1
|
Hussein MM, Sayed RKA, Mokhtar DM. Structural and immunohistochemical characterization of pancreas of Molly fish (Poecilia sphenops), with a special reference to its immune role. Microsc Res Tech 2023; 86:1667-1680. [PMID: 37610072 DOI: 10.1002/jemt.24407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/12/2023] [Accepted: 08/12/2023] [Indexed: 08/24/2023]
Abstract
Recently, teleost species have been considered important model systems for investigating different research areas including immunologic one. The available literature provides poor data about the localization and the structure of pancreas in Molly fish. Moreover, little attention has been paid to the immunologic role of pancreatic tissue of teleost, particularly Molly fish; therefore, this study aimed to highlights the description of pancreatic tissue in Molly fish using light- and electron- microscopy, focusing on the role of pancreatic immune cells and pancreatic acinar cells in immune responses. Microscopic analysis revealed that the pancreas of Molly fish was composed of intrahepatic, disseminated and compact parts. Exocrine pancreatic tissue was diffusely extended within the hepatic tissue forming hepatopancreas. The disseminated pancreas appeared as several irregular nodules of pancreatic tissue localized within the mesenteric adipose tissue. The compact pancreas appeared as an oval shaped body embedded within the mesenteric adipose tissue between the spleen and the intestinal loops. Several telocytes and melanomacrophages were detected within the disseminated pancreatic nodules. Moreover, dendritic cells were found in a close association to the exocrine pancreatic acini. The pancreatic acinar cells showed strong immunoreactivity to APG5, TGF-β, IL-1β, NF-κB, Nrf2, and SOX9 in both hepatopancreas and disseminated pancreas of Molly fish. S100 protein revealed a strong expression in the exocrine pancreatic acinar cells of disseminated pancreas and also in the endocrine cells of the compact pancreas. In conclusion, findings of this study suggest the potential role of the pancreas of the Molly fish in cell proliferation and differentiation, proinflammatory cytokines stimulation, and regulation of both innate and adaptive immunity. RESEARCH HIGHLIGHTS: Telocytes and melanomacrophages were detected in the disseminated pancreatic nodules of the Molly fish. In Molly fish, dendritic cells were found in a close association to the exocrine pancreatic acini. Strong immunoreactivity of the pancreatic acinar cells of the Molly fish to APG5, TGF-β, IL-1β, NF-κB, Nrf2, SOX9, and S100.
Collapse
Affiliation(s)
- Marwa M Hussein
- Department of Cell and Tissues, Faculty of Veterinary Medicine, Assuit University, Assiut, Egypt
| | - Ramy K A Sayed
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Sohag University, Sohag, Egypt
| | - Doaa M Mokhtar
- Department of Cell and Tissues, Faculty of Veterinary Medicine, Assuit University, Assiut, Egypt
- Department of Histology and Anatomy, School of Veterinary Medicine, Badr University in Assuit, Assiut, Egypt
| |
Collapse
|
2
|
Fortin JS, Santamaria-Bouvier A, Lair S, Dallaire AD, Benoit-Biancamano MO. Anatomic and molecular characterization of the endocrine pancreas of a teleostean fish: Atlantic wolffish ( Anarhichas lupus). Zool Stud 2015; 54:e21. [PMID: 31966108 DOI: 10.1186/s40555-014-0093-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 12/23/2014] [Indexed: 11/10/2022]
Abstract
BACKGROUND The biologic attributes of the endocrine pancreas and the comparative endocrinology of islet amyloid polypeptide (IAPP) of fish are not well described in the literature. This study describes the endocrine pancreasof one teleostean fish. Ten captive Atlantic wolffish (Anarhichas lupus)from the Montreal Biodome were submitted for necropsy and their pancreata were collected. RESULTS Grossly, all the fish pancreata examined contained 1-3 nodules of variable diameter (1-8 mm). Microscopically, the nodules were uniform, highly cellular, and composed of polygonal to elongated cells. Immunofluorescence for pancreatic hormones was performed. The nodules were immunoreactive for insulin most prominent centrally, but with IAPP and glucagon only in the periphery of the nodules. Exocrine pancreas was positive for chromogranin A. Not previously recognized in fish, IAPP immunoreactivity occurred in α, glucagon-containing, cells and did not co-localize with insulin in β cells. The islet tissues were devoid of amyloid deposits. IAPP DNA sequencing was performed to compare the sequence among teleost fish and the potency to form amyloid fibrils. In silico analysis of the amino acid sequences 19-34 revealed that it was not amyloidogenic. CONCLUSIONS Amyloidosis of pancreatic islets would not be expected as a spontaneous disease in the Atlantic wolffish. Our study underlines that this teleost fish is a potential candidate for pancreatic xenograft research.
