1
|
Li W, Liu D, Liu X, Lu Y, Zhang L, Yu F, Yu H, Ma C, Cong B, Wen D, Xie B. Combined Diagnostic Value of Hsa-miR-592 and Hsa-miR-9-3p in Plasma for Methamphetamine Addicts. Int J Mol Sci 2024; 25:8952. [PMID: 39201637 PMCID: PMC11354292 DOI: 10.3390/ijms25168952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/08/2024] [Accepted: 08/15/2024] [Indexed: 09/02/2024] Open
Abstract
A number of studies have reported that drug addiction is associated with microRNAs (miRNAs). However, the roles of plasma miRNAs in methamphetamine (METH) addicts have not been clearly explained. This study aimed to profile a panel of miRNAs as non-invasive predictive biomarkers and therapeutic targets for METH addiction. Differentially expressed miRNAs were derived from next-generation sequencing technology (NGS) and were validated by quantitative real-time PCR (RT-qPCR). The diagnostic value of specific altered miRNAs was evaluated by receiver operating characteristic (ROC) analysis and area under the curve (AUC). NGS results revealed that 63 miRNAs were significantly altered in the METH-exposed paradigm. The levels of hsa-miR-592, hsa-miR-9-3p, hsa-miR-206 and hsa-let-7b-3p were significantly elevated in the plasma of METH addicts. Hsa-miR-9-3p was a useful biomarker discriminating METH addicts from normal (AUC was 0.756). Importantly, combining detection of hsa-miR-592 and hsa-miR-9-3p achieved the highest AUC of 0.87, with a sensitivity and specificity of 82.7% and 78.9%, respectively. Target gene BDNF decreased significantly in METH addicts. Although METH addicts showed significant depressive symptoms, there was no correlation between the expression level of miR-592 and miR-9-3p and the degree of depression. Our findings suggested that hsa-miR-592, hsa-miR-9-3p, hsa-miR-206, and hsa-let-7b-3p may play a potential role in the pathology of METH addiction, and a combination of hsa-miR-592 and hsa-miR-9-3p could serve as potential peripheral biomarker and therapeutic target for METH addiction.
Collapse
Affiliation(s)
- Wenbo Li
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, College of Forensic Medicine, Hebei Medical University, Chinese Academy of Medical Sciences, Shijiazhuang 050017, China; (W.L.); (D.L.); (X.L.); (Y.L.); (L.Z.); (F.Y.); (H.Y.); (C.M.); (B.C.)
| | - Diandian Liu
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, College of Forensic Medicine, Hebei Medical University, Chinese Academy of Medical Sciences, Shijiazhuang 050017, China; (W.L.); (D.L.); (X.L.); (Y.L.); (L.Z.); (F.Y.); (H.Y.); (C.M.); (B.C.)
| | - Xiaokun Liu
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, College of Forensic Medicine, Hebei Medical University, Chinese Academy of Medical Sciences, Shijiazhuang 050017, China; (W.L.); (D.L.); (X.L.); (Y.L.); (L.Z.); (F.Y.); (H.Y.); (C.M.); (B.C.)
| | - Yun Lu
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, College of Forensic Medicine, Hebei Medical University, Chinese Academy of Medical Sciences, Shijiazhuang 050017, China; (W.L.); (D.L.); (X.L.); (Y.L.); (L.Z.); (F.Y.); (H.Y.); (C.M.); (B.C.)
| | - Ludi Zhang
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, College of Forensic Medicine, Hebei Medical University, Chinese Academy of Medical Sciences, Shijiazhuang 050017, China; (W.L.); (D.L.); (X.L.); (Y.L.); (L.Z.); (F.Y.); (H.Y.); (C.M.); (B.C.)
- Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang 050017, China
| | - Feng Yu
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, College of Forensic Medicine, Hebei Medical University, Chinese Academy of Medical Sciences, Shijiazhuang 050017, China; (W.L.); (D.L.); (X.L.); (Y.L.); (L.Z.); (F.Y.); (H.Y.); (C.M.); (B.C.)
| | - Hailei Yu
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, College of Forensic Medicine, Hebei Medical University, Chinese Academy of Medical Sciences, Shijiazhuang 050017, China; (W.L.); (D.L.); (X.L.); (Y.L.); (L.Z.); (F.Y.); (H.Y.); (C.M.); (B.C.)
| | - Chunling Ma
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, College of Forensic Medicine, Hebei Medical University, Chinese Academy of Medical Sciences, Shijiazhuang 050017, China; (W.L.); (D.L.); (X.L.); (Y.L.); (L.Z.); (F.Y.); (H.Y.); (C.M.); (B.C.)
| | - Bin Cong
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, College of Forensic Medicine, Hebei Medical University, Chinese Academy of Medical Sciences, Shijiazhuang 050017, China; (W.L.); (D.L.); (X.L.); (Y.L.); (L.Z.); (F.Y.); (H.Y.); (C.M.); (B.C.)
| | - Di Wen
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, College of Forensic Medicine, Hebei Medical University, Chinese Academy of Medical Sciences, Shijiazhuang 050017, China; (W.L.); (D.L.); (X.L.); (Y.L.); (L.Z.); (F.Y.); (H.Y.); (C.M.); (B.C.)
| | - Bing Xie
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, College of Forensic Medicine, Hebei Medical University, Chinese Academy of Medical Sciences, Shijiazhuang 050017, China; (W.L.); (D.L.); (X.L.); (Y.L.); (L.Z.); (F.Y.); (H.Y.); (C.M.); (B.C.)
| |
Collapse
|
2
|
Bergeria CL, Gipson CD, Smith KE, Stoops WW, Strickland JC. Opioid craving does not incubate over time in inpatient or outpatient treatment studies: Is the preclinical incubation of craving model lost in translation? Neurosci Biobehav Rev 2024; 160:105618. [PMID: 38492446 PMCID: PMC11046527 DOI: 10.1016/j.neubiorev.2024.105618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/29/2024] [Accepted: 03/05/2024] [Indexed: 03/18/2024]
Abstract
Within addiction science, incubation of craving is an operational label used to describe time-dependent increases in drug seeking during periods of drug deprivation. The purpose of this systematic review was to describe the preclinical literature on incubation of craving and the clinical literature on craving measured over extended periods of abstinence to document this translational homology and factors impacting correspondence. Across the 44 preclinical studies that met inclusion criteria, 31 reported evidence of greater lever pressing, nose pokes, spout licks, or time spent in drug-paired compartments (i.e., drug seeking) relative to neutral compartments after longer periods of abstinence relative to shorter periods of abstinence, labelled as "incubation of craving." In contrast, no clinical studies (n = 20) identified an increase in opioid craving during longer abstinence periods. The lack of clinical evidence for increases in craving in clinical populations weakens the translational utility of operationalizing the time-dependent increase in drug-seeking behavior observed in preclinical models as models of incubation of "craving".
Collapse
Affiliation(s)
- Cecilia L Bergeria
- Johns Hopkins University School of Medicine, Department of Psychiatry and Behavioral Sciences, Baltimore, MD, United States.
