1
|
Kukla-Bartoszek M, Piechota M, Suski M, Hajto J, Borczyk M, Basta-Kaim A, Głombik K. Integrated Profiling Identifies Long-Term Molecular Consequences of Prenatal Dexamethasone Treatment in the Rat Brain-Potential Triggers of Depressive Phenotype and Cognitive Impairment. Mol Neurobiol 2024:10.1007/s12035-024-04586-7. [PMID: 39528842 DOI: 10.1007/s12035-024-04586-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
Prenatal excess of glucocorticoids (GCs) is considered to be one of the highly impacting factors contributing to depression development. Although GCs are crucial for normal fetal development and their administration (mainly dexamethasone, DEX) is a life-saving procedure for those at risk of preterm delivery, exposure to excess levels of GCs during pregnancy can yield detrimental consequences. Therefore, we aimed to systematically investigate the brain molecular alterations triggered by prenatal DEX administration. We used a rat model of depression based on prenatal exposure to DEX and performed integrative multi-level methylomic, transcriptomic, and proteomic analyses of adult rats' brains (i.e., frontal cortex (FCx) and hippocampus (Hp)) to identify the outcomes of DEX action. Each of the investigated levels was significantly affected by DEX in the long-term manner. Particularly, we found 200 CpG islands to be differentially methylated in the FCx and 200 in the Hp of prenatally DEX-treated rats. Global transcriptomic analysis uncovered differential expression of transcripts mostly in FCx (271) and 1 in Hp, while proteomic study identified 146 differentially expressed proteins in FCx and 123 in Hp. Among the identified enriched molecular networks, we found altered pathways involved in synaptic plasticity (i.e., cAMP, calcium, and Wnt signaling pathways or tight junctions and adhesion molecules), which may contribute to cognitive impairment, observed in DEX-treated animals. Moreover, in the FCx, DEX administration in the prenatal period downregulates the expression of ribosome protein genes associated both with large and small ribosomal subunit assembly which can lead to a global decrease in translation and protein synthesis processes and, indirectly, alterations in the neurotransmission process.
Collapse
Affiliation(s)
- Magdalena Kukla-Bartoszek
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Polish Academy of Sciences, Maj Institute of Pharmacology, Smętna 12, 31-343, Kraków, Poland
| | - Marcin Piechota
- Laboratory of Pharmacogenomics, Department of Molecular Neuropharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| | - Maciej Suski
- Department of Pharmacology, Jagiellonian University Medical College, Faculty of Medicine, Grzegórzecka 16, 31-531, Kraków, Poland
- Centre for the Development of Therapies for Civilization and Age-Related Diseases CDT-CARD, Jagiellonian University Medical College, Skawińska 8, 31-066, Kraków, Poland
| | - Jacek Hajto
- Laboratory of Pharmacogenomics, Department of Molecular Neuropharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| | - Małgorzata Borczyk
- Laboratory of Pharmacogenomics, Department of Molecular Neuropharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| | - Agnieszka Basta-Kaim
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Polish Academy of Sciences, Maj Institute of Pharmacology, Smętna 12, 31-343, Kraków, Poland
| | - Katarzyna Głombik
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Polish Academy of Sciences, Maj Institute of Pharmacology, Smętna 12, 31-343, Kraków, Poland.
| |
Collapse
|
2
|
Shao S, Zhang Y, Liu J, Zeng C, Qin J, Liu Z, Zhang X. Glucocorticoid use and varying doses on the long-term outcomes of offspring born to patients with systemic lupus erythematosus. Eur J Pediatr 2024; 183:2231-2238. [PMID: 38393371 DOI: 10.1007/s00431-024-05462-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024]
Abstract
This study aims to assess the impact of non-fluorinated glucocorticoid use and varying doses on the long-term physical, neurological, and social-emotional development outcomes of offspring born to patients with systemic lupus erythematosus (SLE). The goal is to provide guidance on the appropriate dosage of glucocorticoids during pregnancy in SLE patients. We conducted a follow-up study on the offspring of SLE patients who had pregnancies and were admitted to our obstetrics department between January 1, 2016, and September 30, 2021. Patients who received immunosuppressants and dexamethasone were excluded from the study. The SLE patients were categorized into three groups based on their glucocorticoid use during pregnancy: hormone-free group, ≤ 10 mg/day group, and > 10 mg/day group (equivalent to prednisone). Most patients in the three groups were used hydroxychloroquine during pregnancy. We assessed the physical development status, including weight, height (length), and other relevant factors in three groups. Additionally, we utilized the Age and Stages Questionnaires, Third Edition (ASQ-3) to evaluate the development of communication, gross motor, fine motor, problem-solving, and personal-social. The social-emotional development status was assessed using the Age and Stages Questionnaires: Social-Emotional (ASQ: SE). We standardized the weight, height (length), body mass index, and ASQ-3 domain scores of children of different ages and genders into Z-scores for comparison. The results of this study demonstrated no statistically significant differences in the long-term physical development, neurological development, and social-emotional development outcomes of the offspring of SLE patients in three groups. However, while not reaching statistical significance, it was found that the offspring of the > 10 mg/day group had lower height (length) Z-scores and communication Z-scores compared to the other groups. Conclusion: The use of non-fluorinated glucocorticoids during pregnancy and varying doses did not have a significant impact on the long-term physical, neurological, and social-emotional development outcomes of offspring born to SLE patients. However, the offspring of SLE patients treated with glucocorticoids > 10 mg/day during pregnancy may be necessary to strengthen the monitoring of height (length) and communication skills in the long term. What is Known: • Fetal exposure to glucocorticoids can have implications for the development of multiple systems and may persist after birth, potentially increasing the risk of neurological abnormalities and other diseases. • There is limited research on the long-term development of offspring born to SLE patients, especially the patients treated with glucocorticoids. What is New: • The use of non-fluorinated glucocorticoids during pregnancy and varying doses did not have a significant impact on the long-term outcomes of offspring born to SLE patients. • The offspring of SLE patients treated with glucocorticoids >10 mg/day during pregnancy may be necessary to strengthen the monitoring of height (length) and communication skills in the long term.