Collapse
Affiliation(s)
- Jessica S Fortin
- Département de pathologie et de microbiologie, Faculté de médecine vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Ariane Santamaria-Bouvier
- Département des sciences cliniques, Faculté de médecine vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Stéphane Lair
- Département des sciences cliniques, Faculté de médecine vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - André D Dallaire
- Département de pathologie et de microbiologie, Faculté de médecine vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Marie-Odile Benoit-Biancamano
- Département de pathologie et de microbiologie, Faculté de médecine vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, QC J2S 2M2, Canada
| |
Collapse
|
3
|
Wright JR, Yang H, Hyrtsenko O, Xu BY, Yu W, Pohajdak B. A review of piscine islet xenotransplantation using wild-type tilapia donors and the production of transgenic tilapia expressing a "humanized" tilapia insulin. Xenotransplantation 2014; 21:485-95. [PMID: 25040337 PMCID: PMC4283710 DOI: 10.1111/xen.12115] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 05/03/2014] [Indexed: 02/05/2023]
Abstract
Most islet xenotransplantation laboratories have focused on porcine islets, which are both costly and difficult to isolate. Teleost (bony) fish, such as tilapia, possess macroscopically visible distinct islet organs called Brockmann bodies which can be inexpensively harvested. When transplanted into diabetic nude mice, tilapia islets maintain long-term normoglycemia and provide human-like glucose tolerance profiles. Like porcine islets, when transplanted into euthymic mice, they are rejected in a CD4 T-cell-dependent manner. However, unlike pigs, tilapia are so phylogenetically primitive that their cells do not express α(1,3)Gal and, because tilapia are highly evolved to live in warm stagnant waters nearly devoid of dissolved oxygen, their islet cells are exceedingly resistant to hypoxia, making them ideal for transplantation within encapsulation devices. Encapsulation, especially when combined with co-stimulatory blockade, markedly prolongs tilapia islet xenograft survival in small animal recipients, and a collaborator has shown function in diabetic cynomolgus monkeys. In anticipation of preclinical xenotransplantation studies, we have extensively characterized tilapia islets (morphology, embryologic development, cell biology, peptides, etc.) and their regulation of glucose homeostasis. Because tilapia insulin differs structurally from human insulin by 17 amino acids, we have produced transgenic tilapia whose islets stably express physiological levels of humanized insulin and have now bred these to homozygosity. These transgenic fish can serve as a platform for further development into a cell therapy product for diabetes.
