1
|
Risen S, Sharma S, Gilberto VS, Brindley S, Aguilar M, Brown JM, Chatterjee A, Moreno JA, Nagpal P. Large- and Small-Animal Studies of Safety, Pharmacokinetics, and Biodistribution of Inflammasome-Targeting Nanoligomer in the Brain and Other Target Organs. ACS Pharmacol Transl Sci 2024; 7:3439-3451. [PMID: 39539269 PMCID: PMC11555505 DOI: 10.1021/acsptsci.4c00068] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 11/16/2024]
Abstract
Immune malfunction or misrecognition of healthy cells and tissue, termed autoimmune disease, is implicated in more than 80 disease conditions and multiple other secondary pathologies. While pan-immunosuppressive therapies like steroids can offer limited relief for systemic inflammation for some organs, many patients never achieve remission, and such drugs do not cross the blood-brain barrier, making them ineffective for tackling neuroinflammation. Especially in the brain, unintended activation of microglia and astrocytes is hypothesized to be directly or indirectly responsible for multiple sclerosis, amyotrophic lateral sclerosis, Parkinson's disease, and Alzheimer's disease. Recent studies have also shown that targeting inflammasomes and specific immune targets can be beneficial for these diseases. Furthermore, our previous studies have shown targeting NF-κB and NLRP3 through brain penetrant Nanoligomer cocktail SB_NI_112 (abbreviated as NI112) can be therapeutic for several neurodegenerative diseases. Here, we show safety-toxicity studies, followed by pharmacokinetics and biodistribution in small- (mice) and large-animal (dog) studies of this inflammasome-targeting Nanoligomer cocktail NI112. We conducted studies using four different routes of administration: intravenous, subcutaneous, intraperitoneal, and intranasal, and identified the drug concentration over time using inductively coupled plasma mass spectrometry in the blood serum, the brain (including different brain regions), and other target organs such as liver, kidney, and colon. Our results indicate that the Nanoligomer cocktail has a strong safety profile and shows high biodistribution (F ∼ 0.98) and delivery across multiple routes of administration. Further analysis showed high brain bioavailability with a ratio of NI112 in brain tissue to blood serum of ∼30%. Our model accurately shows dose scaling, translation between different routes of administration, and interspecies scaling. These results provide an excellent platform for human clinical translation and prediction of therapeutic dosage between different routes of administration.
Collapse
Affiliation(s)
- Sydney Risen
- Environmental
& Radiological Health Sciences and Brain Research Center, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Sadhana Sharma
- Sachi
Bio, 685 S Arthur Avenue, Colorado Technology
Center, Louisville, Colorado 80027, United States
| | - Vincenzo S. Gilberto
- Sachi
Bio, 685 S Arthur Avenue, Colorado Technology
Center, Louisville, Colorado 80027, United States
| | - Stephen Brindley
- Department
of Pharmaceutical Sciences, University of
Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Mikayla Aguilar
- Department
of Clinical Sciences and Brain Research Center, College of Veterinary
Medicine and Biomedical Sciences, Colorado
State University, Fort Collins, Colorado 80523, United States
| | - Jared M. Brown
- Department
of Pharmaceutical Sciences, University of
Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Anushree Chatterjee
- Sachi
Bio, 685 S Arthur Avenue, Colorado Technology
Center, Louisville, Colorado 80027, United States
| | - Julie A. Moreno
- Environmental
& Radiological Health Sciences and Brain Research Center, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Prashant Nagpal
- Sachi
Bio, 685 S Arthur Avenue, Colorado Technology
Center, Louisville, Colorado 80027, United States
| |
Collapse
|
2
|
Zhang X, Kuang Q, Xu J, Lin Q, Chi H, Yu D. MSC-Based Cell Therapy in Neurological Diseases: A Concise Review of the Literature in Pre-Clinical and Clinical Research. Biomolecules 2024; 14:538. [PMID: 38785945 PMCID: PMC11117494 DOI: 10.3390/biom14050538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent stromal cells with the ability to self-renew and multi-directional differentiation potential. Exogenously administered MSCs can migrate to damaged tissue sites and participate in the repair of damaged tissues. A large number of pre-clinical studies and clinical trials have demonstrated that MSCs have the potential to treat the abnormalities of congenital nervous system and neurodegenerative diseases. Therefore, MSCs hold great promise in the treatment of neurological diseases. Here, we summarize and highlight current progress in the understanding of the underlying mechanisms and strategies of MSC application in neurological diseases.
