1
|
Tajudin MABA, Madaniyazi L, Seposo X, Sahani M, Tobías A, Latif MT, Wan Mahiyuddin WR, Ibrahim MF, Tamaki S, Moji K, Hashizume M, Ng CFS. Short-term associations of PM10 attributed to biomass burning with respiratory and cardiovascular hospital admissions in Peninsular Malaysia. Int J Epidemiol 2024; 53:dyae102. [PMID: 39096096 DOI: 10.1093/ije/dyae102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 07/23/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Biomass burning (BB) is a major source of air pollution and particulate matter (PM) in Southeast Asia. However, the health effects of PM smaller than 10 µm (PM10) originating from BB may differ from those of other sources. This study aimed to estimate the short-term association of PM10 from BB with respiratory and cardiovascular hospital admissions in Peninsular Malaysia, a region often exposed to BB events. METHODS We obtained and analyzed daily data on hospital admissions, PM10 levels and BB days from five districts from 2005 to 2015. We identified BB days by evaluating the BB hotspots and backward wind trajectories. We estimated PM10 attributable to BB from the excess of the moving average of PM10 during days without BB hotspots. We fitted time-series quasi-Poisson regression models for each district and pooled them using meta-analyses. We adjusted for potential confounders and examined the lagged effects up to 3 days, and potential effect modification by age and sex. RESULTS We analyzed 210 960 respiratory and 178 952 cardiovascular admissions. Almost 50% of days were identified as BB days, with a mean PM10 level of 53.1 µg/m3 during BB days and 40.1 µg/m3 during normal days. A 10 µg/m3 increment in PM10 from BB was associated with a 0.44% (95% CI: 0.06, 0.82%) increase in respiratory admissions at lag 0-1, with a stronger association in adults aged 15-64 years and females. We did not see any significant associations for cardiovascular admissions. CONCLUSIONS Our findings suggest that short-term exposure to PM10 from BB increased the risk of respiratory hospitalizations in Peninsular Malaysia.
Collapse
Affiliation(s)
- Muhammad Abdul Basit Ahmad Tajudin
- School of Tropical Medicine and Global Health (TMGH), Nagasaki University, Nagasaki, Japan
- Department of Hygiene, Department of Social Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Lina Madaniyazi
- School of Tropical Medicine and Global Health (TMGH), Nagasaki University, Nagasaki, Japan
| | - Xerxes Seposo
- School of Tropical Medicine and Global Health (TMGH), Nagasaki University, Nagasaki, Japan
- Department of Hygiene, Department of Social Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Mazrura Sahani
- Center for Toxicology and Health Risk Studies (CORE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Aurelio Tobías
- Institute of Environmental Assessment and Water Research (IDAEA), Spanish Council for Scientific Research (CSIC), Barcelona, Spain
| | - Mohd Talib Latif
- Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Wan Rozita Wan Mahiyuddin
- SEAMEO TROPMED Malaysia, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Shah Alam, Selangor, Malaysia
| | - Mohd Faiz Ibrahim
- Environmental Health Research Center, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Shah Alam, Selangor, Malaysia
| | - Shingo Tamaki
- School of Tropical Medicine and Global Health (TMGH), Nagasaki University, Nagasaki, Japan
| | - Kazuhiko Moji
- School of Tropical Medicine and Global Health (TMGH), Nagasaki University, Nagasaki, Japan
| | - Masahiro Hashizume
- School of Tropical Medicine and Global Health (TMGH), Nagasaki University, Nagasaki, Japan
- Department of Global Health Policy, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Chris Fook Sheng Ng
- School of Tropical Medicine and Global Health (TMGH), Nagasaki University, Nagasaki, Japan
- Department of Global Health Policy, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
2
|
Zhang Y, Tingting Y, Huang W, Yu P, Chen G, Xu R, Song J, Guo Y, Li S. Health Impacts of Wildfire Smoke on Children and Adolescents: A Systematic Review and Meta-analysis. Curr Environ Health Rep 2024; 11:46-60. [PMID: 38038861 DOI: 10.1007/s40572-023-00420-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2023] [Indexed: 12/02/2023]
Abstract
PURPOSE OF REVIEW Wildfire smoke is associated with human health, becoming an increasing public health concern. However, a comprehensive synthesis of the current evidence on the health impacts of ambient wildfire smoke on children and adolescents, an exceptionally vulnerable population, is lacking. We conduct a systematic review of peer-reviewed epidemiological studies on the association between wildfire smoke and health of children and adolescents. RECENT FINDINGS We searched for studies available in MEDLINE, EMBASE, and Scopus from database inception up to October 11, 2022. Of 4926 studies initially identified, 59 studies from 14 countries were ultimately eligible. Over 33.3% of the studies were conducted in the USA, and two focused on multi-countries. The exposure assessment of wildfire smoke was heterogenous, with wildfire-specific particulate matters with diameters ≤ 2.5 µm (PM2.5, 22.0%) and all-source (22.0%) PM2.5 during wildfire period most frequently used. Over