Collapse
Affiliation(s)
- James R Wright
- Department of Pathology & Laboratory Medicine (Calgary Laboratory Services), Faculty of Medicine, University of Calgary, Calgary, AB, Canada; The Julia McFarlane Diabetes Research Centre, Faculty of Medicine, University of Calgary, Calgary, AB, Canada
| | | | | | | | | | | |
Collapse
|
4
|
Wright JR, Xu BY. That which does not kill us makes us stronger--does Nietzsche's quote apply to islets? A re-evaluation of the passenger leukocyte theory, free radicals, and glucose toxicity in islet cell transplantation. Med Hypotheses 2014; 83:92-8. [PMID: 24767938 DOI: 10.1016/j.mehy.2014.03.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 03/28/2014] [Indexed: 11/26/2022]
Abstract
In clinical islet transplantation, isolated islets are embolized into the liver via the portal vein (PV); however, up to 70% of the islets are lost in the first few days after transplantation (i.e., too quickly to be mediated by the adaptive immune system). Part of early loss is due to instant blood-mediated inflammatory reaction, an immune/thrombotic process caused by islets interacting with complement. We have shown that glucose toxicity (GT) also plays a critical role based upon the observation that islets embolized into the PVs of diabetic athymic mice are rapidly lost but, if recipients are not diabetic, the islet grafts persist. Using donor islets resistant to the β-cell toxin streptozotocin, we have shown that intraportal islets engrafted in non-diabetic athymic mice for as little as 3 days will maintain normoglycemia when streptozotocin is administered destroying the recipient's native pancreas β-cells. What is the mechanism of GT in β-cells? Chronic exposure to hyperglycemia over-exerts β-cells and their electron transport chains leak superoxide radicals during aerobic metabolism. Here we reinterpret old data and present some compelling new data supporting a new model of early intraportal islet graft loss. We hypothesize that diabetes stimulates overproduction of superoxide in both the β-cells of the islet grafts and the endothelial cells lining the intraportal microvasculature adjacent to where the embolized islets become lodged. This double dose of oxidant damage stresses both the islets, which are highly susceptible to free radicals because of inherent low levels of scavenging enzymes, and the adjacent hepatic endothelial cells. This, superimposed upon localized endothelial damage caused by embolization, precipitates inflammation and coagulation which further damages islet grafts. Based upon this model, we predict that pre-exposing islets to sub-lethal hyperoxia should up-regulate islet free radical scavenging enzyme levels and promote initial engraftment; reinterpretation of 30 years old "passenger leukocyte" data and preliminary new data support this. Other data suggests that pre-exposure of recipients to hyperoxia could up-regulate antioxidant enzymes in the hepatic endothelium. The combination of both effects could markedly enhance early intraportal islet graft survival and engraftment. Finally, if our model is correct, current in vitro and in vivo tests used to test batches of harvested islets for viability and function prior to transplantation are poorly conceived (n.b., it is already well-known that results using these tests often do not predict clinical islet transplantation success) and a different testing paradigm is suggested.
Collapse
Affiliation(s)
- J R Wright
- University of Calgary, Department of Pathology & Laboratory Medicine and Calgary Laboratory Services, Calgary, Alberta, Canada.
| | - B-Y Xu
- University of Calgary, Department of Pathology & Laboratory Medicine and Calgary Laboratory Services, Calgary, Alberta, Canada
| |
Collapse
|
5
|
Safley SA, Cui H, Cauffiel SMD, Xu BY, Wright JR, Weber CJ. Encapsulated piscine (tilapia) islets for diabetes therapy: studies in diabetic NOD and NOD-SCID mice. Xenotransplantation 2014; 21:127-39. [PMID: 24635017 DOI: 10.1111/xen.12086] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 01/20/2014] [Indexed: 11/30/2022]
Abstract