Collapse
Affiliation(s)
- Xiaorui Zhang
- University Key Laboratory for Integrated Chinese Traditional and Western Veterinary Medicine and Animal Healthcare in Fujian Province/Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qihong Kuang
- University Key Laboratory for Integrated Chinese Traditional and Western Veterinary Medicine and Animal Healthcare in Fujian Province/Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jianguang Xu
- University Key Laboratory for Integrated Chinese Traditional and Western Veterinary Medicine and Animal Healthcare in Fujian Province/Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qing Lin
- University Key Laboratory for Integrated Chinese Traditional and Western Veterinary Medicine and Animal Healthcare in Fujian Province/Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Haoming Chi
- University Key Laboratory for Integrated Chinese Traditional and Western Veterinary Medicine and Animal Healthcare in Fujian Province/Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Daojin Yu
- University Key Laboratory for Integrated Chinese Traditional and Western Veterinary Medicine and Animal Healthcare in Fujian Province/Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
3
|
Preclinical Development of Autologous Hematopoietic Stem Cell-Based Gene Therapy for Immune Deficiencies: A Journey from Mouse Cage to Bed Side. Pharmaceutics 2020; 12:pharmaceutics12060549. [PMID: 32545727 PMCID: PMC7357087 DOI: 10.3390/pharmaceutics12060549] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/05/2020] [Accepted: 06/09/2020] [Indexed: 02/08/2023] Open
Abstract
Recent clinical trials using patient’s own corrected hematopoietic stem cells (HSCs), such as for primary immunodeficiencies (Adenosine deaminase (ADA) deficiency, X-linked Severe Combined Immunodeficiency (SCID), X-linked chronic granulomatous disease (CGD), Wiskott–Aldrich Syndrome (WAS)), have yielded promising results in the clinic; endorsing gene therapy to become standard therapy for a number of diseases. However, the journey to achieve such a successful therapy is not easy, and several challenges have to be overcome. In this review, we will address several different challenges in the development of gene therapy for immune deficiencies using our own experience with Recombinase-activating gene 1 (RAG1) SCID as an example. We will discuss product development (targeting of the therapeutic cells and choice of a suitable vector and delivery method), the proof-of-concept (in vitro and in vivo efficacy, toxicology, and safety), and the final release steps to the clinic (scaling up, good manufacturing practice (GMP) procedures/protocols and regulatory hurdles).
Collapse
|
4
|
Löscher W. The holy grail of epilepsy prevention: Preclinical approaches to antiepileptogenic treatments. Neuropharmacology 2019; 167:107605. [PMID: 30980836 DOI: 10.1016/j.neuropharm.2019.04.011] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/03/2019] [Accepted: 04/09/2019] [Indexed: 02/06/2023]
Abstract
A variety of acute brain insults can induce epileptogenesis, a complex process that results in acquired epilepsy. Despite advances in understanding mechanisms of epileptogenesis, there is currently no approved treatment that prevents the development or progression of epilepsy in patients at risk. The current concept of epileptogenesis assumes a window of opportunity following acute brain insults that allows intervention with preventive treatment. Recent results suggest that injury-induced epileptogenesis can be a much more rapid process than previously thought, suggesting that the 'therapeutic window' may only be open for a brief period, as in stroke therapy. However, experimental data also suggest a second, possibly delayed process ("secondary epileptogenesis") that influences the progression and refractoriness of the epileptic state over time, allowing interfering with this process even after onset of epilepsy. In this review, both methodological issues in preclinical drug development and novel targets for antiepileptogenesis will be discussed. Several promising drugs that either prevent epilepsy (antiepileptogenesis) or slow epilepsy progression and alleviate cognitive or behavioral comorbidities of epilepsy (disease modification) have been described in recent years, using diverse animal models of acquired epilepsy. Promising agents include TrkB inhibitors, losartan, statins, isoflurane, anti-inflammatory and anti-oxidative drugs, the SV2A modulator levetiracetam, and epigenetic interventions. Research on translational target validity and on prognostic biomarkers that can be used to stratify patients (or experimental animals) at high risk of developing epilepsy will hopefully soon lead to proof-of-concept clinical trials with the most promising drugs, which will be essential to make prevention of epilepsy a reality. This article is part of the special issue entitled 'New Epilepsy Therapies for the 21st Century - From Antiseizure Drugs to Prevention, Modification and Cure of Epilepsy'.
