1
|
Serrano ME, Kim E, Petrinovic MM, Turkheimer F, Cash D. Imaging Synaptic Density: The Next Holy Grail of Neuroscience? Front Neurosci 2022; 16:796129. [PMID: 35401097 PMCID: PMC8990757 DOI: 10.3389/fnins.2022.796129] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 02/15/2022] [Indexed: 12/19/2022] Open
Abstract
The brain is the central and most complex organ in the nervous system, comprising billions of neurons that constantly communicate through trillions of connections called synapses. Despite being formed mainly during prenatal and early postnatal development, synapses are continually refined and eliminated throughout life via complicated and hitherto incompletely understood mechanisms. Failure to correctly regulate the numbers and distribution of synapses has been associated with many neurological and psychiatric disorders, including autism, epilepsy, Alzheimer’s disease, and schizophrenia. Therefore, measurements of brain synaptic density, as well as early detection of synaptic dysfunction, are essential for understanding normal and abnormal brain development. To date, multiple synaptic density markers have been proposed and investigated in experimental models of brain disorders. The majority of the gold standard methodologies (e.g., electron microscopy or immunohistochemistry) visualize synapses or measure changes in pre- and postsynaptic proteins ex vivo. However, the invasive nature of these classic methodologies precludes their use in living organisms. The recent development of positron emission tomography (PET) tracers [such as (18F)UCB-H or (11C)UCB-J] that bind to a putative synaptic density marker, the synaptic vesicle 2A (SV2A) protein, is heralding a likely paradigm shift in detecting synaptic alterations in patients. Despite their limited specificity, novel, non-invasive magnetic resonance (MR)-based methods also show promise in inferring synaptic information by linking to glutamate neurotransmission. Although promising, all these methods entail various advantages and limitations that must be addressed before becoming part of routine clinical practice. In this review, we summarize and discuss current ex vivo and in vivo methods of quantifying synaptic density, including an evaluation of their reliability and experimental utility. We conclude with a critical assessment of challenges that need to be overcome before successfully employing synaptic density biomarkers as diagnostic and/or prognostic tools in the study of neurological and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Maria Elisa Serrano
- Department of Neuroimaging, The BRAIN Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, United Kingdom
| | - Eugene Kim
- Department of Neuroimaging, The BRAIN Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, United Kingdom
| | - Marija M Petrinovic
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Federico Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, United Kingdom
| | - Diana Cash
- Department of Neuroimaging, The BRAIN Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, United Kingdom
| |
Collapse
|
2
|
Pizzagalli DU, Pulfer A, Thelen M, Krause R, Gonzalez SF. In Vivo Motility Patterns Displayed by Immune Cells Under Inflammatory Conditions. Front Immunol 2022; 12:804159. [PMID: 35046959 PMCID: PMC8762290 DOI: 10.3389/fimmu.2021.804159] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 11/26/2021] [Indexed: 11/13/2022] Open
Abstract
The migration of immune cells plays a key role in inflammation. This is evident in the fact that inflammatory stimuli elicit a broad range of migration patterns in immune cells. Since these patterns are pivotal for initiating the immune response, their dysregulation is associated with life-threatening conditions including organ failure, chronic inflammation, autoimmunity, and cancer, amongst others. Over the last two decades, thanks to advancements in the intravital microscopy technology, it has become possible to visualize cell migration in living organisms with unprecedented resolution, helping to deconstruct hitherto unexplored aspects of the immune response associated with the dynamism of cells. However, a comprehensive classification of the main motility patterns of immune cells observed in vivo, along with their relevance to the inflammatory process, is still lacking. In this review we defined cell actions as motility patterns displayed by immune cells, which are associated with a specific role during the immune response. In this regard, we summarize the main actions performed by immune cells during intravital microscopy studies. For each of these actions, we provide a consensus name, a definition based on morphodynamic properties, and the biological contexts in which it was reported. Moreover, we provide an overview of the computational methods that were employed for the quantification, fostering an interdisciplinary approach to study the immune system from imaging data.
Collapse
Affiliation(s)
- Diego Ulisse Pizzagalli
- Istituto di Ricerca in Biomedicina (IRB), Università della Svizzera italiana, Bellinzona, Switzerland
- Euler institute, Università della Svizzera italiana, Lugano-Viganello, Switzerland
| | - Alain Pulfer
- Istituto di Ricerca in Biomedicina (IRB), Università della Svizzera italiana, Bellinzona, Switzerland
- Department of Information Technology and Electrical Engineering, Swiss Federal Institute of Technology Zurich (ETHZ) Zürich, Zürich, Switzerland
| | - Marcus Thelen
- Istituto di Ricerca in Biomedicina (IRB), Università della Svizzera italiana, Bellinzona, Switzerland
| | - Rolf Krause
- Euler institute, Università della Svizzera italiana, Lugano-Viganello, Switzerland
| | - Santiago F. Gonzalez
- Istituto di Ricerca in Biomedicina (IRB), Università della Svizzera italiana, Bellinzona, Switzerland
| |
Collapse
|
3
|
Valli J, Sanderson J. Super-Resolution Fluorescence Microscopy Methods for Assessing Mouse Biology. Curr Protoc 2021; 1:e224. [PMID: 34436832 DOI: 10.1002/cpz1.224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Super-resolution (diffraction unlimited) microscopy was developed 15 years ago; the developers were awarded the Nobel Prize in Chemistry in recognition of their work in 2014. Super-resolution microscopy is increasingly being applied to diverse scientific fields, from single molecules to cell organelles, viruses, bacteria, plants, and animals, especially the mammalian model organism Mus musculus. In this review, we explain how super-resolution microscopy, along with fluorescence microscopy from which it grew, has aided the renaissance of the light microscope. We cover experiment planning and specimen preparation and explain structured illumination microscopy, super-resolution radial fluctuations, stimulated emission depletion microscopy, single-molecule localization microscopy, and super-resolution imaging by pixel reassignment. The final section of this review discusses the strengths and weaknesses of each super-resolution technique and how to choose the best approach for your research. © 2021 The Authors. Current Protocols published by Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Jessica Valli