Collapse
Affiliation(s)
- Shuming Shao
- Department of Pediatrics, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing, 100044, China
| | - Yimin Zhang
- Department of Pediatrics, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing, 100044, China
| | - Jie Liu
- Department of Pediatrics, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing, 100044, China
| | - Chaomei Zeng
- Department of Pediatrics, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing, 100044, China
| | - Jiong Qin
- Department of Pediatrics, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing, 100044, China
| | - Zheng Liu
- Department of Maternal and Child Health, School of Public Health, Peking University, No. 38, Xueyuan Road, Beijing, 100191, China.
| | - Xiaorui Zhang
- Department of Pediatrics, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing, 100044, China.
| |
Collapse
|
3
|
Lu X, Chen B, Xu D, Hu W, Wang X, Dai Y, Wang Q, Peng Y, Chen K, Zhao D, Wang H. Epigenetic programming mediates abnormal gut microbiota and disease susceptibility in offspring with prenatal dexamethasone exposure. Cell Rep Med 2024; 5:101398. [PMID: 38301654 PMCID: PMC10897547 DOI: 10.1016/j.xcrm.2024.101398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 05/08/2023] [Accepted: 01/08/2024] [Indexed: 02/03/2024]
Abstract
Prenatal dexamethasone exposure (PDE) can lead to increased susceptibility to various diseases in adult offspring, but its effect on gut microbiota composition and the relationship with disease susceptibility remains unclear. In this study, we find sex-differential changes in the gut microbiota of 6-month-old infants with prenatal dexamethasone therapy (PDT) that persisted in female infants up to 2.5 years of age with altered bile acid metabolism. PDE female offspring rats show abnormal colonization and composition of gut microbiota and increased susceptibility to cholestatic liver injury. The aberrant gut microbiota colonization in the PDE offspring can be attributed to the inhibited Muc2 expression caused by decreased CDX2 expression before and after birth. Integrating animal and cell experiments, we further confirm that dexamethasone could inhibit Muc2 expression by activating GR/HDAC11 signaling and regulating CDX2 epigenetic modification. This study interprets abnormal gut microbiota and disease susceptibility in PDT offspring from intrauterine intestinal dysplasia.
Collapse
Affiliation(s)
- Xiaoqian Lu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Beidi Chen
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing 100191, China
| | - Dan Xu
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Wen Hu
- Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan 430071, China
| | - Xia Wang
- Department of Pediatrics, Children's Digital Health, and Data Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yongguo Dai
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Qian Wang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Yu Peng
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Kaiqi Chen
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Dongchi Zhao
- Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan 430071, China; Department of Pediatrics, Children's Digital Health, and Data Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Hui Wang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China; Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan 430071, China.
| |
Collapse
|
4
|
Rudge MVC, Alves FCB, Hallur RLS, Oliveira RG, Vega S, Reyes DRA, Floriano JF, Prudencio CB, Garcia GA, Reis FVDS, Emanueli C, Fuentes G, Cornejo M, Toledo F, Valenzuela-Hinrichsen A, Guerra C, Grismaldo A, Valero P, Barbosa AMP, Sobrevia L. Consequences of the exposome to gestational diabetes mellitus. Biochim Biophys Acta Gen Subj 2023; 1867:130282. [PMID: 36436753 DOI: 10.1016/j.bbagen.2022.130282] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/14/2022] [Accepted: 11/16/2022] [Indexed: 11/26/2022]
Abstract
The exposome is the cumulative measure of environmental influences and associated biological responses throughout the lifespan, including those from the environment, diet, behaviour, and endogenous processes. The exposome concept and the 2030 Agenda for the Sustainable Development Goals (SDGs) from the United Nations are the basis for understanding the aetiology and consequences of non-communicable diseases, including gestational diabetes mellitus (GDM). Pregnancy may be developed in an environment with adverse factors part of the immediate internal medium for fetus development and the external medium to which the pregnant woman is exposed. The placenta is the interface between maternal and fetal compartments and acts as a protective barrier or easing agent to transfer exposome from mother to fetus. Under and over-nutrition in utero, exposure to adverse environmental pollutants such as heavy metals, endocrine-disrupting chemicals, pesticides, drugs, pharmaceuticals, lifestyle, air pollutants, and tobacco smoke plays a determinant role in the development of GDM. This phenomenon is worsened by metabolic stress postnatally, such as obesity which increases the risk of GDM and other diseases. Clinical risk factors for GDM development include its aetiology. It is proposed that knowledge-based interventions to change the potential interdependent ecto-exposome and endo-exposome could avoid the occurrence and consequences of GDM.
Collapse
Affiliation(s)
- Marilza V C Rudge
- Department of Gynaecology and Obstetrics, Botucatu Medical School, São Paulo State University (UNESP), 18618-687 Botucatu, São Paulo, Brazil.
| | - Fernanda C B Alves
- Department of Gynaecology and Obstetrics, Botucatu Medical School, São Paulo State University (UNESP), 18618-687 Botucatu, São Paulo, Brazil
| | - Raghavendra L S Hallur
- Department of Gynaecology and Obstetrics, Botucatu Medical School, São Paulo State University (UNESP), 18618-687 Botucatu, São Paulo, Brazil; Centre for Biotechnology, Pravara Institute of Medical Sciences (DU), Loni-413736, Rahata Taluk, Ahmednagar District, Maharashtra, India
| | - Rafael G Oliveira
- Department of Gynaecology and Obstetrics, Botucatu Medical School, São Paulo State University (UNESP), 18618-687 Botucatu, São Paulo, Brazil
| | - Sofia Vega
- Department of Gynaecology and Obstetrics, Botucatu Medical School, São Paulo State University (UNESP), 18618-687 Botucatu, São Paulo, Brazil; Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrician, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - David R A Reyes
- Department of Gynaecology and Obstetrics, Botucatu Medical School, São Paulo State University (UNESP), 18618-687 Botucatu, São Paulo, Brazil
| | - Juliana F Floriano
- Department of Gynaecology and Obstetrics, Botucatu Medical School, São Paulo State University (UNESP), 18618-687 Botucatu, São Paulo, Brazil
| | - Caroline B Prudencio
- Department of Gynaecology and Obstetrics, Botucatu Medical School, São Paulo State University (UNESP), 18618-687 Botucatu, São Paulo, Brazil
| | - Gabriela A Garcia
- São Paulo State University (UNESP), School of Sciences, Postgraduate Program in Materials Science and Technology (POSMAT), 17033-360 Bauru, São Paulo, Brazil
| | - Fabiana V D S Reis
- Department of Gynaecology and Obstetrics, Botucatu Medical School, São Paulo State University (UNESP), 18618-687 Botucatu, São Paulo, Brazil
| | - Costanza Emanueli
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
| | - Gonzalo Fuentes
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9713GZ Groningen, The Netherlands; Faculty of Health Sciences, Universidad de Talca, Talca 3460000, Chile; Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrician, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - Marcelo Cornejo
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9713GZ Groningen, The Netherlands; Faculty of Health Sciences, Universidad de Talca, Talca 3460000, Chile; Faculty of Health Sciences, Universidad de Antofagasta, Antofagasta 02800, Chile; Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrician, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - Fernando Toledo
- Faculty of Basic Sciences, Universidad del Bío-Bío, Chillán 3780000, Chile; Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrician, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - Andrés Valenzuela-Hinrichsen
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrician, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - Catalina Guerra
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrician, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - Adriana Grismaldo
- Tecnologico de Monterrey, Eutra, The Institute for Obesity Research (IOR), School of Medicine and Health Sciences, Monterrey, Nuevo León 64710, Mexico; Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrician, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - Paola Valero
- Faculty of Health Sciences, Universidad de Talca, Talca 3460000, Chile; Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrician, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - Angelica M P Barbosa
- Department of Gynaecology and Obstetrics, Botucatu Medical School, São Paulo State University (UNESP), 18618-687 Botucatu, São Paulo, Brazil; Department of Physiotherapy and Occupational Therapy, School of Philosophy and Sciences, São Paulo State University (UNESP), 17525-900 Marília, São Paulo, Brazil
| | - Luis Sobrevia
- Department of Gynaecology and Obstetrics, Botucatu Medical School, São Paulo State University (UNESP), 18618-687 Botucatu, São Paulo, Brazil; Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9713GZ Groningen, The Netherlands; Tecnologico de Monterrey, Eutra, The Institute for Obesity Research (IOR), School of Medicine and Health Sciences, Monterrey, Nuevo León 64710, Mexico; Department of Physiology, Faculty of Pharmacy, Universidad de Sevilla, Seville E-41012, Spain; University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, University of Queensland, Herston QLD 4029, Queensland, Australia; Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrician, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile.
