1
|
Valiant WG, Cai K, Vallone PM. A history of adventitious agent contamination and the current methods to detect and remove them from pharmaceutical products. Biologicals 2022; 80:6-17. [DOI: 10.1016/j.biologicals.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/26/2022] [Accepted: 10/25/2022] [Indexed: 11/08/2022] Open
|
2
|
Yu ENZ, Darbyshire AK, Himmel LE. Confirmation of Pathogen 'Burnout' in Mouse Colonies with Previous Evidence of Infection with Parvovirus and Rotavirus. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2022; 61:424-431. [PMID: 35995546 PMCID: PMC9536830 DOI: 10.30802/aalas-jaalas-22-000027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Pathogen monitoring and colony health management are critical components of any rodent research program. From an operational perspective, rodent facilities are protected from unwanted infectious agents by facility-specific bioexclusion criteria, sanitation of the physical environment, and personal protective equipment. Another important preventative measure is the use of room health levels to provide traffic patterns for animal care and research staff as they move between rooms of differing health status. For mice, our institution uses a tiered room level system with 6 defined categories, ranging from level 1 (strictest entry criteria) to 6 (least stringent entry criteria). Level 6 is defined as rooms with mice that have tested positive for mouse parvovirus (MPV) or mouse rotavirus (MRV) or both on sentinel serology at any point in time in the past and no decontamination. Because many of our mouse rooms had historically been positive for MPV and/or MRV and because of the high financial and logistic challenges of using repeated test-and-cull for elimination, we had tolerated the potential presence of MPV and MRV and had developed management practices that would promote 'burnout' (that is, elimination of infectious agents due to absence of susceptible hosts) of these pathogens. Analysis of sentinel data showed that we had 28 rooms in 4 facilities for which excluded pathogens had not been identified in 3 y or more. We therefore developed a hybrid testing strategy involving both PCR analysis and serology and implemented it in sentinels and in select colony mice to determine whether the rooms had undergone successful burnout and were free of MPV and MRV. All test results obtained during the assessment were negative for both viruses, and the rooms were subsequently upgraded to level 5 (free from excluded pathogens and allowing two-way movement in and out of housing room). All upgraded rooms have remained negative on subsequent quarterly routine sentinel serology for over 3 y. Our testing strategy for confirming pathogen burnout may be a useful and cost-efficient model for other academic rodent research programs that face a similar situation.
Collapse
Affiliation(s)
- Erin NZ Yu
- Division of Animal Care, Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, and,Corresponding author.
| | - Amanda K Darbyshire
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana
| | - Lauren E Himmel
- Division of Animal Care, Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, and
| |
Collapse
|
3
|
Roquilly A, Mintern JD, Villadangos JA. Spatiotemporal Adaptations of Macrophage and Dendritic Cell Development and Function. Annu Rev Immunol 2022; 40:525-557. [PMID: 35130030 DOI: 10.1146/annurev-immunol-101320-031931] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Macrophages and conventional dendritic cells (cDCs) are distributed throughout the body, maintaining tissue homeostasis and tolerance to self and orchestrating innate and adaptive immunity against infection and cancer. As they complement each other, it is important to understand how they cooperate and the mechanisms that integrate their functions. Both are exposed to commensal microbes, pathogens, and other environmental challenges that differ widely among anatomical locations and over time. To adjust to these varying conditions, macrophages and cDCs acquire spatiotemporal adaptations (STAs) at different stages of their life cycle that determine how they respond to infection. The STAs acquired in response to previous infections can result in increased responsiveness to infection, termed training, or in reduced responses, termed paralysis, which in extreme cases can cause immunosuppression. Understanding the developmental stage and location where macrophages and cDCs acquire their STAs, and the molecular and cellular players involved in their induction, may afford opportunities to harness their beneficial outcomes and avoid or reverse their deleterious effects. Here we review our current understanding of macrophage and cDC development, life cycle, function, and STA acquisition before, during, and after infection. We propose a unified framework to explain how these two cell types adjust their activities to changing conditions over space and time to coordinate their immunosurveillance functions. Expected final online publication date for the Annual Review of Immunology, Volume 40 is April 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Antoine Roquilly
- Center for Research in Transplantation and Translational Immunology, INSERM, UMR 1064, CHU Nantes, University of Nantes, Nantes, France
| | - Justine D Mintern
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Jose A Villadangos
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia.,Department of Microbiology and Immunology, Doherty Institute of Infection and Immunity, The University of Melbourne, Parkville, Victoria, Australia;
| |
Collapse