- Edinburgh Super Resolution Imaging Consortium (ESRIC), Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh, United Kingdom
| | - Jeremy Sanderson
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire, United Kingdom
| |
Collapse
|
4
|
Harris M, Ceulemans M, Verstraete C, Bloemen M, Manshian B, Soenen SJ, Himmelreich U, Verbiest T, De Borggraeve WM, Parac‐Vogt TN. Ultrasmall iron oxide nanoparticles functionalized with BODIPY derivatives as potential bimodal probes for MRI and optical imaging. NANO SELECT 2021. [DOI: 10.1002/nano.202000022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Michael Harris
- Department of Chemistry KU Leuven Celestijnenlaan 200F, Box 2404 Leuven 3001 Belgium
| | - Matthias Ceulemans
- Department of Chemistry KU Leuven Celestijnenlaan 200F, Box 2404 Leuven 3001 Belgium
| | - Charlotte Verstraete
- Department of Chemistry KU Leuven Celestijnenlaan 200D, Box 2425 Leuven 3001 Belgium
- Biomedical MRI KU Leuven O&N I Herestraat 49 ‐ box 505 Leuven 3000 Belgium
| | - Maarten Bloemen
- Department of Chemistry KU Leuven Celestijnenlaan 200D, Box 2425 Leuven 3001 Belgium
- Biomedical MRI KU Leuven O&N I Herestraat 49 ‐ box 505 Leuven 3000 Belgium
| | - Bella Manshian
- Biomedical MRI KU Leuven O&N I Herestraat 49 ‐ box 505 Leuven 3000 Belgium
| | - Stefaan J. Soenen
- Biomedical MRI KU Leuven O&N I Herestraat 49 ‐ box 505 Leuven 3000 Belgium
| | - Uwe Himmelreich
- Biomedical MRI KU Leuven O&N I Herestraat 49 ‐ box 505 Leuven 3000 Belgium
| | - Thierry Verbiest
- Department of Chemistry KU Leuven Celestijnenlaan 200D, Box 2425 Leuven 3001 Belgium
| | - Wim M. De Borggraeve
- Department of Chemistry KU Leuven Celestijnenlaan 200F, Box 2404 Leuven 3001 Belgium
| | - Tatjana N. Parac‐Vogt
- Department of Chemistry KU Leuven Celestijnenlaan 200F, Box 2404 Leuven 3001 Belgium
| |
Collapse
|
5
|
Santosa SM, Guo K, Yamakawa M, Ivakhnitskaia E, Chawla N, Nguyen T, Han KY, Ema M, Rosenblatt MI, Chang JH, Azar DT. Simultaneous fluorescence imaging of distinct nerve and blood vessel patterns in dual Thy1-YFP and Flt1-DsRed transgenic mice. Angiogenesis 2020; 23:459-477. [PMID: 32372335 DOI: 10.1007/s10456-020-09724-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 04/23/2020] [Indexed: 02/08/2023]
Abstract
Blood vessels and nerve tissues are critical to the development and functionality of many vital organs. However, little is currently known about their interdependency during development and after injury. In this study, dual fluorescence transgenic reporter mice were utilized to observe blood vessels and nervous tissues in organs postnatally. Thy1-YFP and Flt1-DsRed (TYFD) mice were interbred to achieve dual fluorescence in the offspring, with Thy1-YFP yellow fluorescence expressed primarily in nerves, and Flt1-DsRed fluorescence expressed selectively in blood vessels. Using this dual fluorescent mouse strain, we were able to visualize the networks of nervous and vascular tissue simultaneously in various organ systems both in the physiological state and after injury. Using ex vivo high-resolution imaging in this dual fluorescent strain, we characterized the organizational patterns of both nervous and vascular systems in a diverse set of organs and tissues. In the cornea, we also observed the dynamic patterns of nerve and blood vessel networks following epithelial debridement injury. These findings highlight the versatility of this dual fluorescent strain for characterizing the relationship between nerve and blood vessel growth and organization.
Collapse
Affiliation(s)
- Samuel M Santosa
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Kai Guo
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Michael Yamakawa
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Evguenia Ivakhnitskaia
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Neeraj Chawla
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Tara Nguyen
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Kyu-Yeon Han
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Masatsugu Ema
- Department of Stem Cells and Human Disease Models, Shiga University of Medical Science, Seta, Tsukinowa-cho, Otsu, Shiga, Japan
| | - Mark I Rosenblatt
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Jin-Hong Chang
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA.
| | - Dimitri T Azar
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
6
|
König TT, Goedeke J, Muensterer OJ. Multiphoton microscopy in surgical oncology- a systematic review and guide for clinical translatability. Surg Oncol 2019; 31:119-131. [PMID: 31654957 DOI: 10.1016/j.suronc.2019.10.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 10/02/2019] [Accepted: 10/13/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Multiphoton microscopy (MPM) facilitates three-dimensional, high-resolution functional imaging of unlabeled tissues in vivo and ex vivo. This systematic review discusses the diagnostic value, advantages and challenges in the practical use of MPM in surgical oncology. METHOD AND FINDINGS A Medline search was conducted in April 2019. Fifty-three original research papers investigating MPM compared to standard histology in human patients with solid tumors were identified. A qualitative synopsis and meta-analysis of 14 blinded studies was performed. Risk of bias and applicability were evaluated. MPM can image fresh, frozen or fixed tissues up to a depth 1000 μm in the z-plane. Best results including functional imaging and virtual histochemistry are obtained by in vivo imaging or scanning fresh tissue immediately after excision. Two-photon excited fluorescence by natural fluorophores of the cytoplasm and second harmonic generation signals by fluorophores of the extracellular matrix can be scanned simultaneously, providing high resolution optical histochemistry comparable to standard histology. Functional parameters like fluorescence lifetime imaging or optical redox ratio provide additional objective information. A major concern is inability to visualize the nucleus. However, in a subpopulation analysis of 440 specimens, MPM yielded a sensitivity of 94%, specificity of 96% and accuracy of 95% for the detection of malignant tissue. CONCLUSION MPM is a promising emerging technique in surgical oncology. Ex vivo imaging has high sensitivity, specificity and accuracy for the detection of tumor cells. For broad clinical application in vivo, technical challenges need to be resolved.
