtDNA in sex‐specific survival differences in ex‐situ breeding programs. Anim Conserv 2021. [DOI: 10.1111/acv.12740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- H. L. Leeflang
- Centre for Research and Conservation Royal Zoological Society of Antwerp Antwerp Belgium
| | - S. Van Dongen
- Department of Biology Evolutionary Ecology Group University of Antwerp Wilrijk Belgium
| | - P. Helsen
- Centre for Research and Conservation Royal Zoological Society of Antwerp Antwerp Belgium
- Department of Biology Evolutionary Ecology Group University of Antwerp Wilrijk Belgium
- Department of Biology Ghent University Ghent Belgium
| |
Collapse
|
18
|
Mitonuclear mismatch alters nuclear gene expression in naturally introgressed Rhinolophus bats. Front Zool 2021; 18:42. [PMID: 34488775 PMCID: PMC8419968 DOI: 10.1186/s12983-021-00424-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/20/2021] [Indexed: 01/23/2023] Open
Abstract
Background Mitochondrial function involves the interplay between mitochondrial and nuclear genomes. Such mitonuclear interactions can be disrupted by the introgression of mitochondrial DNA between taxa or divergent populations. Previous studies of several model systems (e.g. Drosophila) indicate that the disruption of mitonuclear interactions, termed mitonuclear mismatch, can alter nuclear gene expression, yet few studies have focused on natural populations. Results Here we study a naturally introgressed population in the secondary contact zone of two subspecies of the intermediate horseshoe bat (Rhinolophus affinis), in which individuals possess either mitonuclear matched or mismatched genotypes. We generated transcriptome data for six tissue types from five mitonuclear matched and five mismatched individuals. Our results revealed strong tissue-specific effects of mitonuclear mismatch on nuclear gene expression with the largest effect seen in pectoral muscle. Moreover, consistent with the hypothesis that genes associated with the response to oxidative stress may be upregulated in mitonuclear mismatched individuals, we identified several such gene candidates, including DNASE1L3, GPx3 and HSPB6 in muscle, and ISG15 and IFI6 in heart. Conclusion Our study reveals how mitonuclear mismatch arising from introgression in natural populations is likely to have fitness consequences. Underlying the processes that maintain mitonuclear discordance is a step forward to understand the role of mitonuclear interactions in population divergence and speciation. Supplementary Information The online version contains supplementary material available at 10.1186/s12983-021-00424-x.
Collapse
|
19
|
Radzvilavicius A, Layh S, Hall MD, Dowling DK, Johnston IG. Sexually antagonistic evolution of mitochondrial and nuclear linkage. J Evol Biol 2021; 34:757-766. [PMID: 33644926 DOI: 10.1111/jeb.13776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/13/2021] [Accepted: 02/24/2021] [Indexed: 12/21/2022]
Abstract
Across eukaryotes, genes encoding bioenergetic machinery are located in both mitochondrial and nuclear DNA, and incompatibilities between the two genomes can be devastating. Mitochondria are often inherited maternally, and theory predicts sex-specific fitness effects of mitochondrial mutational diversity. Yet how evolution acts on linkage patterns between mitochondrial and nuclear genomes is poorly understood. Using novel mito-nuclear population-genetic models, we show that the interplay between nuclear and mitochondrial genes maintains mitochondrial haplotype diversity within populations, and selects both for sex-independent segregation of mitochondrion-interacting genes and for paternal leakage. These effects of genetic linkage evolution can eliminate male-harming fitness effects of mtDNA mutational diversity. With maternal mitochondrial inheritance, females maintain a tight mitochondrial-nuclear match, but males accumulate mismatch mutations because of the weak statistical associations between the two genomic components. Sex-independent segregation of mitochondria-interacting loci improves the mito-nuclear match. In a sexually antagonistic evolutionary process, male nuclear alleles evolve to increase the rate of recombination, whereas females evolve to suppress it. Paternal leakage of mitochondria can evolve as an alternative mechanism to improve the mito-nuclear linkage. Our modelling framework provides an evolutionary explanation for the observed paucity of mitochondrion-interacting genes on mammalian sex chromosomes and for paternal leakage in protists, plants, fungi and some animals.