|
4
|
Ragland NH, Miedel EL, Engelman RW. PCR Prevalence of Murine Opportunistic Microbes and their Mitigation by Using Vaporized Hydrogen Peroxide. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE 2019; 58:208-215. [PMID: 30795821 DOI: 10.30802/aalas-jaalas-18-000112] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Exposing immunodeficient mice to opportunistic microbes introduces risks of data variability, morbidity, mortality, and the invalidation of studies involving unique human reagents, including the loss of primary human hematopoietic cells, patient-derived xenografts, and experimental therapeutics. The prevalence of 15 opportunistic microbes in a murine research facility was determined by yearlong PCR-based murine and IVC equipment surveillance comprising 1738 specimens. Of the 8 microbes detected, 3 organisms- Staphylococcus xylosus, Proteus mirabilis, and Pasteurella pneumotropica biotype Heyl-were most prevalent in both murine and IVC exhaust plenum specimens. Overall, the 8 detectable microbes were more readily PCR-detectable in IVC exhaust airways than in murine specimens, supporting the utility of PCR testing of IVC exhaust airways as a component of immunodeficient murine health surveillance. Vaporized hydrogen peroxide (VHP) exposure of IVC equipment left unassembled (that is, in a 'static-open' configuration) did not eliminate PCR detectable evidence of microbes. In contrast, VHP exposure of IVC equipment assembled 'active-closed' eliminated PCR-detectable evidence of all microbes. Ensuring data integrity and maintaining a topographically complex immunodeficient murine research environment is facilitated by knowing the prevalent opportunistic microbes to be monitored and by implementing a PCR-validated method of facility decontamination that mitigates opportunistic microbes and the risk of invalidation of studies involving immunodeficient mice.
Collapse
Affiliation(s)
- Natalie H Ragland
- Department of Comparative Medicine, H Lee Moffitt Cancer Center and Research Institute, University of South Florida, Tampa, Florida, USA.
| | - Emily L Miedel
- Department of Comparative Medicine, H Lee Moffitt Cancer Center and Research Institute, University of South Florida, Tampa, Florida, USA
| | - Robert W Engelman
- Department of Comparative Medicine, H Lee Moffitt Cancer Center and Research Institute, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
5
|
Schlapp G, Fernández-Graña G, Arévalo AP, Crispo M. Establishment of an environmental microbiological monitoring program in a mice barrier facility. AN ACAD BRAS CIENC 2019; 90:3155-3164. [PMID: 30304242 DOI: 10.1590/0001-3765201820180043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 04/26/2018] [Indexed: 12/15/2022] Open
Abstract
Rodents used in biomedical research are maintained behind barriers to exclude microbial contaminants. Several check points have to be monitored to eliminate the potential of introducing adventitious agents into the facility. Microbiological monitoring of a mouse facility environment enables to evaluate the efficiency of sanitization and cleaning procedures, air quality, and technician good practices. At our SPF mouse facility, we implemented an environmental microbiological monitoring program based in sedimentation and swabbing, inexpensive and easy to use methods. The aim of this work was to evaluate the results and the efficiency of the monitoring program after seven years. The median for bacteria and fungi counts in the SPF sampled areas was ≤2 CFU/2 h for settle plates and <1 CFU per swabbing plate, satisfying the requirements for grade C of the EU-GMP, with some modifications. The environmental monitoring program was useful to detect early warning of problems and enabled us to define a safe range of microbiological counts. In addition, SPF status defined for our mice was maintained throughout this study, confirmed by our HM program. This work could encourage directors and technicians of other mouse facilities in Latin America and rest of the world to implement this kind of program.
Collapse
Affiliation(s)
- Geraldine Schlapp
- Transgenic and Experimental Animal Unit, Institut Pasteur de Montevideo, Mataojo 2020, CP 11400, Montevideo, Uruguay
| | - Gabriel Fernández-Graña
- Transgenic and Experimental Animal Unit, Institut Pasteur de Montevideo, Mataojo 2020, CP 11400, Montevideo, Uruguay
| | - Ana Paula Arévalo
- Transgenic and Experimental Animal Unit, Institut Pasteur de Montevideo, Mataojo 2020, CP 11400, Montevideo, Uruguay
| | - Martina Crispo
- Transgenic and Experimental Animal Unit, Institut Pasteur de Montevideo, Mataojo 2020, CP 11400, Montevideo, Uruguay
| |
Collapse
|
6
|
Masopust D, Sivula CP, Jameson SC. Of Mice, Dirty Mice, and Men: Using Mice To Understand Human Immunology. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 199:383-388. [PMID: 28696328 PMCID: PMC5512602 DOI: 10.4049/jimmunol.1700453] [Citation(s) in RCA: 171] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 04/28/2017] [Indexed: 12/29/2022]
Abstract
Mouse models have enabled breakthroughs in our understanding of the immune system, but it has become increasingly popular to emphasize their shortcomings when translating observations to humans. This review provides a brief summary of mouse natural history, husbandry, and the pros and cons of pursuing basic research in mice versus humans. Opportunities are discussed for extending the predictive translational value of mouse research, with an emphasis on exploitation of a "dirty" mouse model that better mimics the diverse infectious history that is typical of most humans.