Collapse
Affiliation(s)
| | - Jan Goedeke
- Universitätsmedizin Mainz, Department of Pediatric Surgery, Mainz, Germany
| | | |
Collapse
|
7
|
Oltra E, Caicedo A. Real Time In Vivo Tracking of Thymocytes in the Anterior Chamber of the Eye by Laser Scanning Microscopy. J Vis Exp 2018. [PMID: 30346412 DOI: 10.3791/58236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The purpose of the method being presented is to show, for the first time, the transplant of newborn thymi into the anterior eye chamber of isogenic adult mice for in vivo longitudinal real-time monitoring of thymocytes´ dynamics within a vascularized thymus segment. Following the transplantation, laser scanning microscopy (LSM) through the cornea allows in vivo noninvasive repeated imaging at cellular resolution level. Importantly, the approach adds to previous intravital T-cell maturation imaging models the possibility for continuous progenitor cell recruitment and mature T-cell egress recordings in the same animal. Additional advantages of the system are the transparency of the grafted area, permitting macroscopic rapid monitoring of the implanted tissue, and the accessibility to the implant allowing for localized in addition to systemic treatments. The main limitation being the volume of the tissue that fits in the reduced space of the eye chamber which demands for lobe trimming. Organ integrity is maximized by dissecting thymus lobes in patterns previously shown to be functional for mature T-cell production. The technique is potentially suited to interrogate a milieu of medically relevant questions related to thymus function that include autoimmunity, immunodeficiency and central tolerance; processes which remain mechanistically poorly defined. The fine dissection of mechanisms guiding thymocyte migration, differentiation and selection should lead to novel therapeutic strategies targeting developing T cells.
Collapse
Affiliation(s)
- Elisa Oltra
- School of Medicine and Dentistry, Universidad Católica de Valencia San Vicente Mártir; Unidad Mixta CIPF-UCV, Centro de Investigación Príncipe Felipe;
| | | |
Collapse
|
8
|
Kim D, Kang J, Wang T, Ryu HG, Zuidema JM, Joo J, Kim M, Huh Y, Jung J, Ahn KH, Kim KH, Sailor MJ. Two-Photon In Vivo Imaging with Porous Silicon Nanoparticles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1703309. [PMID: 28833739 DOI: 10.1002/adma.201703309] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 07/19/2017] [Indexed: 06/07/2023]
Abstract
A major obstacle in luminescence imaging is the limited penetration of visible light into tissues and interference associated with light scattering and autofluorescence. Near-infrared (NIR) emitters that can also be excited with NIR radiation via two-photon processes can mitigate these factors somewhat because they operate at wavelengths of 650-1000 nm where tissues are more transparent, light scattering is less efficient, and endogenous fluorophores are less likely to absorb. This study presents photolytically stable, NIR photoluminescent, porous silicon nanoparticles with a relatively high two-photon-absorption cross-section and a large emission quantum yield. Their ability to be targeted to tumor tissues in vivo using the iRGD targeting peptide is demonstrated, and the distribution of the nanoparticles with high spatial resolution is visualized.
Collapse
Affiliation(s)
- Dokyoung Kim
- Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, 26 Kyungheedae-Ro, Dongdaemun-Gu, Seoul, 02447, Republic of Korea
- Center for Converging Humanities, Kyung Hee University, 26 Kyungheedae-Ro, Dongdaemun-Gu, Seoul, 02447, Republic of Korea
| | - Jinyoung Kang
- Department of Nanoengineering, University of California, San Diego, La Jolla, CA, 92093-0358, USA
| | - Taejun Wang
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Pohang, Gyungbuk, 37673, Republic of Korea
| | - Hye Gun Ryu
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyungbuk, 37673, Republic of Korea
| | - Jonathan M Zuidema
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, 92093-0358, USA
| | - Jinmyoung Joo
- Department of Convergence Medicine, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
- Biomedical Engineering Research Center, Asan Institute for Life Science, Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Muwoong Kim
- Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, 26 Kyungheedae-Ro, Dongdaemun-Gu, Seoul, 02447, Republic of Korea
| | - Youngbuhm Huh
- Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, 26 Kyungheedae-Ro, Dongdaemun-Gu, Seoul, 02447, Republic of Korea
| | - Junyang Jung
- Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, 26 Kyungheedae-Ro, Dongdaemun-Gu, Seoul, 02447, Republic of Korea
| | - Kyo Han Ahn
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyungbuk, 37673, Republic of Korea
| | - Ki Hean Kim
- Division of Integrative Biosciences and Biotechnology, Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Pohang, Gyungbuk, 37673, Republic of Korea
| | - Michael J Sailor
- Department of Chemistry and Biochemistry, Department of Nanoengineering, University of California, San Diego, La Jolla, CA, 92093-0358, USA
| |
Collapse
|
9
|
Agrawalla BK, Lee HW, Phue WH, Raju A, Kim JJ, Kim HM, Kang NY, Chang YT. Two-Photon Dye Cocktail for Dual-Color 3D Imaging of Pancreatic Beta and Alpha Cells in Live Islets. J Am Chem Soc 2017; 139:3480-3487. [DOI: 10.1021/jacs.6b12122] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Bikram Keshari Agrawalla
- Department
of Chemistry and Medicinal Chemistry Program, National University of Singapore, 3 Science Drive 3, 117543 Singapore
| | - Hyo Won Lee
- Department
of Energy Systems Research, Ajou University, Suwon 443749, Korea
| | - Wut-Hmone Phue