| | - Cassandra D Gipson
- University of Kentucky College of Medicine, Department of Pharmacology and Nutritional Sciences, Lexington, KY, United States
| | - Kirsten E Smith
- Johns Hopkins University School of Medicine, Department of Psychiatry and Behavioral Sciences, Baltimore, MD, United States
| | - William W Stoops
- University of Kentucky College of Medicine, Department of Behavioral Science, Lexington, KY, United States
| | - Justin C Strickland
- Johns Hopkins University School of Medicine, Department of Psychiatry and Behavioral Sciences, Baltimore, MD, United States
| |
Collapse
|
3
|
Yang H, Zhang X, Zhang M, Lu Y, Xie B, Sun S, Yu H, Cong B, Luo Y, Ma C, Wen D. Roles of lncLingo2 and its derived miR-876-5p in the acquisition of opioid reinforcement. Addict Biol 2024; 29:e13375. [PMID: 38380802 PMCID: PMC10898844 DOI: 10.1111/adb.13375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 02/22/2024]
Abstract
Recent studies found that non-coding RNAs (ncRNAs) played crucial roles in drug addiction through epigenetic regulation of gene expression and underlying drug-induced neuroadaptations. In this study, we characterized lncRNA transcriptome profiles in the nucleus accumbens (NAc) of mice exhibiting morphine-conditioned place preference (CPP) and explored the prospective roles of novel differentially expressed lncRNA, lncLingo2 and its derived miR-876-5p in the acquisition of opioids-associated behaviours. We found that the lncLingo2 was downregulated within the NAc core (NAcC) but not in the NAc shell (NAcS). This downregulation was found to be associated with the development of morphine CPP and heroin intravenous self-administration (IVSA). As Mfold software revealed that the secondary structures of lncLingo2 contained the sequence of pre-miR-876, transfection of LV-lncLingo2 into HEK293 cells significantly upregulated miR-876 expression and the changes of mature miR-876 are positively correlated with lncLingo2 expression in NAcC of morphine CPP trained mice. Delivering miR-876-5p mimics into NAcC also inhibited the acquisition of morphine CPP. Furthermore, bioinformatics analysis and dual-luciferase assay confirmed that miR-876-5p binds to its target gene, Kcnn3, selectively and regulates morphine CPP training-induced alteration of Kcnn3 expression. Lastly, the electrophysiological analysis indicated that the currents of small conductance calcium-activated potassium (SK) channel was increased, which led to low neuronal excitability in NAcC after CPP training, and these changes were reversed by lncLingo2 overexpression. Collectively, lncLingo2 may function as a precursor of miR-876-5p in NAcC, hence modulating the development of opioid-associated behaviours in mice, which may serve as an underlying biomarker and therapeutic target of opioid addiction.
Collapse
Affiliation(s)
- Hongyu Yang
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and ToxicologyChinese Academy of Medical SciencesShijiazhuangHebei ProvinceChina
| | - Xiuning Zhang
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and ToxicologyChinese Academy of Medical SciencesShijiazhuangHebei ProvinceChina
| | - Minglong Zhang
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and ToxicologyChinese Academy of Medical SciencesShijiazhuangHebei ProvinceChina
- Department of GeneticsQiqihar Medical UniversityQiqiharHeilongjiang ProvinceChina
| | - Yun Lu
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and ToxicologyChinese Academy of Medical SciencesShijiazhuangHebei ProvinceChina
| | - Bing Xie
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and ToxicologyChinese Academy of Medical SciencesShijiazhuangHebei ProvinceChina
| | - Shaoguang Sun
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei ProvinceHebei Medical UniversityShijiazhuangChina
- Key Laboratory of Neural and Vascular BiologyMinistry of EducationShijiazhuangHebei ProvinceChina
| | - Hailei Yu
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and ToxicologyChinese Academy of Medical SciencesShijiazhuangHebei ProvinceChina
| | - Bin Cong
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and ToxicologyChinese Academy of Medical SciencesShijiazhuangHebei ProvinceChina
| | - Yixiao Luo
- Hunan Province People's HospitalThe First‐Affiliated Hospital of Hunan Normal UniversityChangshaChina
| | - Chunling Ma
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and ToxicologyChinese Academy of Medical SciencesShijiazhuangHebei ProvinceChina
- Key Laboratory of Neural and Vascular BiologyMinistry of EducationShijiazhuangHebei ProvinceChina
| | - Di Wen
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and ToxicologyChinese Academy of Medical SciencesShijiazhuangHebei ProvinceChina
- Key Laboratory of Neural and Vascular BiologyMinistry of EducationShijiazhuangHebei ProvinceChina
| |
Collapse
|
4
|
Occhipinti C, La Russa R, Iacoponi N, Lazzari J, Costantino A, Di Fazio N, Del Duca F, Maiese A, Fineschi V. miRNAs and Substances Abuse: Clinical and Forensic Pathological Implications: A Systematic Review. Int J Mol Sci 2023; 24:17122. [PMID: 38069445 PMCID: PMC10707252 DOI: 10.3390/ijms242317122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/17/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Substance addiction is a chronic and relapsing brain disorder characterized by compulsive seeking and continued substance use, despite adverse consequences. The high prevalence and social burden of addiction are indisputable; however, the available intervention is insufficient. The modulation of gene expression and aberrant adaptation of neural networks are attributed to the changes in brain functions under repeated exposure to addictive substances. Considerable studies have demonstrated that miRNAs are strong modulators of post-transcriptional gene expression in substance addiction. The emerging role of microRNA (miRNA) provides new insights into many biological and pathological processes in the central nervous system: their variable expression in different regions of the brain and tissues may play a key role in regulating the pathophysiological events of addiction. This work provides an overview of the current literature on miRNAs involved in addiction, evaluating their impaired expression and regulatory role in neuroadaptation and synaptic plasticity. Clinical implications of such modulatory capacities will be estimated. Specifically, it will evaluate the potential diagnostic role of miRNAs in the various stages of drug and substance addiction. Future perspectives about miRNAs as potential novel therapeutic targets for substance addiction and abuse will also be provided.