| |
Collapse
|
5
|
Dai Y, Kou H, Gui S, Guo X, Liu H, Gong Z, Sun X, Wang H, Guo Y. Prenatal dexamethasone exposure induced pancreatic β-cell dysfunction and glucose intolerance of male offspring rats: Role of the epigenetic repression of ACE2. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 826:154095. [PMID: 35219660 DOI: 10.1016/j.scitotenv.2022.154095] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 02/01/2022] [Accepted: 02/19/2022] [Indexed: 06/14/2023]
Abstract
The prevalence of diabetes in children and adolescents has been rising gradually, which is relevant to adverse environment during development, especially prepartum. We aimed to explore the effects of prenatal dexamethasone exposure (PDE) on β-cell function and glucose homeostasis in juvenile offspring rats. Pregnant Wistar rats were subcutaneously administered with dexamethasone [0.1, 0.2, 0.4mg/(kg.d)] from gestational day 9 to 20. PDE impaired glucose tolerance in the male offspring rather than the females. In male offspring, PDE impaired the development and function of β-cells, accompanied with lower H3K9ac, H3K14ac and H3K27ac levels in the promoter region of angiotensin-converting enzyme 2 (ACE2) as well as suppressed ACE2 expression. Meanwhile, PDE increased expression of glucocorticoid receptor (GR) and histone deacetylase 3 (HDAC3) in fetal pancreas. Dexamethasone also inhibited ACE2 expression and insulin production in vitro. Recombinant expression of ACE2 restored insulin production inhibited by dexamethasone. In addition, dexamethasone activated GR and HDAC3, increased protein interaction of GR with HDAC3, and promoted the binding of GR-HDAC3 complex to ACE2 promoter region. Both RU486 and TSA abolished dexamethasone-induced decline of histone acetylation and ACE2 expression. In summary, suppression of ACE2 is involved in PDE induced β-cell dysfunction and glucose intolerance in juvenile male offspring rats.
Collapse
Affiliation(s)
- Yongguo Dai
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, Hubei Province, People's Republic of China.
| | - Hao Kou
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, Hubei Province, People's Republic of China
| | - Shuxia Gui
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, Hubei Province, People's Republic of China
| | - Xiaoling Guo
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, Hubei Province, People's Republic of China
| | - Heze Liu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, Hubei Province, People's Republic of China
| | - Zheng Gong
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, Hubei Province, People's Republic of China
| | - Xiaoxiang Sun
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, Hubei Province, People's Republic of China
| | - Hui Wang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, Hubei Province, People's Republic of China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, Hubei Province, People's Republic of China.
| | - Yu Guo
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, Hubei Province, People's Republic of China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, Hubei Province, People's Republic of China.
| |
Collapse
|
6
|
Wang J, Chen F, Zhu S, Li X, Shi W, Dai Z, Hao L, Wang X. Adverse effects of prenatal dexamethasone exposure on fetal development. J Reprod Immunol 2022; 151:103619. [DOI: 10.1016/j.jri.2022.103619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 02/20/2022] [Accepted: 03/24/2022] [Indexed: 12/15/2022]
|
7
|
Zhao X, Bégin P, Kang H, Henderson M, Lewin A, Lee GE, Healy-Profitós J, Auger N. Maternal autoimmune disease and risk of hospitalization for autoimmune disease, allergy, and cancer in offspring. Pediatr Allergy Immunol 2022; 33:e13728. [PMID: 35212046 DOI: 10.1111/pai.13728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/16/2021] [Accepted: 01/03/2022] [Indexed: 12/16/2022]
Abstract
BACKGROUND Children whose mothers have autoimmune disease may be at risk of developing immune-mediated disorders. We assessed the association between maternal autoimmune disease and risk of autoimmune disease, allergy, and cancer in offspring. METHODS We analyzed a cohort of 1,011,623 children born in Canada between 2006 and 2019. We identified mothers who had autoimmune diseases and assessed hospitalizations for autoimmune disease, allergy, and cancer in offspring between birth and 14 years of age. We estimated hazard ratios (HR) for the association of maternal autoimmune disease with child hospitalization in adjusted Cox regression models. We used within-sibling analysis to control for genetic and environmental confounders. RESULTS A total of 20,354 children (2.0%) had mothers with an autoimmune disease. Compared with no autoimmune disease, maternal autoimmune disease was associated with the risk of childhood hospitalization for autoimmune disease (HR 1.96, 95% CI 1.66-2.31) and allergy (HR 1.30, 95% CI 1.21-1.40), but was not significantly associated with cancer (HR 1.31, 95% CI 0.96-1.80). Type 1 diabetes, celiac disease, inflammatory arthritis, and systemic lupus erythematosus were among specific maternal autoimmune diseases most strongly associated with childhood hospitalization for autoimmune disease and allergy. The associations disappeared after controlling for genetic and environmental confounders in the within-sibling analysis. CONCLUSIONS Maternal autoimmune disease is associated with an increased risk of autoimmune disease and allergy hospitalization in offspring, but the relationship appears to be confounded by genetic and environmental factors. Prenatal exposure to immunologic or pharmacologic products is not likely a direct cause of immune-mediated disease in children.