- Department
of Chemistry and Medicinal Chemistry Program, National University of Singapore, 3 Science Drive 3, 117543 Singapore
| | - Anandhkumar Raju
- Laboratory
of Bioimaging Probe Development, Singapore Bioimaging Consortium, Agency for Science, Technology and Research, 11 Biopolis Way, # 02-02 Helios, 138667 Singapore
| | - Jong-Jin Kim
- Department
of Chemistry and Medicinal Chemistry Program, National University of Singapore, 3 Science Drive 3, 117543 Singapore
| | - Hwan Myung Kim
- Department
of Energy Systems Research, Ajou University, Suwon 443749, Korea
| | - Nam-Young Kang
- Laboratory
of Bioimaging Probe Development, Singapore Bioimaging Consortium, Agency for Science, Technology and Research, 11 Biopolis Way, # 02-02 Helios, 138667 Singapore
| | - Young-Tae Chang
- Department
of Chemistry and Medicinal Chemistry Program, National University of Singapore, 3 Science Drive 3, 117543 Singapore
- Laboratory
of Bioimaging Probe Development, Singapore Bioimaging Consortium, Agency for Science, Technology and Research, 11 Biopolis Way, # 02-02 Helios, 138667 Singapore
| |
Collapse
|
10
|
Abstract
Environmental temperature can have a surprising impact on extremity growth in homeotherms, but the underlying mechanisms have remained elusive for over a century. Limbs of animals raised at warm ambient temperature are significantly and permanently longer than those of littermates housed at cooler temperature. These remarkably consistent lab results closely resemble the ecogeographical tenet described by Allen's "extremity size rule," that appendage length correlates with temperature and latitude. This phenotypic growth plasticity could have adaptive significance for thermal physiology. Shortened extremities help retain body heat in cold environments by decreasing surface area for potential heat loss. Homeotherms have evolved complex mechanisms to maintain tightly regulated internal temperatures in challenging environments, including "facultative extremity heterothermy" in which limb temperatures can parallel ambient. Environmental modulation of tissue temperature can have direct and immediate consequences on cell proliferation, metabolism, matrix production, and mineralization in cartilage. Temperature can also indirectly influence cartilage growth by modulating circulating levels and delivery routes of essential hormones and paracrine regulators. Using an integrated approach, this article synthesizes classic studies with new data that shed light on the basis and significance of this enigmatic growth phenomenon and its relevance for treating human bone elongation disorders. Discussion centers on the vasculature as a gateway to understanding the complex interconnection between direct (local) and indirect (systemic) mechanisms of temperature-enhanced bone lengthening. Recent advances in imaging modalities that enable the dynamic study of cartilage growth plates in vivo will be key to elucidating fundamental physiological mechanisms of long bone growth regulation.
Collapse
Affiliation(s)
- Maria A Serrat
- Department of Anatomy and Pathology, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| |
Collapse
|
11
|
Clark CG, Marchetti GJ, Young CN. Be still my beating brain--reduction of brain micromotion during in vivo two-photon imaging. J Physiol 2013; 591:2379-80. [PMID: 23678151 DOI: 10.1113/jphysiol.2013.253138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Catharine G Clark
- Department of Biomedical Engineering, College of Engineering, Cornell University, Ithaca, NY, USA.
| | | | | |
Collapse
|
12
|
A novel nitro-substituted benzothiadiazole as fluorescent probe for tumor cells under hypoxic condition. Bioorg Med Chem 2013; 21:7735-41. [DOI: 10.1016/j.bmc.2013.10.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 10/14/2013] [Accepted: 10/16/2013] [Indexed: 01/01/2023]
|
13
|
Sarder P, Yazdanfar S, Akers WJ, Tang R, Sudlow GP, Egbulefu C, Achilefu S. All-near-infrared multiphoton microscopy interrogates intact tissues at deeper imaging depths than conventional single- and two-photon near-infrared excitation microscopes. JOURNAL OF BIOMEDICAL OPTICS 2013; 18:106012. [PMID: 24150231 PMCID: PMC3805921 DOI: 10.1117/1.jbo.18.10.106012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 09/23/2013] [Indexed: 05/15/2023]
Abstract
The era of molecular medicine has ushered in the development of microscopic methods that can report molecular processes in thick tissues with high spatial resolution. A commonality in deep-tissue microscopy is the use of near-infrared (NIR) lasers with single- or multiphoton excitations. However, the relationship between different NIR excitation microscopic techniques and the imaging depths in tissue has not been established. We compared such depth limits for three NIR excitation techniques: NIR single-photon confocal microscopy (NIR SPCM), NIR multiphoton excitation with visible detection (NIR/VIS MPM), and all-NIR multiphoton excitation with NIR detection (NIR/NIR MPM). Homologous cyanine dyes provided the fluorescence. Intact kidneys were harvested after administration of kidney-clearing cyanine dyes in mice. NIR SPCM and NIR/VIS MPM achieved similar maximum imaging depth of ∼100 μm. The NIR/NIR MPM enabled greater than fivefold imaging depth (>500 μm) using the harvested kidneys. Although the NIR/NIR MPM used 1550-nm excitation where water absorption is relatively high, cell viability and histology studies demonstrate that the laser did not induce photothermal damage at the low laser powers used for the kidney imaging. This study provides guidance on the imaging depth capabilities of NIR excitation-based microscopic techniques and reveals the potential to multiplex information using these platforms.