half of studies (50.6%) focused on respiratory-related morbidities/mortalities. Wildfire smoke exposure was consistently associated with enhanced risks of adverse health outcomes in children/adolescents. Meta-analysis results presented a pooled relative risk (RR) of 1.04 (95% confidence interval [CI], 0.96-1.12) for all-cause respiratory morbidity, 1.11 (95% Ci: 0.93-1.32) for asthma, 0.93 (95% CI, 0.85-1.03) for bronchitis, and 1.13 (95% CI, 1.05-1.23) for upper respiratory infection, whilst - 21.71 g for birth weight (95% CI, - 32.92 to - 10.50) per 10 µg/m3 increment in wildfire-specific PM2.5/all-source PM2.5 during wildfire event. The majority of studies found that wildfire smoke was associated with multiple adverse health outcomes among children and adolescents, with respiratory morbidities of significant concern. In-utero exposure to wildfire smoke may increase the risk of adverse birth outcomes and have long-term impacts on height. Higher maternal baseline exposure to wildfire smoke and poor family-level baseline birthweight respectively elevated risks in preterm birth and low birth weight associated with wildfire smoke. More studies in low- and middle-income countries and focusing on extremely young children are needed. Despite technological progress, wildfire smoke exposure measurements remain uncertain, demanding improved methodologies to have more precise assessment of wildfire smoke levels and thus quantify the corresponding health impacts and guide public mitigation actions.
Collapse
Affiliation(s)
- Yiwen Zhang
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Level 2, 553 St. Kilda Road, Melbourne, VIC, 3004, Australia
| | - Ye Tingting
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Level 2, 553 St. Kilda Road, Melbourne, VIC, 3004, Australia
| | - Wenzhong Huang
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Level 2, 553 St. Kilda Road, Melbourne, VIC, 3004, Australia
| | - Pei Yu
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Level 2, 553 St. Kilda Road, Melbourne, VIC, 3004, Australia
| | - Gongbo Chen
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Level 2, 553 St. Kilda Road, Melbourne, VIC, 3004, Australia
| | - Rongbin Xu
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Level 2, 553 St. Kilda Road, Melbourne, VIC, 3004, Australia
| | - Jiangning Song
- Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia
| | - Yuming Guo
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Level 2, 553 St. Kilda Road, Melbourne, VIC, 3004, Australia
| | - Shanshan Li
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Level 2, 553 St. Kilda Road, Melbourne, VIC, 3004, Australia.
| |
Collapse
|
3
|
Phung VLH, Oka K, Hijioka Y, Ueda K, Sahani M, Wan Mahiyuddin WR. Environmental variable importance for under-five mortality in Malaysia: A random forest approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157312. [PMID: 35839873 DOI: 10.1016/j.scitotenv.2022.157312] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 06/29/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Environmental factors have been associated with adverse health effects in epidemiological studies. The main exposure variable is usually determined via prior knowledge or statistical methods. It may be challenging when evidence is scarce to support prior knowledge, or to address collinearity issues using statistical methods. This study aimed to investigate the importance level of environmental variables for the under-five mortality in Malaysia via random forest approach. METHOD We applied a conditional permutation importance via a random forest (CPI-RF) approach to evaluate the relative importance of the weather- and air pollution-related environmental factors on daily under-five mortality in Malaysia. This study spanned from January 1, 2014 to December 31, 2016. In data preparation, deviation mortality counts were derived through a generalized additive model, adjusting for long-term trend and seasonality. Analyses were conducted considering mortality causes (all-cause, natural-cause, or external-cause) and data structures (continuous, categorical, or all types [i.e., include all variables of continuous type and all variables of categorical type]). The main analysis comprised of two stages. In Stage 1, Boruta selection was applied for preliminary screening to remove highly unimportant variables. In Stage 2, the retained variables from Boruta were used in the CPI-RF analysis. The final importance value was obtained as an average value from a 10-fold cross-validation. RESULT Some heat-related variables (maximum temperature, heat wave), temperature variability, and haze-related variables (PM10, PM10-derived haze index, PM10- and fire-derived haze index, fire hotspot) were among the prominent variables associated with under-five mortality in Malaysia. The important variables were consistent for all- and natural-cause mortality and sensitivity analyses. However, different most important variables were observed between natural- and external-cause under-five mortality. CONCLUSION Heat-related variables, temperature variability, and haze-related variables were consistently prominent for all- and natural-cause under-five mortalities, but not for external-cause.