Collapse
Affiliation(s)
- Carla Occhipinti
- Department of Surgical Pathology, Medical, Molecular and Critical Area, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy; (C.O.); (N.I.); (J.L.); (A.C.)
| | - Raffaele La Russa
- Department of Clinical Medicine, Public Health, Life Sciences, and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Naomi Iacoponi
- Department of Surgical Pathology, Medical, Molecular and Critical Area, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy; (C.O.); (N.I.); (J.L.); (A.C.)
| | - Julia Lazzari
- Department of Surgical Pathology, Medical, Molecular and Critical Area, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy; (C.O.); (N.I.); (J.L.); (A.C.)
| | - Andrea Costantino
- Department of Surgical Pathology, Medical, Molecular and Critical Area, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy; (C.O.); (N.I.); (J.L.); (A.C.)
| | - Nicola Di Fazio
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00161 Rome, Italy; (N.D.F.); (F.D.D.); (V.F.)
| | - Fabio Del Duca
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00161 Rome, Italy; (N.D.F.); (F.D.D.); (V.F.)
| | - Aniello Maiese
- Department of Surgical Pathology, Medical, Molecular and Critical Area, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy; (C.O.); (N.I.); (J.L.); (A.C.)
| | - Vittorio Fineschi
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00161 Rome, Italy; (N.D.F.); (F.D.D.); (V.F.)
| |
Collapse
|
5
|
Abstract
This paper is the forty-fifth consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2022 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (1), the roles of these opioid peptides and receptors in pain and analgesia in animals (2) and humans (3), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (4), opioid peptide and receptor involvement in tolerance and dependence (5), stress and social status (6), learning and memory (7), eating and drinking (8), drug abuse and alcohol (9), sexual activity and hormones, pregnancy, development and endocrinology (10), mental illness and mood (11), seizures and neurologic disorders (12), electrical-related activity and neurophysiology (13), general activity and locomotion (14), gastrointestinal, renal and hepatic functions (15), cardiovascular responses (16), respiration and thermoregulation (17), and immunological responses (18).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, USA.
| |
Collapse
|
6
|
Mazzeo F, Meccariello R, Guatteo E. Molecular and Epigenetic Aspects of Opioid Receptors in Drug Addiction and Pain Management in Sport. Int J Mol Sci 2023; 24:ijms24097831. [PMID: 37175536 PMCID: PMC10178540 DOI: 10.3390/ijms24097831] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/14/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Opioids are substances derived from opium (natural opioids). In its raw state, opium is a gummy latex extracted from Papaver somniferum. The use of opioids and their negative health consequences among people who use drugs have been studied. Today, opioids are still the most commonly used and effective analgesic treatments for severe pain, but their use and abuse causes detrimental side effects for health, including addiction, thus impacting the user's quality of life and causing overdose. The mesocorticolimbic dopaminergic circuitry represents the brain circuit mediating both natural rewards and the rewarding aspects of nearly all drugs of abuse, including opioids. Hence, understanding how opioids affect the function of dopaminergic circuitry may be useful for better knowledge of the process and to develop effective therapeutic strategies in addiction. The aim of this review was to summarize the main features of opioids and opioid receptors and focus on the molecular and upcoming epigenetic mechanisms leading to opioid addiction. Since synthetic opioids can be effective for pain management, their ability to induce addiction in athletes, with the risk of incurring doping, is also discussed.