BACKGROUND Our goal was to improve islet transplantation as a therapy for patients with type I diabetes mellitus. Because human donor islets are scarce, we are studying islet xenografts in the diabetic NOD mouse model. We hypothesize that optimal xenoislet survival will be achieved by the combination of donor islet immunoisolation with recipient immunosuppression. We and others have studied adult and neonatal porcine islets as sources of tissue for microencapsulated islet xenografts, but we believe it is also advantageous to consider using islets from fish, which can be raised in large numbers relatively quickly and economically. Therefore, in this study, we have evaluated the function of microencapsulated xenogeneic piscine (tilapia) islets transplanted intraperitoneally (IP) in NOD mice in the presence of CD4(+) T-cell depletion and/or costimulatory blockade. METHODS Spontaneously diabetic NOD mice or streptozotocin (STZ)-diabetic NOD-SCID mice were transplanted IP with microencapsulated tilapia islets. Recipient immunosuppression included anti-CD4 mAb, CTLA4-Ig, anti-CD80 mAb, anti-CD86 mAb, or anti-CD154 mAb, alone or in combination. Graft function was evaluated by blood glucose (BG) levels, intravenous (IV) and oral glucose tolerance tests (GTTs), histologic and immunohistochemical analyses of grafts, and flow cytometric analysis of peritoneal cells. RESULTS Encapsulated tilapia islets normalized random BG levels for up to 210 days in NOD-SCID mice. In diabetic NOD mice, encapsulated tilapia islets were rejected on day 11 ± 4 with a peritoneal infiltrate of macrophages, eosinophils, B cells, occasional neutrophils, but few T cells. Immunohistochemical staining demonstrated the presence of murine IgG on tilapia islets within capsules of rejecting, non-immunosuppressed mice, as well as murine IgG-positive lymphocytes in the layer of host cells surrounding those capsules. These findings suggested that our barium (Ba)-gelled alginate capsules are permeable to IgG and that anti-piscine antibodies may be involved in the rejection of encapsulated tilapia islets in untreated mice. No single immunosuppressive agent prolonged encapsulated tilapia islet survival in NOD mice, but the combination of CTLA4-Ig plus anti-CD154 mAb extended tilapia islet graft survival until rejection at 119 ± 20 days and inhibited host cell recruitment to the peritoneal cavity. Triple treatment with CTLA4-Ig, anti-CD154 mAb, and anti-CD4 mAb allowed graft survival for 157 ± 35 days with little evidence of a host cellular reaction. IV and oral glucose tolerance tests (GTTs) of recipients with functioning xenografts demonstrated remarkably normal metabolic function. CONCLUSIONS We conclude that microencapsulated tilapia islets can survive long term with excellent metabolic control in diabetic mice given targeted immunosuppression, suggesting that cross-species physiological incompatibility may not compromise the applicability of this novel approach for future clinical applications. We predict that an improved microcapsule that prevents the entrance of IgG will enhance tilapia islet survival in this model, possibly allowing the application of this technique with limited or no immunosuppression.
Collapse
Affiliation(s)
- Susan A Safley
- Department of Surgery, Emory University, Atlanta, GA, USA
| | | | | | | | | | | |
Collapse
|
6
|
Saito E, Nakamura O, Yamada H, Tsutsui S, Watanabe T. Suppression of lymphocyte proliferation by ovarian cavity fluid from the viviparous fish Neoditrema ransonnetii (Perciformes; Embiotocidae). FISH & SHELLFISH IMMUNOLOGY 2009; 27:549-555. [PMID: 19628045 DOI: 10.1016/j.fsi.2009.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Revised: 07/13/2009] [Accepted: 07/14/2009] [Indexed: 05/28/2023]
Abstract
As the fetus expresses paternal major histocompatibility complex molecules, viviparous vertebrates require sophisticated mechanisms to modulate maternal immunology to ensure successful pregnancy. We anticipated that ovarian cavity fluid (OCF) is likely to feature significantly in the modulation of ovarian cavity immunology. Consequently, we examined the effects of OCF upon leukocyte function in Neoditrema ransonnetii. OCF did not affect phagocytosis or superoxide production by phagocytes. However, OCF suppressed lymphocyte proliferation induced by ConA almost completely. As OCF contained PGE(2) at high levels during late pregnancy, we also investigated the effect of PGE(2) upon lymphocyte expansion. PGE(2) exhibited negative effects upon lymphocyte mitogenesis in a dose-dependent manner (10-1000 ng/ml). PGE(2) significantly suppressed lymphocyte proliferation when present at levels equivalent to that seen in OCF (30.2 +/- 16.1 approximately 185.4 +/- 107.4 ng/ml). Data indicate that PGE(2) is one of the key modulatory molecules of the maternal immune system ensuring successful pregnancy in this viviparous species.
