1
|
Beaurain M, Salabert AS, Payoux P, Gras E, Talmont F. NMDA Receptors: Distribution, Role, and Insights into Neuropsychiatric Disorders. Pharmaceuticals (Basel) 2024; 17:1265. [PMID: 39458906 PMCID: PMC11509972 DOI: 10.3390/ph17101265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND N-methyl-D-aspartate receptors (NMDARs) are members of the ionotropic glutamate receptor family. These ligand-gated channels are entwined with numerous fundamental neurological functions within the central nervous system (CNS), and numerous neuropsychiatric disorders may arise from their malfunction. METHODS The purpose of the present review is to provide a detailed description of NMDARs by addressing their molecular structures, activation mechanisms, and physiological roles in the mammalian brain. In the second part, their role in various neuropsychiatric disorders including stroke, epilepsy, anti-NMDA encephalitis, Alzheimer's and Huntington's diseases, schizophrenia, depression, neuropathic pain, opioid-induced tolerance, and hyperalgesia will be covered. RESULTS Finally, through a careful exploration of the main non-competitive NMDARs antagonists (channel-blockers). CONCLUSION We discuss the strengths and limitations of the various molecular structures developed for diagnostic or therapeutic purposes.
Collapse
Affiliation(s)
- Marie Beaurain
- ToNIC, Toulouse NeuroImaging Center, INSERM, UPS, Université de Toulouse, 31024 Toulouse, France; (M.B.); (A.-S.S.); (P.P.)
| | - Anne-Sophie Salabert
- ToNIC, Toulouse NeuroImaging Center, INSERM, UPS, Université de Toulouse, 31024 Toulouse, France; (M.B.); (A.-S.S.); (P.P.)
| | - Pierre Payoux
- ToNIC, Toulouse NeuroImaging Center, INSERM, UPS, Université de Toulouse, 31024 Toulouse, France; (M.B.); (A.-S.S.); (P.P.)
| | - Emmanuel Gras
- Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA, UMR 5069), CNRS, UPS, Université de Toulouse, 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France;
| | - Franck Talmont
- Institut de Pharmacologie et de Biologie Structurale (IPBS), CNRS, UPS, Université de Toulouse, 31077 Toulouse, France
| |
Collapse
|
2
|
Carles A, Freyssin A, Perin-Dureau F, Rubinstenn G, Maurice T. Targeting N-Methyl-d-Aspartate Receptors in Neurodegenerative Diseases. Int J Mol Sci 2024; 25:3733. [PMID: 38612544 PMCID: PMC11011887 DOI: 10.3390/ijms25073733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
N-methyl-d-aspartate receptors (NMDARs) are the main class of ionotropic receptors for the excitatory neurotransmitter glutamate. They play a crucial role in the permeability of Ca2+ ions and excitatory neurotransmission in the brain. Being heteromeric receptors, they are composed of several subunits, including two obligatory GluN1 subunits (eight splice variants) and regulatory GluN2 (GluN2A~D) or GluN3 (GluN3A~B) subunits. Widely distributed in the brain, they regulate other neurotransmission systems and are therefore involved in essential functions such as synaptic transmission, learning and memory, plasticity, and excitotoxicity. The present review will detail the structure, composition, and localization of NMDARs, their role and regulation at the glutamatergic synapse, and their impact on cognitive processes and in neurodegenerative diseases (Alzheimer's, Huntington's, and Parkinson's disease). The pharmacology of different NMDAR antagonists and their therapeutic potentialities will be presented. In particular, a focus will be given on fluoroethylnormemantine (FENM), an investigational drug with very promising development as a neuroprotective agent in Alzheimer's disease, in complement to its reported efficacy as a tomography radiotracer for NMDARs and an anxiolytic drug in post-traumatic stress disorder.
Collapse
Affiliation(s)
- Allison Carles
- MMDN, University of Montpellier, EPHE, INSERM, Montpellier, France; (A.C.); (A.F.)
| | - Aline Freyssin
- MMDN, University of Montpellier, EPHE, INSERM, Montpellier, France; (A.C.); (A.F.)