Collapse
Affiliation(s)
- David Masopust
- Department of Microbiology and Immunology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455;
| | - Christine P Sivula
- Research Animal Resources, University of Minnesota, Minneapolis, MN 55455; and
| | - Stephen C Jameson
- Department of Laboratory Medicine and Pathology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455
| |
Collapse
|
7
|
Muller C, Ramos S, Saisse A, Almosny N. Videocâmeras em biotérios de experimentação: importante ferramenta no controle da contaminação ambiental na microbiota de camundongos. ARQ BRAS MED VET ZOO 2015. [DOI: 10.1590/1678-4162-7334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
O objetivo do presente estudo foi verificar a influência da contaminação ambiental na microbiota dos animais utilizados em experimentação, usando-se videocâmera como ferramenta de controle, a partir da comparação de dois biotérios de experimentação, sendo um protegido com presença de videocâmeras (A) e o outro não (B), quanto ao padrão microbiológico dos camundongos. Para os testes bacteriológicos, foram utilizadas amostras de 222 animais do biotério A e 236 do biotério B; para os testes virológicos, 119 do biotério A e 236 do biotério B; já para os exames parasitológicos, 158 do biotério A e 316 do biotério B. Os dados foram submetidos à análise descritiva e ao teste do Qui-quadrado. Verificou-se uma maior ocorrência de microrganismos e de parasitas no biotério não protegido pelas videocâmeras. Klebsiella pneumoniae, Pasteurella sp. e Pseudomonas sp. foram encontradas nos animais de ambos os biotérios, ao passo que vírus e parasitos só foram detectados nos animais no biotério não protegido. Dentre os vírus, nos animais infectados, o de maior ocorrência foi o Vírus da Hepatite de Camundongos (MHV) e, dentre os parasitos, o de maior ocorrência foi Syphacia sp. Concluiu-se que o biotério protegido foi capaz de garantir padrões microbiológicos mais adequados para a experimentação animal, que as videocâmeras são importantes ferramentas de controle e que a prática da biossegurança deve ser constante nas instituições de pesquisa.
Collapse
|
8
|
Amstislavsky SY, Brusentsev EY, Okotrub KA, Rozhkova IN. Embryo and gamete cryopreservation for genetic resources conservation of laboratory animals. Russ J Dev Biol 2015; 46:47-59. [DOI: 10.1134/s1062360415020022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
|
9
|
Abstract
Today’s laboratory mouse, Mus musculus, has its origins as the ‘house mouse’ of North America and Europe. Beginning with mice bred by mouse fanciers, laboratory stocks (outbred) derived from M. musculus musculus from eastern Europe and M. m. domesticus from western Europe were developed into inbred strains. Since the mid-1980s, additional strains have been developed from Asian mice (M. m. castaneus from Thailand and M. m. molossinus from Japan) and from M. spretus which originated from the western Mediterranean region.