Collapse
Affiliation(s)
- Erina Saito
- School of Marine Biosciences, Kitasato University, Ofunato, Iwate 022-0101, Japan.
| | | | | | | | | |
Collapse
|
7
|
Hrytsenko O, Wright JR, Pohajdak B. Regulation of insulin gene expression and insulin production in Nile tilapia (Oreochromis niloticus). Gen Comp Endocrinol 2008; 155:328-40. [PMID: 17618629 DOI: 10.1016/j.ygcen.2007.05.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2007] [Revised: 04/25/2007] [Accepted: 05/07/2007] [Indexed: 10/23/2022]
Abstract
Compared to mammals, little is known about insulin gene expression in fish. Using transient transfection experiments and mammalian insulinoma cell lines we demonstrate that transcription of the Nile tilapia (Oreochromis niloticus) insulin gene is (a) regulated in a beta-cell-specific manner; and (b) not sensitive to the glucose stimulations. Deletion analysis of the 1575 bp 5' insulin gene flanking sequence revealed that cooperative interactions between regulatory elements within the proximal (-1 to -396 bp) and the distal (-396 bp to -1575 bp) promoter regions were necessary for induction of the beta-cell-specific transcription. Effects of glucose and arginine on endogenous insulin secretion, translation, and transcription in isolated tilapia Brockmann bodies were determined using Northern hybridization, Western analysis, and quantitative RT-PCR. Similar to the regulation of mammalian insulin, we found that increases of glucose (1-70 mM) and arginine (0.4-25 mM) induced insulin secretion. However, transcription of the insulin gene was activated only by extremely high concentrations of glucose and arginine added simultaneously. When stimulated for 24 h with low concentrations of both inducers or with either of them added separately, tilapia beta-cells were able to replenish secreted insulin and to maintain insulin stores at a constant level without elevations of the insulin mRNA levels. Since the basal level of insulin mRNA was approximately 3.7-fold higher in tilapia beta-cells than it is in mammalian beta-cells, insulin production in tilapia cells probably relies on an enlarged intracellular insulin mRNA pool and does not require the transcriptional activation of the insulin gene.
Collapse
Affiliation(s)
- Olga Hrytsenko
- Department of Biology, Dalhousie University, Halifax, NS, Canada B3H 4J1
| | | | | |
Collapse
|
8
|
Alexander ELR, Dooley KC, Pohajdak B, Xu BY, Wright JR. Things we have learned from tilapia islet xenotransplantation. Gen Comp Endocrinol 2006; 148:125-31. [PMID: 16413551 DOI: 10.1016/j.ygcen.2005.12.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2005] [Revised: 11/29/2005] [Accepted: 12/01/2005] [Indexed: 11/18/2022]
Abstract
An islet xenotransplantation model has been developed using tilapia (Oreochromis niloticus) as the donors. Studies using this model for the treatment of experimental type 1 diabetes in mice have produced promising results including the maintenance of long-term normoglycemia and mammalian-like glucose tolerance profiles in islet graft recipients. Islet encapsulation has also provided a promising method for the prevention of graft rejection, and strains of transgenic tilapia expressing a [desThrB30] human insulin molecule have been produced. In addition to studying islet transplantation for the treatment of type 1 diabetes, these studies have also produced insights into piscine glucose homeostasis. Studies demonstrating the glucose responsiveness of tilapia islets are described. In addition, work performed by our group and by others pertaining to presence and nature of piscine glucose transporters is reviewed. Finally, studies addressing some of the broader challenges of islet xenotransplantation are discussed with particular attention paid to the post-transplantation fate of the various islet cell populations and the proteins they produce.