- ReST Therapeutics, 34095 Montpellier, France; (F.P.-D.); (G.R.)
| | | | | | - Tangui Maurice
- MMDN, University of Montpellier, EPHE, INSERM, Montpellier, France; (A.C.); (A.F.)
| |
Collapse
|
3
|
Freyssin A, Carles A, Guehairia S, Rubinstenn G, Maurice T. Fluoroethylnormemantine (FENM) shows synergistic protection in combination with a sigma-1 receptor agonist in a mouse model of Alzheimer's disease. Neuropharmacology 2024; 242:109733. [PMID: 37844867 DOI: 10.1016/j.neuropharm.2023.109733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/14/2023] [Accepted: 09/25/2023] [Indexed: 10/18/2023]
Abstract
Fluoroethylnormemantine (FENM) is a Memantine derivative with anti-amnesic and neuroprotective activities showed in the Aβ25-35 pharmacological mouse model of Alzheimer's disease (AD). As AD is a complex multi-factorial neurodegenerative pathology, combination therapies relying on drugs acting through different pathways, have been suggested to more adequately address neuroprotection. As several agonists of the sigma-1 receptor (S1R), an intracellular chaperone, are presently in phase 2 or 3 clinical trials in neurodegenetrative diseases including AD, we examined the potentialities of S1R drug-based combinations with FENM, or Memantine. Aβ25-35-treated mice were treated with S1R agonists (PRE-084, Igmesine, Cutamesine) and/or FENM, or Memantine, during 7 days after intracerebroventricular administration of oligomerized Aβ25-35. Mice were then tested for spatial short-term memory on day 8 and non-spatial long-term memory on days 9-10, using the spontaneous alternation or passive avoidance tests, respectively. The FENM or Memantine combination with Donepezil, that non-selectively inhibits acetylcholinesterase and activates S1R, was also tested. The efficacy of combinations using maximal non-active or minimal active doses of S1R agonist or FENM was analyzed using calculations of the combination index, based on simple isobologram representation. Data showed that most of the FENM-based combinations led to synergistic protection against Aβ25-35-induced learning deficits, for both long- and short-term memory responses, with a higher efficiency on the latter. Memantine led to synergistic combination in short-term memory but poorly in long-term memory responses, with either PRE-084 or Donepezil. These study showed that drug combinations based on FENM and S1R agonists may lead to highly effective and synergistic protection in AD, particularly on short-term memory.
Collapse
Affiliation(s)
- Aline Freyssin
- MMDN, Univ Montpellier, INSERM, EPHE, Montpellier, France; ReST Therapeutics, Montpellier, France
| | - Allison Carles
- MMDN, Univ Montpellier, INSERM, EPHE, Montpellier, France
| | | | | | - Tangui Maurice
- MMDN, Univ Montpellier, INSERM, EPHE, Montpellier, France.
| |
Collapse
|
4
|
Chen BK, Luna VM, Jin M, Shah A, Shannon ME, Pauers M, Williams BL, Pham V, Hunsberger HC, Gardier AM, Mendez-David I, David DJ, Denny CA. A tale of two receptors: simultaneous targeting of NMDARs and 5-HT 4 Rs exerts additive effects against stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.27.559065. [PMID: 37808799 PMCID: PMC10557654 DOI: 10.1101/2023.09.27.559065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
BACKGROUND Serotonin (5-HT) receptors and N -methyl-D-aspartate receptors (NMDARs) have both been implicated in the pathophysiology of depression and anxiety disorders. Here, we evaluated whether targeting both receptors through combined dosing of ( R , S )-ketamine, an NMDAR antagonist, and prucalopride, a serotonin type IV receptor (5-HT 4 R) agonist, would have additive effects, resulting in reductions in stress-induced fear, behavioral despair, and hyponeophagia. METHODS A single injection of saline (Sal), ( R , S )-ketamine (K), prucalopride (P), or a combined dose of ( R , S )-ketamine and prucalopride (K+P) was administered before or after contextual fear conditioning (CFC) stress in both sexes. Drug efficacy was assayed using the forced swim test (FST), elevated plus maze (EPM), open field (OF), marble burying (MB), and novelty-suppressed feeding (NSF). Patch clamp electrophysiology was used to measure the effects of combined drug on neural activity in hippocampal CA3. c-fos and parvalbumin (PV) expression in the hippocampus (HPC) and medial prefrontal cortex (mPFC) was examined using immunohistochemistry and network analysis. RESULTS We found that a combination of K+P, given before or after stress, exerted additive effects, compared to either drug alone, in reducing a variety of stress-induced behaviors in both sexes. Combined K+P administration significantly altered c-fos and PV expression and network activity in the HPC and mPFC. CONCLUSIONS Our results indicate that combined K+P has additive benefits for combating stress-induced pathophysiology, both at the behavioral and neural level. Our findings provide preliminary evidence that future clinical studies using this combined treatment strategy may prove advantageous in protecting against a broader range of stress-induced psychiatric disorders.