Collapse
Affiliation(s)
- Xiaotian Zhao
- Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, Quebec, Canada.,Institut national de santé publique du Québec, Montreal, Quebec, Canada
| | - Philippe Bégin
- Sainte-Justine Hospital Research Centre, Montreal, Quebec, Canada
| | - Harb Kang
- Department of Rheumatology, Cité de la Santé Hospital, Laval, Quebec, Canada
| | - Mélanie Henderson
- Sainte-Justine Hospital Research Centre, Montreal, Quebec, Canada.,Department of Pediatrics, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada.,Department of Social and Preventive Medicine, School of Public Health, University of Montreal, Montreal, Quebec, Canada
| | - Antoine Lewin
- Medical Affairs and Innovation, Hema-Quebec, Saint-Laurent, Quebec, Canada
| | - Ga Eun Lee
- Institut national de santé publique du Québec, Montreal, Quebec, Canada.,University of Montreal Hospital Research Centre, Montreal, Quebec, Canada
| | - Jessica Healy-Profitós
- Institut national de santé publique du Québec, Montreal, Quebec, Canada.,University of Montreal Hospital Research Centre, Montreal, Quebec, Canada
| | - Nathalie Auger
- Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, Quebec, Canada.,Institut national de santé publique du Québec, Montreal, Quebec, Canada.,Department of Social and Preventive Medicine, School of Public Health, University of Montreal, Montreal, Quebec, Canada.,University of Montreal Hospital Research Centre, Montreal, Quebec, Canada
| |
Collapse
|
8
|
Perna-Barrull D, Murillo M, Real N, Gomez-Muñoz L, Rodriguez-Fernandez S, Bel J, Puig-Domingo M, Vives-Pi M. Prenatal Betamethasone Exposure and its Impact on Pediatric Type 1 Diabetes Mellitus: A Preliminary Study in a Spanish Cohort. J Diabetes Res 2022; 2022:6598600. [PMID: 35308094 PMCID: PMC8930272 DOI: 10.1155/2022/6598600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/24/2022] [Accepted: 02/18/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Betamethasone, a glucocorticoid used to induce lung maturation when there is a risk of preterm delivery, can affect the immune system maturation and type 1 diabetes (T1D) incidence in the progeny. It has been described that prenatal betamethasone protects offspring from experimental T1D development. The main aim of this study was to evaluate the possible association between betamethasone prenatal exposure and T1D in humans. Research Design and Methods. A retrospective case-control study with a total of 945 children, including 471 patients with T1D and 474 healthy siblings, was performed. Participants were volunteers from the Germans Trias i Pujol Hospital and DiabetesCero Foundation. Parents of children enrolled in the study completed a questionnaire that included questions about weeks of gestation, preterm delivery risk, weight at birth, and prenatal betamethasone exposure of their children. Multiple logistic regression was used to detect the association between betamethasone exposure and T1D. RESULTS We compared T1D prevalence between subjects prenatally exposed or unexposed to betamethasone. The percent of children with T1D in the exposed group was 37.5% (21 of 56), and in the unexposed group was 49.52% (410 of 828) (p = 0.139). The percentage of betamethasone-treated subjects with T1D in the preterm group (18.05%, 13 of 72) was significantly higher than that found in the control group (12.5%, 9 of 72) (p = 0.003). The odds ratio for T1D associated with betamethasone in the univariate logistic regression was 0.59 (95% confidence interval, 0.33; 1.03 [p = 0.062]) and in the multivariate logistic regression was 0.83 (95% confidence interval, 0.45; 1.52 [p = 0.389]). CONCLUSIONS The results demonstrate that the prenatal exposure to betamethasone does not increase T1D susceptibility, and may even be associated with a trend towards decreased risk of developing the disease. These preliminary findings require further prospective studies with clinical data to confirm betamethasone exposure effect on T1D risk.
Collapse
Affiliation(s)
- David Perna-Barrull
- Immunology Service Germans Trias i Pujol Research Institute and University Hospital, Autonomous University of Barcelona, 08916 Badalona, Spain
| | - Marta Murillo
- Pediatrics Service Germans Trias i Pujol Research Institute and University Hospital, Autonomous University of Barcelona, 08916 Badalona, Spain
| | - Nati Real
- Pediatrics Service Germans Trias i Pujol Research Institute and University Hospital, Autonomous University of Barcelona, 08916 Badalona, Spain
| | - Laia Gomez-Muñoz
- Immunology Service Germans Trias i Pujol Research Institute and University Hospital, Autonomous University of Barcelona, 08916 Badalona, Spain
| | - Silvia Rodriguez-Fernandez
- Immunology Service Germans Trias i Pujol Research Institute and University Hospital, Autonomous University of Barcelona, 08916 Badalona, Spain
| | - Joan Bel
- Pediatrics Service Germans Trias i Pujol Research Institute and University Hospital, Autonomous University of Barcelona, 08916 Badalona, Spain
| | - Manel Puig-Domingo
- Endocrinology Service Germans Trias i Pujol Research Institute and University Hospital, Autonomous University of Barcelona, 08916 Badalona, Spain
| | - Marta Vives-Pi
- Immunology Service Germans Trias i Pujol Research Institute and University Hospital, Autonomous University of Barcelona, 08916 Badalona, Spain
| |
Collapse
|
9
|
Wallensteen L, Karlsson L, Messina V, Nordenström A, Lajic S. Perturbed Beta-Cell Function and Lipid Profile After Early Prenatal Dexamethasone Exposure in Individuals Without CAH. J Clin Endocrinol Metab 2020; 105:5841246. [PMID: 32433752 PMCID: PMC7343997 DOI: 10.1210/clinem/dgaa280] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 05/18/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND Prenatal treatment with dexamethasone (DEX) reduces virilization in girls with congenital adrenal hyperplasia (CAH). The treatment is effective but may result in long-lasting adverse effects. In this study we explore the effects of DEX on metabolism in individuals not having CAH but treated with DEX during the first trimester of fetal life. METHOD All DEX-treated participants (n = 40, age range 5.1-26.4 years) and controls (n = 75, age range 4.5-26.6 years) were assessed with fasting blood samples to measure blood count, renal function, glucose homeostasis, and serum lipid profiles. RESULTS There were no significant differences between DEX and control participants for birth parameters, weight and height, or body mass index at the time of testing. Analyzing the entire cohort, we found no significant effects of DEX on blood count, renal function, or serum lipid profiles. However, a lower HOMA-β index in the DEX-treated individuals (U = 893.0; P = 0.049) was observed. Post hoc analyses revealed an effect in girls (U = 152.5; P = 0.024) but not in boys (U = 299.5; P = 0.550). The effect on HOMA-β persisted (U = 117.5; P = 0.048) after analyzing data separately in the participants < 16 years of age. In addition, we observed higher plasma glucose levels (F = 14.6; P = 0.001) in the DEX-treated group. The participants ≥ 16 years of age in the DEX-treated group had significantly higher total plasma cholesterol (F = 9.8; P = 0.003) and higher low-density lipoprotein cholesterol levels (F = 7.4; P = 0,009). CONCLUSION Prenatal DEX exposure in early pregnancy has negative effects on beta-cell function and lipid profile in individuals without CAH already at a young age.