Collapse
Affiliation(s)
- Pinaki Sarder
- Washington University, Department of Radiology, 4225 Scott Avenue, St. Louis, Missouri 63108
| | - Siavash Yazdanfar
- GE Global Research, Applied Optics Lab, 1 Research Circle, Niskayuna, New York 12309
| | - Walter J. Akers
- Washington University, Department of Radiology, 4225 Scott Avenue, St. Louis, Missouri 63108
| | - Rui Tang
- Washington University, Department of Radiology, 4225 Scott Avenue, St. Louis, Missouri 63108
| | - Gail P. Sudlow
- Washington University, Department of Radiology, 4225 Scott Avenue, St. Louis, Missouri 63108
| | - Christopher Egbulefu
- Washington University, Department of Radiology, 4225 Scott Avenue, St. Louis, Missouri 63108
| | - Samuel Achilefu
- Washington University, Department of Radiology, 4225 Scott Avenue, St. Louis, Missouri 63108
- Washington University, Department of Biomedical Engineering, 4225 Scott Avenue, St. Louis, Missouri 63108
- Washington University, Department of Biochemistry & Molecular Biophysics, 4225 Scott Avenue, St. Louis, Missouri 63108
- Address all correspondence to: Samuel Achilefu, Washington University, Department of Radiology, 4225 Scott Avenue, St. Louis, Missouri 63108. Tel: +314-362-8599; Fax: +314-747-5191; E-mail:
| |
Collapse
|
14
|
Youn H, Hong KJ. In vivo non invasive molecular imaging for immune cell tracking in small animals. Immune Netw 2012; 12:223-9. [PMID: 23396713 PMCID: PMC3566416 DOI: 10.4110/in.2012.12.6.223] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 10/25/2012] [Accepted: 10/29/2012] [Indexed: 12/18/2022] Open
Abstract
Clinical and preclinical in vivo immune cell imaging approaches have been used to study immune cell proliferation, apoptosis and interaction at the microscopic (intra-vital imaging) and macroscopic (whole-body imaging) level by use of ex vivo or in vivo labeling method. A series of imaging techniques ranging from non-radiation based techniques such as optical imaging, MRI, and ultrasound to radiation based CT/nuclear imaging can be used for in vivo immune cell tracking. These imaging modalities highlight the intrinsic behavior of different immune cell populations in physiological context. Fluorescent, radioactive or paramagnetic probes can be used in direct labeling protocols to monitor the specific cell population. Reporter genes can also be used for genetic, indirect labeling protocols to track the fate of a given cell subpopulation in vivo. In this review, we summarized several methods dealing with dendritic cell, macrophage, and T lymphocyte specifically labeled for different macroscopic wholebody imaging techniques both for the study of their physiological function and in the context of immunotherapy to exploit imaging-derived information and immune-based treatments.
Collapse
Affiliation(s)
- Hyewon Youn
- Department of Nuclear Medicine, Cancer Research Institute, Seoul National University College of Medicine, Seoul 110-799, Korea. ; Laboratory of Molecular Imaging and Therapy, Cancer Research Institute, Seoul National University College of Medicine, Seoul 110-799, Korea. ; Cancer Imaging Center, Seoul National University Cancer Hospital Tumor Biology, Seoul 110-799, Korea
| | | |
Collapse
|
15
|
Kozai TDY, Vazquez AL, Weaver CL, Kim SG, Cui XT. In vivo two-photon microscopy reveals immediate microglial reaction to implantation of microelectrode through extension of processes. J Neural Eng 2012; 9:066001. [PMID: 23075490 DOI: 10.1088/1741-2560/9/6/066001] [Citation(s) in RCA: 159] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Penetrating cortical neural probe technologies allow investigators to record electrical signals in the brain. Implantation of probes results in acute tissue damage, and microglia density increases around implanted devices over weeks. However, the mechanisms underlying this encapsulation are not well understood in the acute temporal domain. The objective here was to evaluate dynamic microglial response to implanted probes using two-photon microscopy. APPROACH Using two-photon in vivo microscopy, cortical microglia ∼200 µm below the surface of the visual cortex were imaged every minute in mice with green fluorescent protein-expressing microglia. MAIN RESULTS Following probe insertion, nearby microglia immediately extended processes toward the probe at (1.6 ± 1.3) µm min(-1) during the first 30-45 min, but showed negligible cell body movement for the first 6 h. Six hours following probe insertion, microglia at distances <130.0 µm (p = 0.5) from the probe surface exhibit morphological characteristics of transitional stage (T-stage) activation, similar to the microglial response observed with laser-induced blood-brain barrier damage. T-stage morphology and microglia directionality indexes were developed to characterize microglial response to implanted probes. Evidence suggesting vascular reorganization after probe insertion and distant vessel damage was also observed hours after probe insertion. SIGNIFICANCE A precise temporal understanding of the cellular response to microelectrode implantation will facilitate the search for molecular cues initiating and attenuating the reactive tissue response.
Collapse
|
16
|
Recknagel P, Claus RA, Neugebauer U, Bauer M, Gonnert FA. In vivo imaging of hepatic excretory function in the rat by fluorescence microscopy. JOURNAL OF BIOPHOTONICS 2012; 5:571-581. [PMID: 22271709 DOI: 10.1002/jbio.201100118] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 12/04/2011] [Accepted: 12/19/2011] [Indexed: 05/31/2023]
Abstract
Applying intravital fluorescence microscopy, we assessed sinusoidal delivery and biliary clearance of two different polymethine dyes. DY635, a benzopyrylium-based hemocyanine dye with shorter excitation wavelength than indocyanine green (ICG), was validated for assessment of hepatic excretory function. Decrease of DY635 and ICG reflecting transcellular transport was 83 ± 4% (DY635) and 14 ± 2% (ICG; p < 0.05) over 35 minutes, respectively. In cholestasis, hepatobiliary excretion of DY635 was markedly impaired (control 3176 ± 148 pmol vs. cholestatic 1929 ± 179 pmol; p < 0.05). DY635 even enabled an analysis at high resolution suggesting 1.) hepatocyte uncoupling and 2.) failure of primarily the canalicular pole, allowing in vivo insights into molecular mechanisms of this critical facet of hepatobiliary function.