Collapse
Affiliation(s)
- Filomena Mazzeo
- Department of Economics, Law, Cybersecurity and Sports Sciences, University of Naples "Parthenope", 80133 Naples, Italy
- Department of Movement Sciences and Wellbeing, University of Naples "Parthenope", 80133 Naples, Italy
| | - Rosaria Meccariello
- Department of Movement Sciences and Wellbeing, University of Naples "Parthenope", 80133 Naples, Italy
| | - Ezia Guatteo
- Department of Movement Sciences and Wellbeing, University of Naples "Parthenope", 80133 Naples, Italy
- IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano 64, 00143 Rome, Italy
| |
Collapse
|
7
|
Zanda MT, Floris G, Daws SE. Orbitofrontal cortex microRNAs support long-lasting heroin seeking behavior in male rats. Transl Psychiatry 2023; 13:117. [PMID: 37031193 PMCID: PMC10082780 DOI: 10.1038/s41398-023-02423-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 03/23/2023] [Accepted: 03/29/2023] [Indexed: 04/10/2023] Open
Abstract
Recovery from opioid use disorder (OUD) and maintenance of abstinence from opioid use is hampered by perseverant drug cravings that may persist for months after cessation of drug use. Drug cravings can intensify during the abstinence period, a phenomenon referred to as the 'incubation of craving' that has been well-described in preclinical studies. We previously reported that animals that self-administered heroin at a dosage of 0.075 mg/kg/infusion (HH) paired with discrete drug cues displayed robust incubation of heroin craving behavior after 21 days (D) of forced abstinence, an effect that was not observed with a lower dosage (0.03 mg/kg/infusion; HL). Here, we sought to elucidate molecular mechanisms underlying long-term heroin seeking behavior by profiling microRNA (miRNA) pathways in the orbitofrontal cortex (OFC), a brain region that modulates incubation of heroin seeking. miRNAs are small noncoding RNAs with long half-lives that have emerged as critical regulators of drug seeking behavior but their expression in the OFC has not been examined in any drug exposure paradigm. We employed next generation sequencing to detect OFC miRNAs differentially expressed after 21D of forced abstinence between HH and HL animals, and proteomics analysis to elucidate miRNA-dependent translational neuroadaptations. We identified 55 OFC miRNAs associated with incubation of heroin craving, including miR-485-5p, which was significantly downregulated following 21D forced abstinence in HH but not HL animals. We bidirectionally manipulated miR-485-5p in the OFC to demonstrate that miR-485-5p can regulate long-lasting heroin seeking behavior after extended forced abstinence. Proteomics analysis identified 45 proteins selectively regulated in the OFC of HH but not HL animals that underwent 21D forced abstinence, of which 7 were putative miR-485-5p target genes. Thus, the miR-485-5p pathway is dysregulated in animals with a phenotype of persistent heroin craving behavior and OFC miR-485-5p pathways may function to support long-lasting heroin seeking.
Collapse
Affiliation(s)
- Mary Tresa Zanda
- Center for Substance Abuse Research, Temple University, Philadelphia, PA, USA
- Department of Neural Sciences, Temple University, Philadelphia, PA, USA
| | - Gabriele Floris
- Center for Substance Abuse Research, Temple University, Philadelphia, PA, USA
- Department of Neural Sciences, Temple University, Philadelphia, PA, USA
| | - Stephanie E Daws
- Center for Substance Abuse Research, Temple University, Philadelphia, PA, USA.
- Department of Neural Sciences, Temple University, Philadelphia, PA, USA.
| |
Collapse
|