Collapse
Affiliation(s)
- Lena Wallensteen
- Department of Women’s and Children’s Health, Karolinska Institutet, Pediatric Endocrinology Unit, Karolinska University Hospital, Stockholm, Sweden
| | - Leif Karlsson
- Department of Women’s and Children’s Health, Karolinska Institutet, Pediatric Endocrinology Unit, Karolinska University Hospital, Stockholm, Sweden
| | - Valeria Messina
- Department of Women’s and Children’s Health, Karolinska Institutet, Pediatric Endocrinology Unit, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Nordenström
- Department of Women’s and Children’s Health, Karolinska Institutet, Pediatric Endocrinology Unit, Karolinska University Hospital, Stockholm, Sweden
| | - Svetlana Lajic
- Department of Women’s and Children’s Health, Karolinska Institutet, Pediatric Endocrinology Unit, Karolinska University Hospital, Stockholm, Sweden
- Correspondence and Reprint Requests: Dr. Svetlana Lajic, Department of Women’s and Children’s Health, Pediatric Endocrinology Unit (QB83), Karolinska University Hospital, SE-171 76 Stockholm, Sweden,
| |
Collapse
|
10
|
Metsälä J, Hakola L, Lundqvist A, Virta LJ, Gissler M, Virtanen SM. Perinatal factors and the risk of type 1 diabetes in childhood and adolescence-A register-based case-cohort study in Finland, years 1987 to 2009. Pediatr Diabetes 2020; 21:586-596. [PMID: 32003515 DOI: 10.1111/pedi.12994] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/02/2020] [Accepted: 01/27/2020] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVES Our aim was to clarify previously reported associations and to explore new ones between various maternal background and perinatal factors and the risk of type 1 diabetes in childhood. METHODS We identified all children born 1 January 1987 to 31 December 2008 in Finland and diagnosed with type 1 diabetes by age 16 years or end of 2009 from the Special Reimbursement Register (n = 6862). A 10% random sample from each birth year cohort was selected as a reference cohort (n = 127 216). Information on perinatal factors was obtained from the Finnish Medical Birth Register. RESULTS Maternal diabetes (hazard ratios [HR] = 6.43; 95% confidence interval [CI] 5.35, 7.73), maternal asthma (HR = 1.23; 95% CI 1.06, 1.43), child's high birth length for gestational age (HR = 1.35; 95% CI 1.22, 1.51 highest vs lowest quintile) and premature or early term birth (HR = 1.21; 95% CI 1.05, 1.39 gestational weeks 33-36 and HR = 1.17; 95% CI 1.09, 1.26 gestational weeks 37-38 vs gestational weeks 39-40) was associated with an increased risk of type 1 diabetes when adjusted for several potential confounders. Maternal smoking during pregnancy (HR = 0.72; 95% CI 0.66, 0.77), high number of previous live births (HR = 0.65; 95% CI 0.55, 0.76 ≥ 4 vs 0 live births), and the child being born small for gestational age (HR = 0.80; 95% CI 0.67, 0.96) was associated with a decreased risk of type 1 diabetes. CONCLUSIONS Findings on maternal asthma and high birth length for gestational age increasing the risk of type 1 diabetes are novel and need to be confirmed. Our findings indicate that perinatal factors may play a role in the development of type 1 diabetes.
Collapse
Affiliation(s)
- Johanna Metsälä
- Department of Public Health Solutions, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Leena Hakola
- Unit of Health Sciences, Faculty of Social Sciences, Tampere University, Tampere, Finland
| | - Annamari Lundqvist
- Department of Public Health Solutions, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Lauri J Virta
- Research Department, Social Insurance Institution, Turku, Finland
| | - Mika Gissler
- Information Services Department, Finnish Institute for Health and Welfare, Helsinki, Finland.,Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm, Sweden
| | - Suvi M Virtanen
- Department of Public Health Solutions, Finnish Institute for Health and Welfare, Helsinki, Finland.,Unit of Health Sciences, Faculty of Social Sciences, Tampere University, Tampere, Finland.,Tampere Center for Child Health Research, Tampere University and Tampere University Hospital, Finland.,Science Centre, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
11
|
Perna-Barrull D, Gieras A, Rodriguez-Fernandez S, Tolosa E, Vives-Pi M. Immune System Remodelling by Prenatal Betamethasone: Effects on β-Cells and Type 1 Diabetes. Front Endocrinol (Lausanne) 2020; 11:540. [PMID: 32849311 PMCID: PMC7431597 DOI: 10.3389/fendo.2020.00540] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/03/2020] [Indexed: 01/11/2023] Open
Abstract
Type 1 diabetes (T1D) is a multifactorial disease of unknown aetiology. Studies focusing on environment-related prenatal changes, which might have an influence on the development of T1D, are still missing. Drugs, such as betamethasone, are used during this critical period without exploring possible effects later in life. Betamethasone can interact with the development and function of the two main players in T1D, the immune system and the pancreatic β-cells. Short-term or persistent changes in any of these two players may influence the initiation of the autoimmune reaction against β-cells. In this review, we focus on the ability of betamethasone to induce alterations in the immune system, impairing the recognition of autoantigens. At the same time, betamethasone affects β-cell gene expression and apoptosis rate, reducing the danger signals that will attract unwanted attention from the immune system. These effects may synergise to hinder the autoimmune attack. In this review, we compile scattered evidence to provide a better understanding of the basic relationship between betamethasone and T1D, laying the foundation for future studies on human cohorts that will help to fully grasp the role of betamethasone in the development of T1D.