Collapse
|
10
|
Shek WR, Smith AL, Pritchett-Corning KR. Microbiological Quality Control for Laboratory Rodents and Lagomorphs. LABORATORY ANIMAL MEDICINE 2015. [PMCID: PMC7150201 DOI: 10.1016/b978-0-12-409527-4.00011-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Mice (Mus musculus), rats (Rattus norvegicus), other rodent species, and domestic rabbits (Oryctolagus cuniculus) have been used in research for over 100 years. During the first half of the 20th century, microbiological quality control of lab animals was at best rudimentary as colonies were conventionally housed and little or no diagnostic testing was done. Hence, animal studies were often curtailed and confounded by infectious disease (Mobraaten and Sharp, 1999; Morse, 2007; Weisbroth, 1999). By the 1950s, it became apparent to veterinarians in the nascent field of comparative medicine that disease-free animals suitable for research could not be produced by standard veterinary disease control measures (e.g., improved sanitation and nutrition, antimicrobial treatments) in conventional facilities. Henry Foster, the veterinarian who founded Charles River Breeding Laboratories in 1948 and a pioneer in the large-scale production of laboratory rodents, stated in a seminar presented at the 30th anniversary of AALAS, “After a variety of frustrating health-related problems, it was decided that a major change in the company’s philosophy was required and an entirely different approach was essential”. Consequently, he and others developed innovative biosecurity systems to eliminate and exclude pathogens (Allen, 1999). In 1958, Foster reported on the Cesarean-originated barrier-sustained (COBS) process for the large-scale production of specific pathogen-free (SPF) laboratory rodents (Foster, 1958). To eliminate horizontally transmitted pathogens, a hysterectomy was performed on a near-term dam from a contaminated or conventionally housed colony. The gravid uterus was pulled through a disinfectant solution into a sterile flexible film isolator where the pups were removed from the uterus and suckled on axenic (i.e., germ-free) foster dams. After being mated to expand their number and associated with a cocktail of nonpathogenic bacteria to normalize their physiology and prime their immune system, rederived rodents were transferred to so-called barrier rooms for large-scale production. The room-level barrier to adventitious infection entailed disinfection of the room, equipment, and supplies, limiting access to trained and properly gowned personnel, and the application of new technologies such as high-efficiency particulate air-filtration of incoming air (Dubos and Schaedler, 1960; Foster, 1980; Schaedler and Orcutt, 1983; Trexler and Orcutt, 1999). The axenic and associated rodents mentioned in the COBS process are collectively classified as gnotobiotic to indicate that they have a completely known microflora. By contrast, barrier-reared rodent colonies are not gnotobiotic because they are housed in uncovered cages and thus acquire a complex microflora from the environment, supplies, personnel, and other sources. Instead, they are described as SPF to indicate that according to laboratory testing, they are free from infection with a defined list of infectious agents, commonly known as an ‘exclusion’ list.
Collapse
|
11
|
Amstislavsky SY, Igonina TN, Rozhkova IN, Brusentsev EY, Rogovaya AA, Ragaeva DS, Naprimerov VA, Litvinova EA, Plyusnina IF, Markel AL. Rederivation by embryo transfer in strains of laboratory mice and rats. RUSSIAN JOURNAL OF GENETICS: APPLIED RESEARCH 2013; 3:305-315. [DOI: 10.1134/s2079059713040023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
|
12
|
Lawrence C, Ennis DG, Harper C, Kent ML, Murray K, Sanders GE. The challenges of implementing pathogen control strategies for fishes used in biomedical research. Comp Biochem Physiol C Toxicol Pharmacol 2012; 155:160-6. [PMID: 21726668 PMCID: PMC3338152 DOI: 10.1016/j.cbpc.2011.06.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Over the past several decades, a number of fish species, including the zebrafish, medaka, and platyfish/swordtail, have become important models for human health and disease. Despite the increasing prevalence of these and other fish species in research, methods for health maintenance and the management of diseases in laboratory populations of these animals are underdeveloped. There is a growing realization that this trend must change, especially as the use of these species expands beyond developmental biology and more towards experimental applications where the presence of underlying disease may affect the physiology animals used in experiments and potentially compromise research results. Therefore, there is a critical need to develop, improve, and implement strategies for managing health and disease in aquatic research facilities. The purpose of this review is to report the proceedings of a workshop entitled "Animal Health and Disease Management in Research Animals" that was recently held at the 5th Aquatic Animal Models for Human Disease in September 2010 at Corvallis, Oregon to discuss the challenges involved with moving the field forward on this front.
Collapse
Affiliation(s)
- Christian Lawrence
- Aquatic Resources Program, Children's Hospital Boston, Boston, MA 02115, USA.