Collapse
Affiliation(s)
- Arunas Radzvilavicius
- Department of Mathematics, University of Bergen, Bergen, Norway.,Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
| | - Sean Layh
- School of Biological Sciences, Monash University, Melbourne, Vic., Australia
| | - Matthew D Hall
- School of Biological Sciences, Monash University, Melbourne, Vic., Australia
| | - Damian K Dowling
- School of Biological Sciences, Monash University, Melbourne, Vic., Australia
| | - Iain G Johnston
- Department of Mathematics, University of Bergen, Bergen, Norway.,Computational Biology Unit, University of Bergen, Bergen, Norway
| |
Collapse
|
20
|
Breton S, Ghiselli F, Milani L. Mitochondrial Short-Term Plastic Responses and Long-Term Evolutionary Dynamics in Animal Species. Genome Biol Evol 2021; 13:6248094. [PMID: 33892508 PMCID: PMC8290114 DOI: 10.1093/gbe/evab084] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 04/13/2021] [Accepted: 04/20/2021] [Indexed: 12/15/2022] Open
Abstract
How do species respond or adapt to environmental changes? The answer to this depends partly on mitochondrial epigenetics and genetics, new players in promoting adaptation to both short- and long-term environmental changes. In this review, we explore how mitochondrial epigenetics and genetics mechanisms, such as mtDNA methylation, mtDNA-derived noncoding RNAs, micropeptides, mtDNA mutations, and adaptations, can contribute to animal plasticity and adaptation. We also briefly discuss the challenges in assessing mtDNA adaptive evolution. In sum, this review covers new advances in the field of mitochondrial genomics, many of which are still controversial, and discusses processes still somewhat obscure, and some of which are still quite speculative and require further robust experimentation.
Collapse
Affiliation(s)
- Sophie Breton
- Department of Biological Sciences, University of Montreal, Quebec, Canada
| | - Fabrizio Ghiselli
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Italy
| | - Liliana Milani
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Italy
| |
Collapse
|
21
|
Carnegie L, Reuter M, Fowler K, Lane N, Camus MF. Mother's curse is pervasive across a large mitonuclear Drosophila panel. Evol Lett 2021; 5:230-239. [PMID: 34136271 PMCID: PMC8190446 DOI: 10.1002/evl3.221] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/18/2021] [Accepted: 02/11/2021] [Indexed: 01/16/2023] Open
Abstract
The maternal inheritance of mitochondrial genomes entails a sex‐specific selective sieve, whereby mutations in mitochondrial DNA can only respond to selection acting on females. In theory, this enables male‐harming mutations to accumulate in mitochondrial genomes as long as they are neutral, beneficial, or only slightly deleterious to females. Ultimately, this bias could drive the evolution of male‐specific mitochondrial mutation loads, an idea known as mother's curse. Earlier work on this hypothesis has mainly used small Drosophila panels, in which naturally sourced mitochondrial genomes were coupled to an isogenic nuclear background. The lack of nuclear genetic variation in these designs has precluded robust generalization. Here, we test the predictions of mother's curse using a large Drosophila mitonuclear genetic panel, comprising nine isogenic nuclear genomes coupled to nine mitochondrial haplotypes, giving a total of 81 different mitonuclear genotypes. Following a predictive framework, we tested the mother's curse hypothesis by screening our panel for wing size. This trait is tightly correlated with overall body size and is sexually dimorphic in Drosophila. Moreover, growth is heavily reliant on metabolism and mitochondrial function, making wing size an ideal trait for the study of the impact of mitochondrial variation. We detect high levels of mitonuclear epistasis, and more importantly, we report that mitochondrial genetic variance is larger in male than female Drosophila for eight out of the nine nuclear genetic backgrounds used. These results demonstrate that the maternal inheritance of mitochondrial DNA does indeed modulate male life history traits in a more generalisable way than previously demonstrated.