Collapse
Affiliation(s)
- David Perna-Barrull
- Immunology Section, Germans Trias i Pujol Research Institute, Autonomous University of Barcelona, Badalona, Spain
| | - Anna Gieras
- Department of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Silvia Rodriguez-Fernandez
- Immunology Section, Germans Trias i Pujol Research Institute, Autonomous University of Barcelona, Badalona, Spain
| | - Eva Tolosa
- Department of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marta Vives-Pi
- Immunology Section, Germans Trias i Pujol Research Institute, Autonomous University of Barcelona, Badalona, Spain
- *Correspondence: Marta Vives-Pi
| |
Collapse
|
12
|
Perna-Barrull D, Rodriguez-Fernandez S, Pujol-Autonell I, Gieras A, Ampudia-Carrasco RM, Villalba A, Glau L, Tolosa E, Vives-Pi M. Prenatal Betamethasone interferes with immune system development and alters target cells in autoimmune diabetes. Sci Rep 2019; 9:1235. [PMID: 30718757 PMCID: PMC6362293 DOI: 10.1038/s41598-018-37878-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 12/17/2018] [Indexed: 01/03/2023] Open
Abstract
Non-genetic factors are crucial in the pathogenesis of type 1 diabetes (T1D), a disease caused by autoimmunity against insulin-producing β-cells. Exposure to medications in the prenatal period may influence the immune system maturation, thus altering self-tolerance. Prenatal administration of betamethasone –a synthetic glucocorticoid given to women at risk of preterm delivery– may affect the development of T1D. It has been previously demonstrated that prenatal betamethasone administration protects offspring from T1D development in nonobese diabetic (NOD) mice. The direct effect of betamethasone on the immature and mature immune system of NOD mice and on target β-cells is analysed in this paper. In vitro, betamethasone decreased lymphocyte viability and induced maturation-resistant dendritic cells, which in turn impaired γδ T cell proliferation and decreased IL-17 production. Prenatal betamethasone exposure caused thymus hypotrophy in newborn mice as well as alterations in immune cells subsets. Furthermore, betamethasone decreased β-cell growth, reduced C-peptide secretion and altered the expression of genes related to autoimmunity, metabolism and islet mass in T1D target tissue. These results support the protection against T1D in the betamethasone-treated offspring and demonstrate that this drug alters the developing immune system and β-cells. Understanding how betamethasone generates self-tolerance could have potential clinical relevance in T1D.
Collapse
Affiliation(s)
- David Perna-Barrull
- Immunology Section, Germans Trias i Pujol Research Institute, Autonomous University of Barcelona, Badalona, Spain
| | - Silvia Rodriguez-Fernandez
- Immunology Section, Germans Trias i Pujol Research Institute, Autonomous University of Barcelona, Badalona, Spain
| | - Irma Pujol-Autonell
- Immunology Section, Germans Trias i Pujol Research Institute, Autonomous University of Barcelona, Badalona, Spain
| | - Anna Gieras
- Department of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Rosa M Ampudia-Carrasco
- Immunology Section, Germans Trias i Pujol Research Institute, Autonomous University of Barcelona, Badalona, Spain
| | - Adrian Villalba
- Immunology Section, Germans Trias i Pujol Research Institute, Autonomous University of Barcelona, Badalona, Spain
| | - Laura Glau
- Department of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eva Tolosa
- Department of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marta Vives-Pi
- Immunology Section, Germans Trias i Pujol Research Institute, Autonomous University of Barcelona, Badalona, Spain. .,CIBERDEM, Barcelona, Spain.
| |
Collapse
|
13
|
Zazara DE, Arck PC. Developmental origin and sex-specific risk for infections and immune diseases later in life. Semin Immunopathol 2018; 41:137-151. [DOI: 10.1007/s00281-018-0713-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/17/2018] [Indexed: 12/31/2022]
|
14
|
Andreone L, Gimeno ML, Perone MJ. Interactions Between the Neuroendocrine System and T Lymphocytes in Diabetes. Front Endocrinol (Lausanne) 2018; 9:229. [PMID: 29867762 PMCID: PMC5966545 DOI: 10.3389/fendo.2018.00229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 04/20/2018] [Indexed: 12/16/2022] Open
Abstract
It is well established that there is a fine-tuned bidirectional communication between the immune and neuroendocrine tissues in maintaining homeostasis. Several types of immune cells, hormones, and neurotransmitters of different chemical nature are involved as communicators between organs. Apart of being key players of the adaptive arm of the immune system, it has been recently described that T lymphocytes are involved in the modulation of metabolism of several tissues in health and disease. Diabetes may result mainly from lack of insulin production (type 1 diabetes) or insufficient insulin and insulin resistance (type 2 diabetes), both influenced by genetic and environmental components. Herein, we discuss accumulating data regarding the role of the adaptive arm of the immune system in the pathogenesis of diabetes; including the action of several hormones and neurotransmitters influencing on central and peripheral T lymphocytes development and maturation, particularly under the metabolic burden triggered by diabetes. In addition, we comment on the role of T-effector lymphocytes in adipose and liver tissues during diabetes, which together enhances pancreatic β-cell stress aggravating the disease.
Collapse
|
15
|
Gieras A, Gehbauer C, Perna-Barrull D, Engler JB, Diepenbruck I, Glau L, Joosse SA, Kersten N, Klinge S, Mittrücker HW, Friese MA, Vives-Pi M, Tolosa E. Prenatal Administration of Betamethasone Causes Changes in the T Cell Receptor Repertoire Influencing Development of Autoimmunity. Front Immunol 2017; 8:1505. [PMID: 29181000 PMCID: PMC5693859 DOI: 10.3389/fimmu.2017.01505] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 10/25/2017] [Indexed: 12/15/2022] Open
Abstract
Prenatal glucocorticoids are routinely administered to pregnant women at risk of preterm delivery in order to improve survival of the newborn. However, in half of the cases, birth occurs outside the beneficial period for lung development. Glucocorticoids are potent immune modulators and cause apoptotic death of immature T cells, and we have previously shown that prenatal betamethasone treatment at doses eliciting lung maturation induce profound thymocyte apoptosis in the offspring. Here, we asked if there are long-term consequences on the offspring’s immunity after this treatment. In the non-obese diabetic mouse model, prenatal betamethasone clearly decreased the frequency of pathogenic T cells and the incidence of type 1 diabetes (T1D). In contrast, in the lupus-prone MRL/lpr strain, prenatal glucocorticoids induced changes in the T cell repertoire that resulted in more autoreactive cells. Even though glucocorticoids transiently enhanced regulatory T cell (Treg) development, these cells did not have a protective effect in a model for multiple sclerosis which relies on a limited repertoire of pathogenic T cells for disease induction that were not affected by prenatal betamethasone. We conclude that prenatal steroid treatment, by inducing changes in the T cell receptor repertoire, has unforeseeable consequences on development of autoimmune disease. Our data should encourage further research to fully understand the consequences of this widely used treatment.