| | | | | | | | | | | |
Collapse
|
13
|
AOKI H, KANEKO A, KAJITA A, YAMAGATA Y, IKE F, KASE H. An On-Site Serology Monitoring System Consisting of a Multiplex Microfluidic Chip Fabricated Using the Electrospray Deposition Method for Laboratory Mice. JOURNAL OF CHEMICAL ENGINEERING OF JAPAN 2012. [DOI: 10.1252/jcej.12we017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Hiroyoshi AOKI
- Ultra High Precision Fabrication Team, Advanced Technology Support Division, Advanced Science Institute, RIKEN
- Ultra High Precision Fabrication Team, Advanced Technology Support Division, Advanced Science Institute, RIKEN
| | | | - Ayako KAJITA
- Experimental Animal Division, RIKEN BioResource Center
- Experimental Animal Division, RIKEN BioResource Center
| | - Yutaka YAMAGATA
- Ultra High Precision Fabrication Team, Advanced Technology Support Division, Advanced Science Institute, RIKEN
- Ultra High Precision Fabrication Team, Advanced Technology Support Division, Advanced Science Institute, RIKEN
| | - Fumio IKE
- Experimental Animal Division, RIKEN BioResource Center
- Experimental Animal Division, RIKEN BioResource Center
| | | |
Collapse
|
14
|
Ouellet M, Cowan M, Laporte A, Faubert S, Héon H. Implementation of a PCR assay of Pasteurella pneumotropica to accurately screen for contaminated laboratory mice. Lab Anim (NY) 2011; 40:305-12. [DOI: 10.1038/laban1011-305] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 07/11/2011] [Indexed: 11/09/2022]
|
15
|
Besselsen DG, Franklin CL, Livingston RS, Riley LK. Lurking in the shadows: emerging rodent infectious diseases. ILAR J 2009; 49:277-90. [PMID: 18506061 DOI: 10.1093/ilar.49.3.277] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Rodent parvoviruses, Helicobacter spp., murine norovirus, and several other previously unknown infectious agents have emerged in laboratory rodents relatively recently. These agents have been discovered serendipitously or through active investigation of atypical serology results, cell culture contamination, unexpected histopathology, or previously unrecognized clinical disease syndromes. The potential research impact of these agents is not fully known. Infected rodents have demonstrated immunomodulation, tumor suppression, clinical disease (particularly in immunodeficient rodents), and histopathology. Perturbations of organismal and cellular physiology also likely occur. These agents posed unique challenges to laboratory animal resource programs once discovered; it was necessary to develop specific diagnostic assays and an understanding of their epidemiology and transmission routes before attempting eradication, and then evaluate eradication methods for efficacy. Even then management approaches varied significantly, from apathy to total exclusion, and such inconsistency has hindered the sharing and transfer of rodents among institutions, particularly for genetically modified rodent models that may not be readily available. As additional infectious agents are discovered in laboratory rodents in coming years, much of what researchers have learned from experiences with the recently identified pathogens will be applicable. This article provides an overview of the discovery, detection, and research impact of infectious agents recently identified in laboratory rodents. We also discuss emerging syndromes for which there is a suspected infectious etiology, and the unique challenges of managing newly emerging infectious agents.
Collapse
Affiliation(s)
- David G Besselsen
- University Animal Care, University of Arizona, Tucson, 1127 East Lowell Street, Tucson, AZ 85721-0101, USA.
| | | | | | | |
Collapse
|
16
|
Abstract
Although some previously common infections, such as Sendai virus and Mycoplasma pulmonis, have become rare in laboratory rodents in North American research facilities, others continue to plague researchers and those responsible for providing biomedical scientists with animals free of adventitious disease. Long-recognized agents that remain in research facilities in the 21st century include parvoviruses of rats and mice, mouse rotavirus, Theilers murine encephalomyelitis virus (TMEV), mouse hepatitis virus (MHV), and pinworms. The reasons for their persistence vary with the agent. The resilience of parvoviruses, for example, is due to their resistance to inactivation, their prolonged shedding, and difficulties with detection, especially in C57BL/6 mice. Rotavirus also has marked environmental resistance, but periodic reintroduction into facilities, possibly on bags of feed, bedding, or other supplies or equipment, also seems likely. TMEV is characterized by resistance to inactivation, periodic reintroduction, and relatively long shedding periods. Although MHV remains active in the environment at most a few days, currently prevalent strains are shed in massive quantities and likely transmitted by fomites. Pinworm infestations continue because of prolonged infections, inefficient diagnosis, and the survivability of eggs of some species in the environment. For all of these agents, increases in both interinstitutional shipping and the use of immunodeficient or genetically modified rodents of unknown immune status may contribute to the problem, as might incursions by wild or feral rodents. Elimination of these old enemies will require improved detection, strict adherence to protocols designed to limit the spread of infections, and comprehensive eradication programs.
Collapse
Affiliation(s)
- Charles B Clifford
- Charles River Laboratories, 251 Ballardvale Street, Wilmington, MA 01887, USA.
| | | |
Collapse
|