Collapse
Affiliation(s)
- Peter Recknagel
- Integrated Research and Treatment Center-Center for Sepsis Control and Care-CSCC, Jena University Hospital, Erlanger Allee 101, 07747 Jena, Germany
| | | | | | | | | |
Collapse
|
17
|
Ardeshirpour Y, Chernomordik V, Capala J, Hassan M, Zielinsky R, Griffiths G, Achilefu S, Smith P, Gandjbakhckhe A. Using in-vivo fluorescence imaging in personalized cancer diagnostics and therapy, an image and treat paradigm. Technol Cancer Res Treat 2011; 10:549-60. [PMID: 22066595 PMCID: PMC3718028 DOI: 10.1177/153303461101000605] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The major goal in developing drugs targeting specific tumor receptors, such as Monoclonal AntiBodies (MAB), is to make a drug compound that targets selectively the cancer-causing biomarkers, inhibits their functionality, and/or delivers the toxin specifically to the malignant cells. Recent advances in MABs show that their efficacy depends strongly on characterization of tumor biomarkers. Therefore, one of the main tasks in cancer diagnostics and treatment is to develop non-invasive in-vivo imaging techniques for detection of cancer biomarkers and monitoring their down regulation during the treatment. Such methods can potentially result in a new imaging and treatment paradigm for cancer therapy. In this article we have reviewed fluorescence imaging approaches, including those developed in our group, to detect and monitor Human Epidermal Growth Factor 2 (HER2) receptors before and during therapy. Transition of these techniques from the bench to bedside is the ultimate goal of our project. Similar approaches can be used potentially for characterization of other cancer related cell biomarkers.
Collapse
Affiliation(s)
- Yasaman Ardeshirpour
- NIH/National Institute of Child Health and Human Development, Building 9, 9 Memorial Dr., Bethesda, MD, 20892
| | - Victor Chernomordik
- NIH/National Institute of Child Health and Human Development, Building 9, 9 Memorial Dr., Bethesda, MD, 20892
| | - Jacek Capala
- NIH/National Cancer Institute, Building 10-Magnuson Clinical Center, 10 Center Dr, Bethesda, MD, 20892
| | - Moinuddin Hassan
- NIH/National Institute of Child Health and Human Development, Building 9, 9 Memorial Dr., Bethesda, MD, 20892
| | - Rafal Zielinsky
- NIH/National Cancer Institute, Building 10-Magnuson Clinical Center, 10 Center Dr, Bethesda, MD, 20892
| | - Gary Griffiths
- NIH/Imaging Probe Development Center, Building 9800, Medical Center Dr., Rockville, MD, 20850
| | - Samuel Achilefu
- Optical Radiology Lab, Department of Radiology, Washington University, 4525 Scott Avenue, St. Louis, MO 63110
| | - Paul Smith
- NIH/National Institute of Biomedical Imaging and Bioengineering, Building 13, 3N18A 13 South Dr, Bethesda, MD, 20892
| | - Amir Gandjbakhckhe
- NIH/National Institute of Child Health and Human Development, Building 9, 9 Memorial Dr., Bethesda, MD, 20892
| |
Collapse
|
18
|
Ottobrini L, Martelli C, Trabattoni DL, Clerici M, Lucignani G. In vivo imaging of immune cell trafficking in cancer. Eur J Nucl Med Mol Imaging 2010; 38:949-68. [PMID: 21170525 DOI: 10.1007/s00259-010-1687-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2010] [Accepted: 11/15/2010] [Indexed: 12/14/2022]
Abstract
Tumour establishment, progression and regression can be studied in vivo using an array of imaging techniques ranging from MRI to nuclear-based and optical techniques that highlight the intrinsic behaviour of different cell populations in the physiological context. Clinical in vivo imaging techniques and preclinical specific approaches have been used to study, both at the macroscopic and microscopic level, tumour cells, their proliferation, metastasisation, death and interaction with the environment and with the immune system. Fluorescent, radioactive or paramagnetic markers were used in direct protocols to label the specific cell population and reporter genes were used for genetic, indirect labelling protocols to track the fate of a given cell subpopulation in vivo. Different protocols have been proposed to in vivo study the interaction between immune cells and tumours by different imaging techniques (intravital and whole-body imaging). In particular in this review we report several examples dealing with dendritic cells, T lymphocytes and macrophages specifically labelled for different imaging procedures both for the study of their physiological function and in the context of anti-neoplastic immunotherapies in the attempt to exploit imaging-derived information to improve and optimise anti-neoplastic immune-based treatments.
Collapse
Affiliation(s)
- Luisa Ottobrini
- Department of Biomedical Sciences and Technologies, University of Milan, Milan, Italy
| | | | | | | | | |
Collapse
|
19
|
Affiliation(s)
- Derek Toomre
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06520-8002; ,
| | - Joerg Bewersdorf
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06520-8002; ,
| |
Collapse
|
20
|
Serrat MA, Williams RM, Farnum CE. Exercise mitigates the stunting effect of cold temperature on limb elongation in mice by increasing solute delivery to the growth plate. J Appl Physiol (1985) 2010; 109:1869-79. [PMID: 20930127 DOI: 10.1152/japplphysiol.01022.2010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ambient temperature and physical activity modulate bone elongation in mammals, but mechanisms underlying this plasticity are a century-old enigma. Longitudinal bone growth occurs in cartilaginous plates, which receive nutritional support via delivery of solutes from the vasculature. We tested the hypothesis that chronic exercise and warm temperature promote bone lengthening by increasing solute delivery to the growth plate, measured in real time using in vivo multiphoton microscopy. We housed 68 weanling female mice at cold (16°C) or warm (25°C) temperatures and allowed some groups voluntary access to a running wheel. We show that exercise mitigates the stunting effect of cold temperature on limb elongation after 11 days of wheel running. All runners had significantly lengthened limbs, regardless of temperature, while nonrunning mice had shorter limbs that correlated with housing temperature. Tail length was impacted only by temperature, indicating that the exercise effect was localized to limb bones and was not a systemic endocrine reaction. In vivo multiphoton imaging of fluoresceinated tracers revealed enhanced solute delivery to tibial growth plates in wheel-running mice, measured under anesthesia at rest. There was a minimal effect of rearing temperature on solute delivery when measured at an intermediate room temperature (20°C), suggesting that a lasting increase in solute delivery is an important factor in exercise-mediated limb lengthening but may not play a role in temperature-mediated limb lengthening. These results are relevant to the study of skeletal evolution in mammals from varying environments and have the potential to fundamentally advance our understanding of bone elongation processes.