Collapse
Affiliation(s)
- Emily L R Alexander
- Department of Pathology and Laboratory Medicine, IWK Health Centre and Dalhousie University, Halifax, NS, Canada
| | | | | | | | | |
Collapse
|
9
|
Youson JH, Al-Mahrouki AA, Amemiya Y, Graham LC, Montpetit CJ, Irwin DM. The fish endocrine pancreas: review, new data, and future research directions in ontogeny and phylogeny. Gen Comp Endocrinol 2006; 148:105-15. [PMID: 16430894 DOI: 10.1016/j.ygcen.2005.12.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2005] [Accepted: 12/01/2005] [Indexed: 11/26/2022]
Abstract
The literature on the ontogeny and phylogeny of the endocrine pancreas of ray-finned fishes is summarized since the latest review in fish [Youson, J.H., Al-Mahrouki, A.A., 1999. Review. Ontogenetic and phylogenetic development of the endocrine pancreas (islet organ) in fishes. Gen. Comp. Endocrinol. 116, 303-335]. A basic description and a demonstration of the diversity of the fish islet organ is provided through new immunohistochemical data on islet tissue from a basal teleost, an osteoglossomorph, and a more derived teleost, a perciforme. Unlike the previous review, the present report provides a review and discussion of the utility of sequence data of insulin, somatostatin, and NPY- and glucagon-family peptides in phylogenetic analyses of jawed and jawless fishes. The present study also provides the first comparative analysis of sequences of preprohormones of endocrine peptides from closely related basal teleost species. Some nucleotide and deduced amino acid sequence data for preprosomatostatins (PPSS-I and/or -II) are compared for four species of bonytongues, Osteoglossomorpha, and with PPSSs of the white sucker, Catostomus commersoni, representing Cypriniformes, a more generalized teleost order. Phylogenetic analysis of deduced amino acid sequences of the PPSSs of these species and others from databases indicates good support for the monophyly of Osteoglossomorpha and some support for the present taxonomic grouping of the osteoglossomorphs examined, and also the white sucker. However, PPSS may have limited phylogenetic utility due to the relative short sequence, particularly in resolving relationships among lineages that diverged over a short period of time. Since in the few fish species examined we have just touched the surface in describing the diversity of structure of the islet organ, and likely the nature of the products of its cells, this report promotes the continued study of this organ.
Collapse
Affiliation(s)
- J H Youson
- Department of Life Sciences (Scarborough), University of Toronto, Toronto, Ont., Canada M1C 1A4.
| | | | | | | | | | | |
Collapse
|
10
|
Xu BY, Yang H, Serreze DV, MacIntosh R, Yu W, Wright JR. Rapid destruction of encapsulated islet xenografts by NOD mice is CD4-dependent and facilitated by B-cells: innate immunity and autoimmunity do not play significant roles. Transplantation 2005; 80:402-9. [PMID: 16082337 DOI: 10.1097/01.tp.0000168107.79769.63] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Spontaneously diabetic NOD mice rapidly reject microencapsulated islet xenografts via an intense pericapsular inflammatory response. METHODS Tilapia (fish) islets were encapsulated in 1.5% alginate gel microspheres. Recipients in series 1 were spontaneously diabetic NOD mice and streptozotocin-diabetic nude, euthymic Balb/c, prediabetic NOD, and NOR (a recombinant congenic strain not prone to autoimmune diabetes) mice. Recipients in Series 2 were STZ-diabetic NOD, NOD-scid, NOD CD4 T-cell KO, NOD CD8 T-cell KO, and NOD B-cell KO mice. RESULTS In Series 1, encapsulated fish islet grafts uniformly survived long-term in nude mice but were rejected in Balb/c and, at a markedly accelerated rate, in spontaneously diabetic NOD, streptozotocin-diabetic NOD and NOR recipients. Histologically, intense inflammation (macrophages and eosinophils) surrounding the microcapsules was seen only in NOD and NOR recipients. In Series 2, encapsulated fish islets uniformly survived long-term in NOD-scid and NOD CD4 KO mice; graft survival was markedly prolonged in B-cell KO (P<0.001) but not CD8 KO mice. CONCLUSIONS The rapid rejection of alginate encapsulated islet xenografts by NOD mice is not solely a consequence of beta-cell directed autoimmunity nor is it merely a vigorous innate immune response. Graft rejection requires CD4 T-cells, is facilitated by B-cells, and does not require CD8 T-cells.