Collapse
Affiliation(s)
- Vera Ling Hui Phung
- Center for Climate Change Adaptation, National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan.
| | - Kazutaka Oka
- Center for Climate Change Adaptation, National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan
| | - Yasuaki Hijioka
- Center for Climate Change Adaptation, National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan
| | - Kayo Ueda
- Department of Hygiene, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan; Graduate School of Global Environmental Studies, Kyoto University, Kyoto, Kyoto, Japan; Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Kyoto, Japan
| | - Mazrura Sahani
- Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Wilayah Persekutuan, Malaysia
| | - Wan Rozita Wan Mahiyuddin
- Environmental Health Research Center, Institute for Medical Research, National Institutes of Health (NIH), Ministry of Health, Shah Alam, Selangor, Malaysia
| |
Collapse
|
4
|
Sahani M, Othman H, Kwan SC, Juneng L, Ibrahim MF, Hod R, Zaini ZI, Mustafa M, Nnafie I, Ching LC, Dambul R, Varkkey H, Phung VLH, Mamood SNH, Karim N, Abu Bakar NF, Wahab MIA, Zulfakar SS, Rosli Y. Impacts of climate change and environmental degradation on children in Malaysia. Front Public Health 2022; 10:909779. [PMID: 36311578 PMCID: PMC9614245 DOI: 10.3389/fpubh.2022.909779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 09/12/2022] [Indexed: 01/22/2023] Open
Abstract
The impacts of climate change and degradation are increasingly felt in Malaysia. While everyone is vulnerable to these impacts, the health and wellbeing of children are disproportionately affected. We carried out a study composed of two major components. The first component is an environmental epidemiology study comprised of three sub-studies: (i) a global climate model (GCM) simulating specific health-sector climate indices; (ii) a time-series study to estimate the risk of childhood respiratory disease attributable to ambient air pollution; and (iii) a case-crossover study to identify the association between haze and under-five mortality in Malaysia. The GCM found that Malaysia has been experiencing increasing rainfall intensity over the years, leading to increased incidences of other weather-related events. The time-series study revealed that air quality has worsened, while air pollution and haze have been linked to an increased risk of hospitalization for respiratory diseases among children. Although no clear association between haze and under-five mortality was found in the case-crossover study, the lag patterns suggested that health effects could be more acute if haze occurred over a longer duration and at a higher intensity. The second component consists of three community surveys on marginalized children conducted (i) among the island community of Pulau Gaya, Sabah; (ii) among the indigenous Temiar tribe in Pos Kuala Mu, Perak; and (iii) among an urban poor community (B40) in PPR Sg. Bonus, Kuala Lumpur. The community surveys are cross-sectional studies employing a socio-ecological approach using a standardized questionnaire. The community surveys revealed how children adapt to climate change and environmental degradation. An integrated model was established that consolidates our overall research processes and demonstrates the crucial interconnections between environmental challenges exacerbated by climate change. It is recommended that Malaysian schools adopt a climate-smart approach to education to instill awareness of the impending climate change and its cascading impact on children's health from early school age.