Collapse
Affiliation(s)
- Maria A Serrat
- Department of Anatomy and Pathology, Joan C. Edwards School of Medicine, Marshall University, 1542 Spring Valley Dr., Huntington, WV 25704, USA.
| | | | | |
Collapse
|
21
|
Kozai TDY, Marzullo TC, Hooi F, Langhals NB, Majewska AK, Brown EB, Kipke DR. Reduction of neurovascular damage resulting from microelectrode insertion into the cerebral cortex using in vivo two-photon mapping. J Neural Eng 2010; 7:046011. [PMID: 20644246 DOI: 10.1088/1741-2560/7/4/046011] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Penetrating neural probe technologies allow investigators to record electrical signals in the brain. The implantation of probes causes acute tissue damage, partially due to vasculature disruption during probe implantation. This trauma can cause abnormal electrophysiological responses and temporary increases in neurotransmitter levels, and perpetuate chronic immune responses. A significant challenge for investigators is to examine neurovascular features below the surface of the brain in vivo. The objective of this study was to investigate localized bleeding resulting from inserting microscale neural probes into the cortex using two-photon microscopy (TPM) and to explore an approach to minimize blood vessel disruption through insertion methods and probe design. 3D TPM images of cortical neurovasculature were obtained from mice and used to select preferred insertion positions for probe insertion to reduce neurovasculature damage. There was an 82.8 +/- 14.3% reduction in neurovascular damage for probes inserted in regions devoid of major (>5 microm) sub-surface vessels. Also, the deviation of surface vessels from the vector normal to the surface as a function of depth and vessel diameter was measured and characterized. 68% of the major vessels were found to deviate less than 49 microm from their surface origin up to a depth of 500 microm. Inserting probes more than 49 microm from major surface vessels can reduce the chances of severing major sub-surface neurovasculature without using TPM.
Collapse
Affiliation(s)
- T D Y Kozai
- Neural Engineering Lab, Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
| | | | | | | | | | | | | |
Collapse
|
22
|
Li SC, Tachiki LML, Luo J, Dethlefs BA, Chen Z, Loudon WG. A biological global positioning system: considerations for tracking stem cell behaviors in the whole body. Stem Cell Rev Rep 2010; 6:317-33. [PMID: 20237964 PMCID: PMC2887536 DOI: 10.1007/s12015-010-9130-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Many recent research studies have proposed stem cell therapy as a treatment for cancer, spinal cord injuries, brain damage, cardiovascular disease, and other conditions. Some of these experimental therapies have been tested in small animals and, in rare cases, in humans. Medical researchers anticipate extensive clinical applications of stem cell therapy in the future. The lack of basic knowledge concerning basic stem cell biology-survival, migration, differentiation, integration in a real time manner when transplanted into damaged CNS remains an absolute bottleneck for attempt to design stem cell therapies for CNS diseases. A major challenge to the development of clinical applied stem cell therapy in medical practice remains the lack of efficient stem cell tracking methods. As a result, the fate of the vast majority of stem cells transplanted in the human central nervous system (CNS), particularly in the detrimental effects, remains unknown. The paucity of knowledge concerning basic stem cell biology--survival, migration, differentiation, integration in real-time when transplanted into damaged CNS remains a bottleneck in the attempt to design stem cell therapies for CNS diseases. Even though excellent histological techniques remain as the gold standard, no good in vivo techniques are currently available to assess the transplanted graft for migration, differentiation, or survival. To address these issues, herein we propose strategies to investigate the lineage fate determination of derived human embryonic stem cells (hESC) transplanted in vivo into the CNS. Here, we describe a comprehensive biological Global Positioning System (bGPS) to track transplanted stem cells. But, first, we review, four currently used standard methods for tracking stem cells in vivo: magnetic resonance imaging (MRI), bioluminescence imaging (BLI), positron emission tomography (PET) imaging and fluorescence imaging (FLI) with quantum dots. We summarize these modalities and propose criteria that can be employed to rank the practical usefulness for specific applications. Based on the results of this review, we argue that additional qualities are still needed to advance these modalities toward clinical applications. We then discuss an ideal procedure for labeling and tracking stem cells in vivo, finally, we present a novel imaging system based on our experiments.
Collapse
Affiliation(s)
- Shengwen Calvin Li
- Center for Neuroscience and Stem Cell Research, Children's Hospital of Orange County Research Institute, University of California Irvine, 455 South Main Street, Orange, CA 92868, USA.