Collapse
Affiliation(s)
- Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany.
| |
Collapse
|
5
|
Stoica L, Ahmed SS, Gao G, Sena-Esteves M. Gene transfer to the CNS using recombinant adeno-associated virus. ACTA ACUST UNITED AC 2013; Chapter 14:14D.5.1-14D.5.18. [PMID: 23686825 DOI: 10.1002/9780471729259.mc14d05s29] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Recombinant adeno-associated virus (rAAV) vectors are great tools for gene transfer due to their ability to mediate long-term gene expression. rAAVs have been used successfully as gene transfer vehicles in multiple animal models of CNS disorders, and several clinical trials are currently underway. rAAV vectors have been used at various stages of development with no apparent toxicity. There are multiple ways of delivering AAV vectors to the mouse CNS, depending on the stage of development. In neonates, intravascular injections into the facial vein are often used. In adults, direct injections into target regions of the brain are achieved with great spatiotemporal control through stereotaxic surgeries. Recently, discoveries of new AAV vectors with the ability to cross the blood brain barrier have made it possible to target the adult CNS by intravascular injections.
Collapse
Affiliation(s)
- Lorelei Stoica
- Gene Therapy Center, University of Massachusetts Medical School, Worcester, Masssachusetts, USA
| | | | | | | |
Collapse
|
6
|
Vaquer G, Rivière F, Mavris M, Bignami F, Llinares-Garcia J, Westermark K, Sepodes B. Animal models for metabolic, neuromuscular and ophthalmological rare diseases. Nat Rev Drug Discov 2013; 12:287-305. [PMID: 23493083 DOI: 10.1038/nrd3831] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Animal models are important tools in the discovery and development of treatments for rare diseases, particularly given the small populations of patients in which to evaluate therapeutic candidates. Here, we provide a compilation of mammalian animal models for metabolic, neuromuscular and ophthalmological orphan-designated conditions based on information gathered by the European Medicines Agency's Committee for Orphan Medicinal Products (COMP) since its establishment in 2000, as well as from a review of the literature. We discuss the predictive value of the models and their advantages and limitations with the aim of highlighting those that are appropriate for the preclinical evaluation of novel therapies, thereby facilitating further drug development for rare diseases.
Collapse
Affiliation(s)
- Guillaume Vaquer
- Human Medicines Special Areas, Human Medicines Development and Evaluation, European Medicines Agency, London E14 4HB, UK
| | | | | | | | | | | | | |
Collapse
|
7
|
Channelrhodopsins-Their potential in gene therapy for neurological disorders. Neurosci Res 2012; 75:6-12. [PMID: 23026479 DOI: 10.1016/j.neures.2012.09.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 08/18/2012] [Accepted: 09/10/2012] [Indexed: 11/23/2022]
Abstract
Recently, channelrhodopsins (ChRs) have begun to be used to manipulate the neuronal activity, since they can be targeted to specific neurons or neural circuits using genetic methods. To advance the potential applications in the investigation and treatment of neurological disorders, the following types of basic research should receive extensive financial support. The spectral and kinetic properties of ChRs should be optimized according to the application by generating variants of ChRs or exploring new rhodopsins from other species. These ChRs should be targeted to the specific types of neurons involved in the neurological disorders through a gene expression system using cell- or tissue-specific promoters/enhancers as well as gene delivery systems with modified virus vectors. The methods have to be developed to apply the genes of interest with safety and long-term effectiveness. Sophisticated opto-electrical devices should be developed. Appropriate primate animal model systems should be established to minimize the structural differences between small animals such as rodents and human beings. In this paper, we will review the current progress in the basic research concerned with the potential clinical application of ChRs and discuss the future directions of research on ChRs so that they could be applied for human welfare.