Collapse
|
5
|
Yu SP, Jiang MQ, Shim SS, Pourkhodadad S, Wei L. Extrasynaptic NMDA receptors in acute and chronic excitotoxicity: implications for preventive treatments of ischemic stroke and late-onset Alzheimer's disease. Mol Neurodegener 2023; 18:43. [PMID: 37400870 DOI: 10.1186/s13024-023-00636-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 06/01/2023] [Indexed: 07/05/2023] Open
Abstract
Stroke and late-onset Alzheimer's disease (AD) are risk factors for each other; the comorbidity of these brain disorders in aging individuals represents a significant challenge in basic research and clinical practice. The similarities and differences between stroke and AD in terms of pathogenesis and pathophysiology, however, have rarely been comparably reviewed. Here, we discuss the research background and recent progresses that are important and informative for the comorbidity of stroke and late-onset AD and related dementia (ADRD). Glutamatergic NMDA receptor (NMDAR) activity and NMDAR-mediated Ca2+ influx are essential for neuronal function and cell survival. An ischemic insult, however, can cause rapid increases in glutamate concentration and excessive activation of NMDARs, leading to swift Ca2+ overload in neuronal cells and acute excitotoxicity within hours and days. On the other hand, mild upregulation of NMDAR activity, commonly seen in AD animal models and patients, is not immediately cytotoxic. Sustained NMDAR hyperactivity and Ca2+ dysregulation lasting from months to years, nevertheless, can be pathogenic for slowly evolving events, i.e. degenerative excitotoxicity, in the development of AD/ADRD. Specifically, Ca2+ influx mediated by extrasynaptic NMDARs (eNMDARs) and a downstream pathway mediated by transient receptor potential cation channel subfamily M member (TRPM) are primarily responsible for excitotoxicity. On the other hand, the NMDAR subunit GluN3A plays a "gatekeeper" role in NMDAR activity and a neuroprotective role against both acute and chronic excitotoxicity. Thus, ischemic stroke and AD share an NMDAR- and Ca2+-mediated pathogenic mechanism that provides a common receptor target for preventive and possibly disease-modifying therapies. Memantine (MEM) preferentially blocks eNMDARs and was approved by the Federal Drug Administration (FDA) for symptomatic treatment of moderate-to-severe AD with variable efficacy. According to the pathogenic role of eNMDARs, it is conceivable that MEM and other eNMDAR antagonists should be administered much earlier, preferably during the presymptomatic phases of AD/ADRD. This anti-AD treatment could simultaneously serve as a preconditioning strategy against stroke that attacks ≥ 50% of AD patients. Future research on the regulation of NMDARs, enduring control of eNMDARs, Ca2+ homeostasis, and downstream events will provide a promising opportunity to understand and treat the comorbidity of AD/ADRD and stroke.
Collapse
Affiliation(s)
- Shan P Yu
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, 30322, USA.
- Center for Visual & Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, GA, 30033, USA.