Collapse
Affiliation(s)
- Bao-You Xu
- Department of Pathology, IWK Health Centre, Halifax, Nova Scotia, Canada
| | | | | | | | | | | |
Collapse
|
11
|
Al-Jazaeri A, Xu BY, Yang H, Macneil D, Leventhal JR, Wright JR. Effect of glucose toxicity on intraportal tilapia islet xenotransplantation in nude mice. Xenotransplantation 2005; 12:189-96. [PMID: 15807769 DOI: 10.1111/j.1399-3089.2005.00220.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Discordant xenogeneic islets transplanted intraportally into athymic nude rats experience primary non-function and are rapidly destroyed. Recently, it has been reported that adult porcine islets transplanted intraportally into nude mice are also rapidly destroyed and that this constitutes a new model for instant blood-mediated inflammatory reaction (IBMIR). METHODS Tilapia (fish) islets were harvested, mechanically broken into mammalian islet-sized fragments, cultured for 48 h, and transplanted via the portal vein into athymic or euthymic mice. RESULTS There were several groups of recipient mice. Streptozotocin-diabetic nude mice received 400 islets via the portal vein (n = 12). Recipients were killed when hyperglycemic (>200 mg/dl); livers and native pancreases were examined histologically. Mean graft survival time, based on function, was 5.4 +/- 1.2 days; at autopsy, histology showed occasional viable islets. We also performed a group of transplants in non-diabetic nude mice (n = 6) and then killed the recipients 2 or 4 weeks later; all had abundant viable, well-granulated islet grafts based on histology. Therefore, the intraportal environs in nude mice are not incompatible with discordant fish islets; rather, it appears as if hyperglycemia adversely affects the intraportal islet grafts (i.e. ''glucose toxicity''). To test this hypothesis, transplants were performed into non-diabetic nude mice and allowed to engraft for either 3 days (n = 6) or 10 days (n = 8) prior to injection of streptozotocin (200 to 220 mg/kg i.v.) to destroy the beta-cells in the recipients' native islets (n.b. tilapia islets are exceedingly resistant to streptozotocin); these recipients were followed for 28 days post-transplantation (or until hyperglycemic) and then killed for histology. Mean graft function exceeded 25 days for both groups and viable well-granulated, tilapia islets grafts were readily identified in all recipients; in all but one, the native pancreases were markedly beta-cell depleted -- confirming that normoglycemia was due to functional fish islet xenografts. CONCLUSIONS Our results suggest that ''glucose toxicity'' plays a role in the immediate demise of intraportal tilapia islet xenografts.
Collapse
Affiliation(s)
- Ayman Al-Jazaeri
- Department of Pathology, IWK Health Centre, Halifax, Nova Scotia, B3H 1V7, Canada
| | | | | | | | | | | |
Collapse
|
12
|
Contreras JL, Smyth CA, Curiel DT, Eckhoff DE. Nonhuman primate models in type 1 diabetes research. ILAR J 2005; 45:334-42. [PMID: 15229380 DOI: 10.1093/ilar.45.3.334] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The recent success of "steroid-free" immunosuppressive protocols and improvements in islet preparation techniques have proven that pancreatic islet transplantation (PIT) is a valid therapeutic approach for patients with type 1 diabetes. However, there are major obstacles to overcome before PIT can become a routine therapeutic procedure, such as the need for chronic immunosuppression, the loss of functional islet mass after transplantation requiring multiple islet infusion to achieve euglycemia without exogenous administration of insulin, and the shortage of human tissue for transplantation. With reference to the first obstacle, stable islet allograft function without immunosuppressive therapy has been achieved after tolerance was induced in diabetic primates. With reference to the second obstacle, different strategies, including gene transfer of antiapoptotic genes, have been used to protect isolated islets before and after transplantation. With reference to the third obstacle, pigs are an attractive islet source because they breed rapidly, there is a long history of porcine insulin use in humans, and there is the potential for genetic engineering. To accomplish islet transplantation, experimental opportunities must be balanced by complementary characteristics of basic mouse and rat models and preclinical large animal models. Well-designed preclinical studies in primates can provide the quality of information required to translate islet transplant research safely into clinical transplantation.