Collapse
Affiliation(s)
- Lorcan Carnegie
- Research Department of Genetics, Evolution and Environment University College London London WC1E 6BT United Kingdom
| | - Max Reuter
- Research Department of Genetics, Evolution and Environment University College London London WC1E 6BT United Kingdom
| | - Kevin Fowler
- Research Department of Genetics, Evolution and Environment University College London London WC1E 6BT United Kingdom
| | - Nick Lane
- Research Department of Genetics, Evolution and Environment University College London London WC1E 6BT United Kingdom
| | - M Florencia Camus
- Research Department of Genetics, Evolution and Environment University College London London WC1E 6BT United Kingdom
| |
Collapse
|
22
|
Gangloff EJ, Schwartz TS, Klabacka R, Huebschman N, Liu AY, Bronikowski AM. Mitochondria as central characters in a complex narrative: Linking genomics, energetics, pace-of-life, and aging in natural populations of garter snakes. Exp Gerontol 2020; 137:110967. [DOI: 10.1016/j.exger.2020.110967] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 04/11/2020] [Accepted: 05/01/2020] [Indexed: 12/18/2022]
|
23
|
Keaney TA, Wong HWS, Dowling DK, Jones TM, Holman L. Sibling rivalry versus mother's curse: can kin competition facilitate a response to selection on male mitochondria? Proc Biol Sci 2020; 287:20200575. [PMID: 32605521 DOI: 10.1098/rspb.2020.0575] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Assuming that fathers never transmit mitochondrial DNA (mtDNA) to their offspring, mitochondrial mutations that affect male fitness are invisible to direct selection on males, leading to an accumulation of male-harming alleles in the mitochondrial genome (mother's curse). However, male phenotypes encoded by mtDNA can still undergo adaptation via kin selection provided that males interact with females carrying related mtDNA, such as their sisters. Here, using experiments with Drosophila melanogaster carrying standardized nuclear DNA but distinct mitochondrial DNA, we test whether the mitochondrial haplotype carried by interacting pairs of larvae affects survival to adulthood, as well as the fitness of the adults. Although mtDNA had no detectable direct or indirect genetic effect on larva-to-adult survival, the fitness of male and female adults was significantly affected by their own mtDNA and the mtDNA carried by their social partner in the larval stage. Thus, mtDNA mutations that alter the effect of male larvae on nearby female larvae (which often carry the same mutation, due to kinship) could theoretically respond to kin selection. We discuss the implications of our findings for the evolution of mitochondria and other maternally inherited endosymbionts.
Collapse
Affiliation(s)
- Thomas A Keaney
- School of Biosciences, The University of Melbourne, Vic. 3010, Australia
| | - Heidi W S Wong
- School of Biosciences, The University of Melbourne, Vic. 3010, Australia
| | - Damian K Dowling
- School of Biological Sciences, Monash University, Clayton, Vic. 3800, Australia
| | - Therésa M Jones
- School of Biosciences, The University of Melbourne, Vic. 3010, Australia
| | - Luke Holman
- School of Biosciences, The University of Melbourne, Vic. 3010, Australia
| |
Collapse
|
24
|
Sex differences in adult lifespan and aging rates of mortality across wild mammals. Proc Natl Acad Sci U S A 2020; 117:8546-8553. [PMID: 32205429 DOI: 10.1073/pnas.1911999117] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
In human populations, women consistently outlive men, which suggests profound biological foundations for sex differences in survival. Quantifying whether such sex differences are also pervasive in wild mammals is a crucial challenge in both evolutionary biology and biogerontology. Here, we compile demographic data from 134 mammal populations, encompassing 101 species, to show that the female's median lifespan is on average 18.6% longer than that of conspecific males, whereas in humans the female advantage is on average 7.8%. On the contrary, we do not find any consistent sex differences in aging rates. In addition, sex differences in median adult lifespan and aging rates are both highly variable across species. Our analyses suggest that the magnitude of sex differences in mammalian mortality patterns is likely shaped by local environmental conditions in interaction with the sex-specific costs of sexual selection.
Collapse
|
25
|
Vaught RC, Voigt S, Dobler R, Clancy DJ, Reinhardt K, Dowling DK. Interactions between cytoplasmic and nuclear genomes confer sex-specific effects on lifespan in Drosophila melanogaster. J Evol Biol 2020; 33:694-713. [PMID: 32053259 DOI: 10.1111/jeb.13605] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 02/04/2020] [Accepted: 02/06/2020] [Indexed: 12/19/2022]
Abstract
Genetic variation outside of the cell nucleus can affect the phenotype. The cytoplasm is home to the mitochondria, and in arthropods often hosts intracellular bacteria such as Wolbachia. Although numerous studies have implicated epistatic interactions between cytoplasmic and nuclear genetic variation as mediators of phenotypic expression, two questions remain. Firstly, it remains unclear whether outcomes of cyto-nuclear interactions will manifest differently across the sexes, as might be predicted given that cytoplasmic genomes are screened by natural selection only through females as a consequence of their maternal inheritance. Secondly, the relative contribution of mitochondrial genetic variation to other cytoplasmic sources of variation, such as Wolbachia infection, in shaping phenotypic outcomes of cyto-nuclear interactions remains unknown. Here, we address these questions, creating a fully crossed set of replicated cyto-nuclear populations derived from three geographically distinct populations of Drosophila melanogaster, measuring the lifespan of males and females from each population. We observed that cyto-nuclear interactions shape lifespan and that the outcomes of these interactions differ across the sexes. Yet, we found no evidence that placing the cytoplasms from one population alongside the nuclear background of others (generating putative cyto-nuclear mismatches) leads to decreased lifespan in either sex. Although it was difficult to partition mitochondrial from Wolbachia effects, our results suggest at least some of the cytoplasmic genotypic contribution to lifespan was directly mediated by an effect of sequence variation in the mtDNA. Future work should explore the degree to which cyto-nuclear interactions result in sex differences in the expression of other components of organismal life history.