Collapse
|
8
|
Ghiglieri V, Bagetta V, Calabresi P, Picconi B. Functional interactions within striatal microcircuit in animal models of Huntington's disease. Neuroscience 2012; 211:165-84. [DOI: 10.1016/j.neuroscience.2011.06.075] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 06/25/2011] [Accepted: 06/28/2011] [Indexed: 11/17/2022]
|
9
|
Simão D, Costa I, Serra M, Schwarz J, Brito C, Alves PM. Towards human central nervous system in vitro models for preclinical research: strategies for 3D neural cell culture. BMC Proc 2011; 5 Suppl 8:P53. [PMID: 22373015 PMCID: PMC3284959 DOI: 10.1186/1753-6561-5-s8-p53] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Daniel Simão
- Instituto de Tecnologia Química e Biológica -Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal ; Instituto de Biologia Experimental e Tecnológica, 2780-901 Oeiras, Portugal
| | - Inês Costa
- Instituto de Tecnologia Química e Biológica -Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal ; Instituto de Biologia Experimental e Tecnológica, 2780-901 Oeiras, Portugal
| | - Margarida Serra
- Instituto de Tecnologia Química e Biológica -Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal ; Instituto de Biologia Experimental e Tecnológica, 2780-901 Oeiras, Portugal
| | - Johannes Schwarz
- Department of Neurology, University of Leipzig, 04103 Leipzig, Germany
| | - Catarina Brito
- Instituto de Tecnologia Química e Biológica -Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal ; Instituto de Biologia Experimental e Tecnológica, 2780-901 Oeiras, Portugal
| | - Paula M Alves
- Instituto de Tecnologia Química e Biológica -Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal ; Instituto de Biologia Experimental e Tecnológica, 2780-901 Oeiras, Portugal
| |
Collapse
|
10
|
Martinez MN. Factors influencing the use and interpretation of animal models in the development of parenteral drug delivery systems. AAPS JOURNAL 2011; 13:632-49. [PMID: 21971647 DOI: 10.1208/s12248-011-9303-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2011] [Accepted: 09/23/2011] [Indexed: 01/05/2023]
Abstract
Depending upon the drug and drug delivery platform, species-specific physiological differences can lead to errors in the interspecies extrapolation of drug performance. This manuscript provides an overview of the species-specific physiological variables that can influence the performance of parenteral dosage forms such as in situ forming delivery systems, nanoparticles, microspheres, liposomes, targeted delivery systems, lipophilic solutions, and aqueous suspensions. Also discussed are those factors that can influence the partitioning of therapeutic compounds into tumors, the central nervous system and the lymphatics. Understanding interspecies differences in the movement and absorption of molecules is important to the interpretation of data generated through the use of animal models when studying parenteral drug delivery.
Collapse
|
11
|
Abstract
INTRODUCTION Lysosomal storage disorders (LSDs) encompass more than 50 distinct diseases, caused by defects in various aspects of lysosomal function. Neurodegeneration and/or dysmyelination are the hallmark of roughly 70% of LSDs. Gene therapy represents a promising approach for the treatment of CNS manifestations in LSDs, as it has the potential to provide a permanent source of the deficient enzyme, either by direct injection of vectors or by transplantation of gene-corrected cells. In this latter approach, the biology of neural stem/progenitor cells and hematopoietic cells might be exploited. AREAS COVERED Based on an extensive literature search up until March 2011, the author reviews and discusses the progress, the crucial aspects and the major challenges towards the development of novel gene therapy strategies aimed to target the CNS, with particular attention to direct intracerebral gene delivery and transplantation of neural stem/progenitor cells. EXPERT OPINION The implementation of viral vector delivery systems with specific tropism, regulated transgene expression, low immunogenicity and low genotoxic risk and the improvement in isolation and manipulation of relevant cell types to be transplanted, are fundamental challenges to the field. Also, combinatorial strategies might be required to achieve full correction in LSDs with neurological involvement.
Collapse
Affiliation(s)
- Angela Gritti
- San Raffaele Telethon Institute for Gene Therapy (HSR-TIGET), San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milano, Italy.
| |
Collapse
|
12
|
Wolfe JH. Gene therapy in large animal models of human genetic diseases. Introduction. ILAR J 2009; 50:107-11. [PMID: 19293455 DOI: 10.1093/ilar.50.2.107] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- John H Wolfe
- WF Goodman Center for Comparative Medical Genetics at the University of Pennsylvania School of Veterinary Medicine and Stokes Investigator at the Children's Hospital of Philadelphia, PA 19104, USA.
| |
Collapse
|