| | - Michael Q Jiang
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Center for Visual & Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, GA, 30033, USA
| | - Seong S Shim
- Center for Visual & Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, GA, 30033, USA
| | - Soheila Pourkhodadad
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Center for Visual & Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, GA, 30033, USA
| | - Ling Wei
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| |
Collapse
|
6
|
Beaurain M, Talmont F, Pierre D, Péran P, Boucher S, Hitzel A, Rols MP, Cuvillier O, Payoux P, Salabert AS. Pharmacological Characterization of [ 18F]-FNM and Evaluation of NMDA Receptors Activation in a Rat Brain Injury Model. Mol Imaging Biol 2023:10.1007/s11307-023-01811-y. [PMID: 36944798 DOI: 10.1007/s11307-023-01811-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/23/2023]
Abstract
PURPOSE NMDA receptors (NMDARs) dysfunction plays a central role in the physiopathology of psychiatric and neurodegenerative disorders whose mechanisms are still poorly understood. The development of a PET (positron emission tomography) tracer able to selectively bind to the NMDARs intra-channel PCP site may make it possible to visualize NMDARs in an open and active state. We describe the in vitro pharmacological characterization of [18F]-fluoroethylnormemantine ([18F]-FNM) and evaluate its ability to localize activated NMDA receptors in a rat preclinical model of excitotoxicity. PROCEDURES The affinity of the non-radioactive analog for the intra-channel PCP site was determined in a radioligand competition assay using [3H]TCP ([3H]N-(1-[thienyl]cyclohexyl)piperidine) on rat brain homogenates. Selectivity was also investigated by the displacement of specific radioligands targeting various cerebral receptors. In vivo brain lesions were performed using stereotaxic quinolinic acid (QA) injections in the left motor area (M1) of seven Sprague Dawley rats. Each rat was imaged with a microPET/CT camera, 40 min after receiving a dose of 30 MBq + / - 20 of [18F]-FNM, 24 and 72 h after injury. Nine non-injured rats were also imaged using the same protocol. RESULTS FNM displayed IC50 value of 13.0 ± 8.9 µM in rat forebrain homogenates but also showed significant bindings on opioid receptors. In the frontal and left somatosensory areas, [18F]FNM PET detected a mean of 37% and 41% increase in [18F]FNM uptake (p < 0,0001) 24 and 72 h after QA stereotaxic injection, respectively, compared to the control group. CONCLUSIONS In spite of FNM's poor affinity for NMDAR PCP site, this study supports the ability of this tracer to track massive activation of NMDARs in neurological diseases.
Collapse
Affiliation(s)
- Marie Beaurain
- Toulouse NeuroImaging Center, ToNIC, UMR1214 Inserm, Toulouse, France.
- Nuclear Medicine Department, Toulouse Purpan University Hospital, Toulouse, France.
| | - Franck Talmont
- Institut de Pharmacologie Et de Biologie Structurale, Université de Toulouse, CNRS, UPS, 31059, Toulouse, France
| | - Damien Pierre
- Toulouse NeuroImaging Center, ToNIC, UMR1214 Inserm, Toulouse, France
| | - Patrice Péran
- Toulouse NeuroImaging Center, ToNIC, UMR1214 Inserm, Toulouse, France
| | - Samuel Boucher
- Toulouse NeuroImaging Center, ToNIC, UMR1214 Inserm, Toulouse, France
| | - Anne Hitzel
- Nuclear Medicine Department, Toulouse Purpan University Hospital, Toulouse, France
| | - Marie-Pierre Rols
- Institut de Pharmacologie Et de Biologie Structurale, Université de Toulouse, CNRS, UPS, 31059, Toulouse, France
| | - Olivier Cuvillier
- Institut de Pharmacologie Et de Biologie Structurale, Université de Toulouse, CNRS, UPS, 31059, Toulouse, France
| | - Pierre Payoux
- Toulouse NeuroImaging Center, ToNIC, UMR1214 Inserm, Toulouse, France
- Nuclear Medicine Department, Toulouse Purpan University Hospital, Toulouse, France
| | - Anne-Sophie Salabert
- Toulouse NeuroImaging Center, ToNIC, UMR1214 Inserm, Toulouse, France
- Nuclear Medicine Department, Toulouse Purpan University Hospital, Toulouse, France
| |
Collapse
|
7
|
Environmental enrichment mitigates PTSD-like behaviors in adult male rats exposed to early life stress by regulating histone acetylation in the hippocampus and amygdala. J Psychiatr Res 2022; 155:120-136. [PMID: 36029624 DOI: 10.1016/j.jpsychires.2022.07.067] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/04/2022] [Accepted: 07/25/2022] [Indexed: 11/20/2022]
Abstract
Early life stress (ELS) can cause long-term changes in gene expression, affect cognition, mood, and behavior, and increase susceptibility to post-traumatic stress disorder (PTSD) in adulthood, in which the histone acetylation plays a crucial role. Studies have found that environmental enrichment (EE) mitigated the unfavorable outcomes of ELS. However, the underlying mechanism of the histone acetylation is not yet completely clear. The purpose of this study was to explore the effect of EE on the histone acetylation after ELS. In this study, using single prolonged stress (SPS) paradigm in early adolescent rats explored the long-term effects of ELS on behavior, the activity of histone acetyltransferases (HATs) and histone deacetylases (HDACs), as well as the acetylation levels of the lysine 9 site of histone H3 (H3K9) and lysine 12 site of histone H4 (H4K12) in the hippocampus and amygdala. Meanwhile, the protective effects of EE intervention were examined. We found that adult male rats exposed to ELS showed behavioral changes, including reduced locomotor activity, increased anxiety-like behaviors, impaired spatial learning and memory, enhanced contextual and cued fear memory, and the HATs/HDACs ratio and acetyl H3K9 (Ac-H3K9) and acetyl H4K12 (Ac-H4K12) were increased in the hippocampus and decreased in the amygdala. Furthermore, EE attenuated the behavioral abnormalities from ELS, possibly through down-regulating the activity of HATs in the hippocampus and up-regulating HDACs activities in the amygdala. These finding suggested that EE could ameliorate ELS-induced PTSD-like behaviors by regulating histone acetylation in the hippocampus and amygdala, reducing the susceptibility to PTSD in adulthood.