Collapse
Affiliation(s)
- Rebecca C Vaught
- School of Biological Sciences, Monash University, Clayton, VIC, Australia
| | - Susanne Voigt
- Faculty of Biology, Applied Zoology, TU Dresden, Dresden, Germany
| | - Ralph Dobler
- Faculty of Biology, Applied Zoology, TU Dresden, Dresden, Germany
| | - David J Clancy
- Division of Biomedical and Life Sciences, School of Health and Medicine, Lancaster University, Lancaster, UK
| | - Klaus Reinhardt
- Faculty of Biology, Applied Zoology, TU Dresden, Dresden, Germany
| | - Damian K Dowling
- School of Biological Sciences, Monash University, Clayton, VIC, Australia
| |
Collapse
|
26
|
Montooth KL, Dhawanjewar AS, Meiklejohn CD. Temperature-Sensitive Reproduction and the Physiological and Evolutionary Potential for Mother's Curse. Integr Comp Biol 2020; 59:890-899. [PMID: 31173136 PMCID: PMC6797906 DOI: 10.1093/icb/icz091] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Strict maternal transmission of mitochondrial DNA (mtDNA) is hypothesized to permit the accumulation of mitochondrial variants that are deleterious to males but not females, a phenomenon called mother’s curse. However, direct evidence that mtDNA mutations exhibit such sexually antagonistic fitness effects is sparse. Male-specific mutational effects can occur when the physiological requirements of the mitochondria differ between the sexes. Such male-specific effects could potentially occur if sex-specific cell types or tissues have energy requirements that are differentially impacted by mutations affecting energy metabolism. Here we summarize findings from a model mitochondrial–nuclear incompatibility in the fruit fly Drosophila that demonstrates sex-biased effects, but with deleterious effects that are generally larger in females. We present new results showing that the mitochondrial–nuclear incompatibility does negatively affect male fertility, but only when males are developed at high temperatures. The temperature-dependent male sterility can be partially rescued by diet, suggesting an energetic basis. Finally, we discuss fruitful paths forward in understanding the physiological scope for sex-specific effects of mitochondrial mutations in the context of the recent discovery that many aspects of metabolism are sexually dimorphic and downstream of sex-determination pathways in Drosophila. A key parameter of these models that remains to be quantified is the fraction of mitochondrial mutations with truly male-limited fitness effects across extrinsic and intrinsic environments. Given the energy demands of reproduction in females, only a small fraction of the mitochondrial mutational spectrum may have the potential to contribute to mother’s curse in natural populations.
Collapse
Affiliation(s)
- Kristi L Montooth
- School of Biological Sciences, University of Nebraska-Lincoln, 1104 T Street, Lincoln, NE 68502, USA
| | - Abhilesh S Dhawanjewar
- School of Biological Sciences, University of Nebraska-Lincoln, 1104 T Street, Lincoln, NE 68502, USA
| | - Colin D Meiklejohn
- School of Biological Sciences, University of Nebraska-Lincoln, 1104 T Street, Lincoln, NE 68502, USA
| |
Collapse
|
27
|
Havird JC, Weaver RJ, Milani L, Ghiselli F, Greenway R, Ramsey AJ, Jimenez AG, Dowling DK, Hood WR, Montooth KL, Estes S, Schulte PM, Sokolova IM, Hill GE. Beyond the Powerhouse: Integrating Mitonuclear Evolution, Physiology, and Theory in Comparative Biology. Integr Comp Biol 2020; 59:856-863. [PMID: 31504533 DOI: 10.1093/icb/icz132] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Eukaryotes are the outcome of an ancient symbiosis and as such, eukaryotic cells fundamentally possess two genomes. As a consequence, gene products encoded by both nuclear and mitochondrial genomes must interact in an intimate and precise fashion to enable aerobic respiration in eukaryotes. This genomic architecture of eukaryotes is proposed to necessitate perpetual coevolution between the nuclear and mitochondrial genomes to maintain coadaptation, but the presence of two genomes also creates the opportunity for intracellular conflict. In the collection of papers that constitute this symposium volume, scientists working in diverse organismal systems spanning vast biological scales address emerging topics in integrative, comparative biology in light of mitonuclear interactions.