Collapse
Affiliation(s)
- Juan L Contreras
- Department of Surgery, Division of Transplantation, University of Alabama, Birmingham, AL, USA
| | | | | | | |
Collapse
|
13
|
Pohajdak B, Mansour M, Hrytsenko O, Conlon JM, Dymond LC, Wright JR. Production of transgenic tilapia with Brockmann bodies secreting [desThrB30] human insulin. Transgenic Res 2005; 13:313-23. [PMID: 15517991 DOI: 10.1023/b:trag.0000040036.11109.ee] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
BACKGROUND Tilapia are commercially important tropical fish which, like many teleosts, have anatomically discrete islet organs called Brockmann bodies. When transplanted into diabetic nude mice, tilapia islets provide long-term normoglycemia and mammalian-like glucose tolerance profiles. METHODS Using site-directed mutagenesis and linker ligation we have "humanized" the tilapia insulin gene so that it codes for [desThrB30] human insulin while maintaining the tilapia regulatory sequences. Following microinjection into fertilized eggs, we screened DNA isolated from whole fry shortly after hatching by PCR. Positive fish were grown to sexual maturity and mated to wild-types and positive Fl's were further characterized. RESULTS Human insulin was detected in both serum and in the clusters of beta cells scattered throughout the Brockmann bodies. Surrounding non-beta cells as well as other tissues were negative indicating beta cell specific expression. Purification and sequencing of both A-and B-chains verified that the insulin was properly processed and humanized. CONCLUSIONS After extensive characterization, transgenic tilapia could become a suitable, inexpensive source of islet tissue that can be easily mass-produced for clinical islet xenotransplantation. Because tilapia islets are exceedingly resistant to hypoxia by mammalian standards, transgenic tilapia islets should be ideal for xenotransplantation using immunoisolation techniques.
Collapse
Affiliation(s)
- Bill Pohajdak
- Department of Biology, Dalhousie University, Nova Scotia, Canada
| | | | | | | | | | | |
Collapse
|
14
|
Morrison CM, Pohajdak B, Tam J, Wright JR. Development of the islets, exocrine pancreas, and related ducts in the Nile tilapia, Oreochromis niloticus (Pisces: Cichlidae). J Morphol 2005; 261:377-89. [PMID: 15281064 DOI: 10.1002/jmor.10256] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Pancreatic development and the relationship of the islets with the pancreatic, hepatic, and bile ducts were studied in the Nile tilapia, Oreochromis niloticus, from hatching to the onset of maturity at 7 months. The number of islets formed during development was counted, using either serial sections or dithizone staining of isolated islets. There was a general increase in islet number with both age and size. Tilapia housed in individual tanks grew more quickly and had more islets than siblings of the same age left in crowded conditions. The pancreas is a compact organ in early development, and at 1 day posthatch (dph) a single principal islet, positive for all hormones tested (insulin, SST-14, SST-28, glucagon, and PYY), is partially surrounded by exocrine pancreas. However, the exocrine pancreas becomes more disseminated in older fish, following blood vessels along the mesenteries and entering the liver to form a hepatopancreas. The epithelium of the pancreatic duct system from the intercalated ducts to the main duct entering the duodenum was positive for glucagon and SST-14 in 8 and 16 dph tilapia. Individual insulin-immunopositive cells were found in one specimen. At this early stage in development, therefore, the pancreatic duct epithelial cells appear to be pluripotent and may give rise to the small islets found near the pancreatic ducts in 16-37 dph tilapia. Glucagon, SST-14, and some PPY-positive enteroendocrine cells were present in the intestine of the 8 dph larva and in the first part of the intestine of the 16 dph juvenile. Glucagon and SST-14-positive inclusions were found in the apical cytoplasm of the mid-gut epithelium of the 16 dph tilapia. These hormones may have been absorbed from the gut lumen, since they are produced in both the pancreatic ducts and the enteroendocrine cells. At least three hepatic ducts join the cystic duct to form the bile duct, which runs alongside the pancreatic duct to the duodenum.
Collapse
Affiliation(s)
- Carol M Morrison
- Islet Transplant Laboratory, Department of Pathology, IWK Health Center and Dalhousie University Faculty of Medicine, Halifax, Nova Scotia B3J 3G9, Canada
| | | | | | | |
Collapse
|
15
|
Affiliation(s)
- Stephen W Barthold
- Department of Comparative Medicine, University of California, Davis, CA, USA
| |
Collapse
|