Collapse
Affiliation(s)
- Anna Gieras
- Department of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christina Gehbauer
- Department of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - David Perna-Barrull
- Immunology Division, Germans Trias i Pujol Research Institute and Hospital, Universitat Autonoma de Barcelona, Badalona, Spain
| | - Jan Broder Engler
- Institute of Neuroimmunology and Multiple Sclerosis, Center for Molecular Neurobiology Hamburg, Hamburg, Germany
| | - Ines Diepenbruck
- Department of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Laura Glau
- Department of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Simon A Joosse
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nora Kersten
- Department of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefanie Klinge
- Department of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hans-Willi Mittrücker
- Department of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Manuel A Friese
- Institute of Neuroimmunology and Multiple Sclerosis, Center for Molecular Neurobiology Hamburg, Hamburg, Germany
| | - Marta Vives-Pi
- Immunology Division, Germans Trias i Pujol Research Institute and Hospital, Universitat Autonoma de Barcelona, Badalona, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabolicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Eva Tolosa
- Department of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
16
|
Taves MD, Hamden JE, Soma KK. Local glucocorticoid production in lymphoid organs of mice and birds: Functions in lymphocyte development. Horm Behav 2017; 88:4-14. [PMID: 27818220 DOI: 10.1016/j.yhbeh.2016.10.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 10/31/2016] [Accepted: 10/31/2016] [Indexed: 01/04/2023]
Abstract
Circulating glucocorticoids (GCs) are powerful regulators of immunity. Stress-induced GC secretion by the adrenal glands initially enhances and later suppresses the immune response. GC targets include lymphocytes of the adaptive immune system, which are well known for their sensitivity to GCs. Less appreciated, however, is that GCs are locally produced in lymphoid organs, such as the thymus, where GCs play a critical role in selection of the T cell antigen receptor (TCR) repertoire. Here, we review the roles of systemic and locally-produced GCs in T lymphocyte development, which has been studied primarily in laboratory mice. By antagonizing TCR signaling in developing T cells, thymus-derived GCs promote selection of T cells with stronger TCR signaling. This results in increased T cell-mediated immune responses to a range of antigens. We then compare local and systemic GC patterns in mice to those in several bird species. Taken together, these studies suggest that a combination of adrenal and lymphoid GC production might function to adaptively regulate lymphocyte development and selection, and thus antigen-specific immune reactivity, to optimize survival under different environmental conditions. Future studies should examine how lymphoid GC patterns vary across other vertebrates, how GCs function in B lymphocyte development in the bone marrow, spleen, and the avian bursa of Fabricius, and whether GCs adaptively program immunity in free-living animals.
Collapse
Affiliation(s)
- Matthew D Taves
- Dept of Psychology, University of British Columbia, 2136 West Mall, Vancouver V6T 1Z4, Canada; Dept of Zoology, University of British Columbia, 4200-6270 University Blvd, Vancouver V6T 1Z4, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver V6T 1Z3, Canada.
| | - Jordan E Hamden
- Dept of Psychology, University of British Columbia, 2136 West Mall, Vancouver V6T 1Z4, Canada; Dept of Zoology, University of British Columbia, 4200-6270 University Blvd, Vancouver V6T 1Z4, Canada.
| | - Kiran K Soma
- Dept of Psychology, University of British Columbia, 2136 West Mall, Vancouver V6T 1Z4, Canada; Dept of Zoology, University of British Columbia, 4200-6270 University Blvd, Vancouver V6T 1Z4, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver V6T 1Z3, Canada.
| |
Collapse
|
17
|
Pedersen LH, Mogra R, Hyett J. Effect of corticosteroids on cardiac function in growth-restricted fetuses. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2016; 48:204-209. [PMID: 26358625 DOI: 10.1002/uog.15743] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 09/01/2015] [Accepted: 09/04/2015] [Indexed: 06/05/2023]
Abstract
OBJECTIVE To determine the acute effects of corticosteroids on the cardiovascular system in growth-restricted fetuses. METHODS This was a prospective cohort study conducted at a tertiary hospital between January 2011 and October 2013. Fetal cardiovascular function in fetuses with intrauterine growth restriction (IUGR) was assessed immediately before and 24 h after the first dose of betamethasone, administered in routine management of IUGR. Fetal arterial and venous Dopplers were assessed. Fetal cardiac function was evaluated by tissue Doppler echocardiography, with the assessment of both left and right ventricular function by calculating myocardial performance index (MPI') and E':A' ratios. Values were compared before and after exposure. RESULTS Seventeen patients were included at a mean gestational age of 34 + 1 (range, 29 + 1 to 37 + 4) weeks. Fifteen fetuses were below the 5(th) percentile and two were below the 10(th) percentile for estimated fetal weight and abdominal circumference and all had no interval growth during a 2-week period. There was a decrease in right MPI' (from 0.56 to 0.47; P = 0.007) after corticosteroid exposure but no change in left MPI' (from 0.49 to 0.48). Right MPI' was higher than left MPI' before exposure (0.56 vs 0.49, respectively; P = 0.001), but not after exposure (P = 0.55). There was no change in left or right ventricular E':A' ratios and no difference was detected in umbilical artery, middle cerebral artery or ductus venosus pulsatility index following administration of corticosteroids. CONCLUSIONS Corticosteroids altered right-sided, but not left-sided, tissue Doppler MPI' in IUGR fetuses, with no detectable change in arterial or venous Doppler pulsatility indices. Before exposure, the mean right MPI' was higher than the left. However, after exposure, there was no difference, suggesting that corticosteroids may reverse the negative effect of IUGR on fetal heart function. Large prospective studies with a larger sample size are needed to confirm this finding. Copyright © 2015 ISUOG. Published by John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- L H Pedersen
- Department of High Risk Obstetrics, RPA Women and Babies, Royal Prince Alfred Hospital, Sydney, Australia
- Department of Clinical Medicine, Obstetrics and Gynecology, Aarhus University, Aarhus, Denmark
| | - R Mogra
- Department of High Risk Obstetrics, RPA Women and Babies, Royal Prince Alfred Hospital, Sydney, Australia
- Discipline of Obstetrics, Gynaecology and Neonatology, Faculty of Medicine, University of Sydney, Sydney, Australia
| | - J Hyett
- Department of High Risk Obstetrics, RPA Women and Babies, Royal Prince Alfred Hospital, Sydney, Australia
- Discipline of Obstetrics, Gynaecology and Neonatology, Faculty of Medicine, University of Sydney, Sydney, Australia
| |
Collapse
|
18
|