Collapse
Affiliation(s)
- Justin C Havird
- Department of Integrative Biology, University of Texas, Austin, TX 78712, USA
| | - Ryan J Weaver
- Department of Integrative Biology, University of Texas, Austin, TX 78712, USA.,Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Liliana Milani
- Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Bologna, 40126, Italy
| | - Fabrizio Ghiselli
- Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Bologna, 40126, Italy
| | - Ryan Greenway
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Adam J Ramsey
- Department of Biological Sciences, University of Memphis, Memphis, TN 38152, USA
| | - Ana G Jimenez
- Department of Biology, Colgate University, Hamilton, NY 13346, USA
| | - Damian K Dowling
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Wendy R Hood
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Kristi L Montooth
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68502, USA
| | - Suzanne Estes
- Department of Biology, Portland State University, Portland, OR 97201, USA
| | - Patricia M Schulte
- Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Inna M Sokolova
- Department of Marine Biology, Institute of Biological Sciences, University of Rostock, Rostock, Germany.,Department of Maritime Systems, Interdisciplinary Faculty, University of Rostock, Rostock, Germany
| | - Geoffrey E Hill
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
28
|
Nagarajan-Radha V, Aitkenhead I, Clancy DJ, Chown SL, Dowling DK. Sex-specific effects of mitochondrial haplotype on metabolic rate in Drosophila melanogaster support predictions of the Mother's Curse hypothesis. Philos Trans R Soc Lond B Biol Sci 2019; 375:20190178. [PMID: 31787038 DOI: 10.1098/rstb.2019.0178] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Evolutionary theory proposes that maternal inheritance of mitochondria will facilitate the accumulation of mitochondrial DNA (mtDNA) mutations that are harmful to males but benign or beneficial to females. Furthermore, mtDNA haplotypes sampled from across a given species distribution are expected to differ in the number and identity of these 'male-harming' mutations they accumulate. Consequently, it is predicted that the genetic variation which delineates distinct mtDNA haplotypes of a given species should confer larger phenotypic effects on males than females (reflecting mtDNA mutations that are male-harming, but female-benign), or sexually antagonistic effects (reflecting mutations that are male-harming, but female-benefitting). These predictions have received support from recent work examining mitochondrial haplotypic effects on adult life-history traits in Drosophila melanogaster. Here, we explore whether similar signatures of male-bias or sexual antagonism extend to a key physiological trait-metabolic rate. We measured the effects of mitochondrial haplotypes on the amount of carbon dioxide produced by individual flies, controlling for mass and activity, across 13 strains of D. melanogaster that differed only in their mtDNA haplotype. The effects of mtDNA haplotype on metabolic rate were larger in males than females. Furthermore, we observed a negative intersexual correlation across the haplotypes for metabolic rate. Finally, we uncovered a male-specific negative correlation, across haplotypes, between metabolic rate and longevity. These results are consistent with the hypothesis that maternal mitochondrial inheritance has led to the accumulation of a sex-specific genetic load within the mitochondrial genome, which affects metabolic rate and that may have consequences for the evolution of sex differences in life history. This article is part of the theme issue 'Linking the mitochondrial genotype to phenotype: a complex endeavour'.
Collapse
Affiliation(s)
| | - Ian Aitkenhead
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - David J Clancy
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, UK
| | - Steven L Chown
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Damian K Dowling
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
29
|
Keaney TA, Wong HWS, Dowling DK, Jones TM, Holman L. Mother’s curse and indirect genetic effects: Do males matter to mitochondrial genome evolution? J Evol Biol 2019; 33:189-201. [DOI: 10.1111/jeb.13561] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/07/2019] [Accepted: 10/10/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Thomas A. Keaney
- School of Biosciences The University of Melbourne Melbourne Victoria Australia
| | - Heidi W. S. Wong
- School of Biosciences The University of Melbourne Melbourne Victoria Australia
| | - Damian K. Dowling
- School of Biological Sciences Monash University Clayton Victoria Australia
| | - Therésa M. Jones
- School of Biosciences The University of Melbourne Melbourne Victoria Australia
| | - Luke Holman
- School of Biosciences The University of Melbourne Melbourne Victoria Australia
| |
Collapse
|