Collapse
|
8
|
Chen BK, Luna VM, Shannon ME, Hunsberger HC, Mastrodonato A, Stackmann M, McGowan JC, Rubinstenn G, Denny CA. Fluoroethylnormemantine, a Novel NMDA Receptor Antagonist, for the Prevention and Treatment of Stress-Induced Maladaptive Behavior. Biol Psychiatry 2021; 90:458-472. [PMID: 34274107 PMCID: PMC9590626 DOI: 10.1016/j.biopsych.2021.04.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 04/13/2021] [Accepted: 04/30/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Major depressive disorder is a common, recurrent illness. Recent studies have implicated the NMDA receptor in the pathophysiology of major depressive disorder. (R,S)-ketamine, an NMDA receptor antagonist, is an effective antidepressant but has numerous side effects. Here, we characterized a novel NMDA receptor antagonist, fluoroethylnormemantine (FENM), to determine its effectiveness as a prophylactic and/or antidepressant against stress-induced maladaptive behavior. METHODS Saline, memantine (10 mg/kg), (R,S)-ketamine (30 mg/kg), or FENM (10, 20, or 30 mg/kg) was administered before or after contextual fear conditioning in 129S6/SvEv mice. Drug efficacy was assayed using various behavioral tests. Protein expression in the hippocampus was quantified with immunohistochemistry or Western blotting. In vitro radioligand binding was used to assay drug binding affinity. Patch clamp electrophysiology was used to determine the effect of drug administration on glutamatergic activity in ventral hippocampal cornu ammonis 3 (vCA3) 1 week after injection. RESULTS Given after stress, FENM decreased behavioral despair and reduced perseverative behavior. When administered after re-exposure, FENM facilitated extinction learning. As a prophylactic, FENM attenuated learned fear and decreased stress-induced behavioral despair. FENM was behaviorally effective in both male and female mice. (R,S)-ketamine, but not FENM, increased expression of c-fos in vCA3. Both (R,S)-ketamine and FENM attenuated large-amplitude AMPA receptor-mediated bursts in vCA3, indicating a common neurobiological mechanism for further study. CONCLUSIONS Our results indicate that FENM is a novel drug that is efficacious when administered at various times before or after stress. Future work will further characterize FENM's mechanism of action with the goal of clinical development.
Collapse
Affiliation(s)
- Briana K Chen
- Doctoral Program in Neurobiology and Behavior, Columbia University, New York, New York
| | - Victor M Luna
- Division of Systems Neuroscience, Research Foundation for Mental Hygiene, Inc./New York State Psychiatric Institute, New York, New York; Department of Psychiatry, Columbia University Irving Medical Center, New York, New York
| | | | - Holly C Hunsberger
- Division of Systems Neuroscience, Research Foundation for Mental Hygiene, Inc./New York State Psychiatric Institute, New York, New York; Department of Psychiatry, Columbia University Irving Medical Center, New York, New York
| | - Alessia Mastrodonato
- Division of Systems Neuroscience, Research Foundation for Mental Hygiene, Inc./New York State Psychiatric Institute, New York, New York; Department of Psychiatry, Columbia University Irving Medical Center, New York, New York
| | - Michelle Stackmann
- Doctoral Program in Neurobiology and Behavior, Columbia University, New York, New York
| | - Josephine C McGowan
- Doctoral Program in Neurobiology and Behavior, Columbia University, New York, New York
| | | | - Christine A Denny
- Division of Systems Neuroscience, Research Foundation for Mental Hygiene, Inc./New York State Psychiatric Institute, New York, New York; Department of Psychiatry, Columbia University Irving Medical Center, New York, New York.
| |
Collapse
|