Antenatal endogenous and exogenous glucocorticoids and their impact on immune ontogeny and long-term immunity. Semin Immunopathol 2016; 38:739-763. [DOI: 10.1007/s00281-016-0575-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 05/30/2016] [Indexed: 12/13/2022]
|
19
|
Jiang X, Ma H, Li C, Cao Y, Wang Y, Zhang Y, Liu Y. Effects of neonatal dexamethasone administration on cardiac recovery ability under ischemia-reperfusion in 24-wk-old rats. Pediatr Res 2016; 80:128-35. [PMID: 26991264 DOI: 10.1038/pr.2016.54] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 01/08/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND Evaluations of stress-induced cardiac functional alterations in adults after neonatal glucocorticoid (GC) treatment have been limited. In the present study, we evaluated adult cardiac functional recovery during postischemic reperfusion and measured cardiac gene expression involved energy metabolism in rats neonatally treated with dexamethasone (DEX). METHOD Male Wistar rats were injected DEX in first 3 d after birth and controls were received saline (SAL). At 24 wk of age, insulin tolerance tests were performed, plasma lipid levels were measured, and left ventricular function and myocardial infarct size were evaluated. Expressions of genes involved in cardiac energy metabolism were measured by quantitative real-time polymerase chain reaction (PCR) and western blot. RESULTS In 24-wk-old rats, neonatal DEX administration caused dyslipidemia, impaired cardiac recovery function and increased size of infarction, decreased cardiac expression of glucose transporter 4(GLUT4), peroxisome proliferative-activated receptor gamma coactivator 1α (PGC-1α) and ratios of phospho-forkhead box O1/forkhead box O1 (p-FoxO1/FoxO1) and phospho AMP-activated protein kinase/AMP-activated protein kinase (p-AMPK/AMPK) but increased pyruvate dehydrogenase kinase isoenzyme 4 (PDK4) expression compared with controls. CONCLUSION Neonatal DEX administration impairs cardiac functional recovery during reperfusion following ischemia in 24-wk-old rats. Reduced cardiac glucose utilization may contribute to the long-term detrimental effects caused by neonatal DEX treatment.
Collapse
Affiliation(s)
- Xinli Jiang
- Department of Ophthalmology, the Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Huijie Ma
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Chunguang Li
- Department of Endocrinology, the Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yue Cao
- Department of Endocrinology, the Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yan Wang
- Department of Endocrinology, the Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yi Zhang
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Yan Liu
- Department of Endocrinology, the Third Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
20
|
Yohannes S. Dermatoglyphic meta-analysis indicates early epigenetic outcomes & possible implications on genomic zygosity in type-2 diabetes. F1000Res 2015; 4:617. [PMID: 28781742 PMCID: PMC5527987 DOI: 10.12688/f1000research.6923.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/20/2015] [Indexed: 01/17/2023] Open
Abstract
Background: Dermatoglyphic studies, particularly those arising from the Dutch Hunger Winter Families Cohort, indicate an involvement of prenatal epigenetic insults in type-2 diabetes. However, the exact orchestration of this association is not fully understood. Herein is described a meta-analysis performed based on a belief that such an approach could shed some light as to the role of genetic & epigenetic influences in the etiology of type-2 diabetes. Methodology/principal findings: The study incorporated reports identified from PubMed, Medline, & Google Scholar databases for eligible case-control studies that assessed dermatoglyphics in type-2 diabetes cases relative to controls. Over 44,000 fingerprints & 2300 palm prints from around 4400 individuals were included in the analysis. Decreased loops patterns [OR= 0.76; 95% CI= (0.59, 0.98)], increased non-loop patterns [OR= 1.31; 95% CI= (1.02, 1.68)], and reduced absolute finger ridge counts [OR= -0.19; 95% CI= (-0.33, -0.04)] were significant findings among the diabetic group. These results are indicative of mild developmental deviances, with epigenetic insults significantly linked to early gestation wherein critical events &signaling pathways of the endocrine pancreas development are witnessed. Further, the increased loop patterns with decreased non-loop patterns were deemed as possible indicators of decreased genomic heterozygosity with concurrently increased homozygosity in the diabetic group, linked to reduced buffering capacities during prenatal development. Conclusions: Epigenetic insults primarily during the 1
st trimester, to a lesser extent between the early-to-mid 2
ndtrimester, but least likely linked to those beyond the mid-second trimester are evident in type-2 diabetes. It is recommended that future research aimed at expounding the prenatal origins of T2DM, as well as developing novel therapeutic methods, should focus on the early stages of endocrine pancreatic development.
Collapse
Affiliation(s)
- Seile Yohannes
- Department of Biology, College of Natural & Computational Sciences, Jigjiga University, Jigjiga, Ethiopia
| |
Collapse
|
21
|
Prenatal xenobiotic exposure and intrauterine hypothalamus-pituitary-adrenal axis programming alteration. Toxicology 2014; 325:74-84. [PMID: 25194749 DOI: 10.1016/j.tox.2014.08.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 08/23/2014] [Accepted: 08/28/2014] [Indexed: 12/18/2022]
Abstract
The hypothalamic-pituitary-adrenal (HPA) axis is one of the most important neuroendocrine axes and plays an important role in stress defense responses before and after birth. Prenatal exposure to xenobiotics, including environmental toxins (such as smoke, sulfur dioxide and carbon monoxide), drugs (such as synthetic glucocorticoids), and foods and beverage categories (such as ethanol and caffeine), affects fetal development indirectly by changing the maternal status or damaging the placenta. Certain xenobiotics (such as caffeine, ethanol and dexamethasone) may also affect the fetus directly by crossing the placenta into the fetus due to their lipophilic properties and lower molecular weights. All of these factors probably result in intrauterine programming alteration of the HPA axis, which showed a low basal activity but hypersensitivity to chronic stress. These alterations will, therefore, increase the susceptibility to adult neuropsychiatric (such as depression and schizophrenia) and metabolic diseases (such as hypertension, diabetes and non-alcoholic fatty liver disease). The "over-exposure of fetuses to maternal glucocorticoids" may be the main initiation factor by which the fetal HPA axis programming is altered. Meantime, xenobiotics can directly induce abnormal epigenetic modifications and expression on the important fetal genes (such as hippocampal glucocorticoid receptor, adrenal steroidogenic acute regulatory protein, et al) or damage by in situ oxidative metabolism of fetal adrenals, which may also be contributed to the programming alteration of fetal HPA axis.
Collapse
|
22
|
Davey Smith G. If data could talk back: Anzia Yezierska, Paul de Kruif and thousands of pages of ‘research’. Int J Epidemiol 2013; 42:1-6. [DOI: 10.1093/ije/dyt039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|