Collapse
Affiliation(s)
- Mazrura Sahani
- Center for Toxicology and Health Risk Studies (CORE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Hidayatulfathi Othman
- Center for Toxicology and Health Risk Studies (CORE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Soo Chen Kwan
- Center for Toxicology and Health Risk Studies (CORE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Liew Juneng
- Centre for Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Selangor, Malaysia
| | - Mohd Faiz Ibrahim
- Department of Community Health, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Rozita Hod
- Department of Community Health, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Zul'Izzat Ikhwan Zaini
- Faculty of Health Sciences, Universiti Teknologi Mara, Penang Branch, Pulau Pinang, Malaysia
| | - Maizatun Mustafa
- Legal Practice Department, Ahmad Ibrahim Kulliyyah of Laws, International Islamic University, Kuala Lumpur, Malaysia
| | - Issmail Nnafie
- Climate and Environment, UNICEF Malaysia, Putrajaya, Malaysia
| | - Lai Che Ching
- Faculty of Humanities, Arts and Heritage, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| | - Ramzah Dambul
- Faculty of Humanities, Arts and Heritage, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| | - Helena Varkkey
- Department of International and Strategic Studies, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Vera Ling Hui Phung
- Center for Climate Change Adaptation, National Institute for Environmental Studies (NIES), Tsukuba, Japan
| | - Siti Nur Hanis Mamood
- Center for Toxicology and Health Risk Studies (CORE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Norhafizah Karim
- Center for Toxicology and Health Risk Studies (CORE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nur Faizah Abu Bakar
- Center for Diagnostic Therapeautic and Investigative Studies (CODTIS), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Muhammad Ikram A. Wahab
- Center for Toxicology and Health Risk Studies (CORE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Siti Shahara Zulfakar
- Center for Toxicology and Health Risk Studies (CORE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Yanti Rosli
- Center for Toxicology and Health Risk Studies (CORE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia,*Correspondence: Yanti Rosli
| |
Collapse
|
5
|
Phung VLH, Uttajug A, Ueda K, Yulianti N, Latif MT, Naito D. A scoping review on the health effects of smoke haze from vegetation and peatland fires in Southeast Asia: Issues with study approaches and interpretation. PLoS One 2022; 17:e0274433. [PMID: 36107927 PMCID: PMC9477317 DOI: 10.1371/journal.pone.0274433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 08/28/2022] [Indexed: 12/02/2022] Open
Abstract
Smoke haze due to vegetation and peatland fires in Southeast Asia is a serious public health concern. Several approaches have been applied in previous studies; however, the concepts and interpretations of these approaches are poorly understood. In this scoping review, we addressed issues related to the application of epidemiology (EPI), health burden estimation (HBE), and health risk assessment (HRA) approaches, and discussed the interpretation of findings, and current research gaps. Most studies reported an air quality index exceeding the 'unhealthy' level, especially during smoke haze periods. Although smoke haze is a regional issue in Southeast Asia, studies on its related health effects have only been reported from several countries in the region. Each approach revealed increased health effects in a distinct manner: EPI studies reported excess mortality and morbidity during smoke haze compared to non-smoke haze periods; HBE studies estimated approximately 100,000 deaths attributable to smoke haze in the entire Southeast Asia considering all-cause mortality and all age groups, which ranged from 1,064-260,000 for specified mortality cause, age group, study area, and study period; HRA studies quantified potential lifetime cancer and non-cancer risks due to exposure to smoke-related chemicals. Currently, there is a lack of interconnection between these three approaches. The EPI approach requires extensive effort to investigate lifetime health effects, whereas the HRA approach needs to clarify the assumptions in exposure assessments to estimate lifetime health risks. The HBE approach allows the presentation of health impact in different scenarios, however, the risk functions used are derived from EPI studies from other regions. Two recent studies applied a combination of the EPI and HBE approaches to address uncertainty issues due to the selection of risk functions. In conclusion, all approaches revealed potential health risks due to smoke haze. Nonetheless, future studies should consider comparable exposure assessments to allow the integration of the three approaches.
Collapse
Affiliation(s)
- Vera Ling Hui Phung
- Center for Climate Change Adaptation, National Institute for Environmental Studies (NIES), Tsukuba, Ibaraki, Japan
| | - Attica Uttajug
- Department of Hygiene, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Kayo Ueda
- Department of Hygiene, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Kyoto, Japan
- Graduate School of Global Environmental Studies, Kyoto University, Kyoto, Kyoto, Japan
| | - Nina Yulianti
- Department of Agronomy, Faculty of Agriculture, Universitas Palangka Raya, Palangka Raya, Kalimantan Tengah, Indonesia
- Graduate Program of Environmental Science, Universitas Palangka Raya, Palangka Raya, Kalimantan Tengah, Indonesia
| | - Mohd Talib Latif
- Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Daisuke Naito
- Graduate School of Agriculture, Kyoto University, Kyoto, Kyoto, Japan
- Center for International Forestry Research (CIFOR), Bogor, Jawa Barat, Indonesia
| |
Collapse
|