| | | | | | | | | | | |
Collapse
|
23
|
Intravital imaging of DSS-induced cecal mucosal damage in GFP-transgenic mice using two-photon microscopy. J Gastroenterol 2010; 45:544-53. [PMID: 20058031 DOI: 10.1007/s00535-009-0187-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Accepted: 12/03/2009] [Indexed: 02/04/2023]
Abstract
BACKGROUND Two-photon laser-scanning microscopy (TPLSM) is a powerful diagnostic tool for real-time, high-resolution structural imaging. However, obtaining high-quality in vivo TPLSM images of intra-abdominal organs remains technically challenging. MATERIALS AND METHODS An organ-stabilizing system was applied to high-quality TPLSM imaging. Real-time imaging of visceral organs, such as the liver, spleen, kidney and intestine, of transgenic green fluorescent protein (GFP) mice was performed in vivo using TPLSM. The bacterial translocation model using dextran sodium sulfate (DSS)-induced colitis was also investigated in prepared GFP mice following simple surgery. This allowed the capture of morphological real images using in vivo TPLSM. Immunohistochemical analysis of ZO-1 was performed to support the morphological findings of TPLSM. RESULTS AND CONCLUSIONS We established an organ-stabilizing system to evaluate the real-time imaging of visceral organs in actin-GFP transgenic mice using in vivo TPLSM. DSS-induced colitis showed irregularity of crypt architecture, disappearance of crypts, inflammatory cell infiltration and increased rolling of white blood cells along the vasculature. In addition, the intercellular distance of mucosal cells in the crypt and vascular endothelial cells in the intestinal wall was increased in the intestinal mucosa during DSS colitis. In DSS colitis, there was remarkable loss of mucosal and vascular endothelial ZO-1 expression, as could be seen by a decrease in ZO-1 staining. In conclusion, our observations suggested the possibility that our TPLSM imaging system can be used to clarify the pathophysiological changes in various diseases using longitudinal studies of microscopic changes in the same animal over long periods of time.
Collapse
|
24
|
Serrat MA, Williams RM, Farnum CE. Temperature alters solute transport in growth plate cartilage measured by in vivo multiphoton microscopy. J Appl Physiol (1985) 2009; 106:2016-25. [PMID: 19372302 DOI: 10.1152/japplphysiol.00295.2009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Solute delivery to avascular cartilaginous plates is critical to bone elongation, and impaired transport of nutrients and growth factors in cartilage matrix could underlie many skeletal abnormalities. Advances in imaging technology have revolutionized our ability to visualize growth plates in vivo, but quantitative methods are still needed. We developed analytical standards for measuring solute delivery, defined by amount and rate of intravenous tracer entry, in murine growth plates using multiphoton microscopy. We employed an acute temperature model because of its well-established impact on bone circulation and tested the hypothesis that solute delivery changes positively with limb temperature when body core and respiration are held constant (36 degrees C, 120 breaths/min). Tibial growth plates were surgically exposed in anesthetized 5-wk-old mice, and their hindlimbs were immersed in warm (36 degrees C) or cool (23 degrees C) saline (n = 6/group). After 30 min of thermal equilibration, we administered an intracardiac injection of fluorescein (50 microl, 0.5%) and captured sequentially timed growth plate images spanning 10 min at standardized depth. Absolute growth plate fluorescence was normalized to vascular concentrations for interanimal comparisons. As predicted, more fluorescein infiltrated growth plates at 36 degrees C, with standardized values nearly double those at 23 degrees C. Changing initial limb temperature did not alter baseline values, suggesting a sustained response period. These data validate the sensitivity of our system and have relevance to strategies for enhancing localized delivery of therapeutic agents to growth plates of children. Applications of this technique include assessment of solute transport in models of growth plate dysfunction, particularly chondrodysplasias with matrix irregularities.
Collapse
Affiliation(s)
- Maria A Serrat
- Cornell University, Department of Biomedical Sciences, Ithaca, NY 14853-6401, USA.
| | | | | |
Collapse
|
25
|
Speier S, Nyqvist D, Köhler M, Caicedo A, Leibiger IB, Berggren PO. Noninvasive high-resolution in vivo imaging of cell biology in the anterior chamber of the mouse eye. Nat Protoc 2008; 3:1278-86. [PMID: 18714296 DOI: 10.1038/nprot.2008.118] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
There is clearly a demand for an experimental platform that enables cell biology to be studied in intact vascularized and innervated tissue in vivo. This platform should allow observations of cells noninvasively and longitudinally at single-cell resolution. For this purpose, we use the anterior chamber of the mouse eye in combination with laser scanning microscopy (LSM). Tissue transplanted to the anterior chamber of the eye is rapidly vascularized, innervated and regains function. After transplantation, LSM through the cornea allows repetitive and noninvasive in vivo imaging at cellular resolution. Morphology, vascularization, cell function and cell survival are monitored longitudinally using fluorescent proteins and dyes. We have used this system to study pancreatic islets, but the platform can easily be adapted for studying a variety of tissues and additional biological parameters. Transplantation to the anterior chamber of the eye takes 25 min, and in vivo imaging 1-5 h, depending on the features monitored.
Collapse
Affiliation(s)
- Stephan Speier
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska University Hospital L1, SE-17176 Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|
26
|
Roberts MS, Roberts MJ, Robertson TA, Sanchez W, Thörling C, Zou Y, Zhao X, Becker W, Zvyagin AV. In vitro and in vivo imaging of xenobiotic transport in human skin and in the rat liver. JOURNAL OF BIOPHOTONICS 2008; 1:478-93. [PMID: 19343674 DOI: 10.1002/jbio.200810058] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Multiphoton tomography was used to examine xenobiotic transport in vivo. We used the photochemical properties of zinc oxide and fluorescein and multiphoton tomography to study their transport in the skin and in the rat liver in vivo. Zinc oxide nanoparticles were visualised in human skin using the photoluminescence properties of zinc oxide and either a selective emission wavelength band pass filter or a filter with fluorescence lifetime imaging (FLIM). Zinc oxide nanoparticles (30 nm) did not penetrate into human skin in vitro and in vivo and this was validated by scanning electron microscopy with X-ray photoelectron spectroscopy. Fluorescein was measured in the liver using FLIM. Fluorescein is rapidly extracted from the blood into the liver cells and then transported into the bile. It is suggested that multiphoton tomography may be of particular use in defining in vivo 4D (in both space and time) pharmacokinetics.
Collapse
Affiliation(s)
- Michael S Roberts
- Therapeutics Research Unit, Department of Medicine, University of Queensland, Princess Alexandra Hospital, Woolloongabba, QLD 4102, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Davis MA. Bioimaging of Laboratory Animals: The Visual Translation of Molecular Insights. ILAR J 2008. [DOI: 10.1093/ilar.49.1.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|