1
|
Cissé OH, Ma L, Kovacs JA. Retracing the evolution of Pneumocystis species, with a focus on the human pathogen Pneumocystis jirovecii. Microbiol Mol Biol Rev 2024; 88:e0020222. [PMID: 38587383 PMCID: PMC11332345 DOI: 10.1128/mmbr.00202-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024] Open
Abstract
SUMMARYEvery human being is presumed to be infected by the fungus Pneumocystis jirovecii at least once in his or her lifetime. This fungus belongs to a large group of species that appear to exclusively infect mammals, with P. jirovecii being the only one known to cause disease in humans. The mystery of P. jirovecii origin and speciation is just beginning to unravel. Here, we provide a review of the major steps of P. jirovecii evolution. The Pneumocystis genus likely originated from soil or plant-associated organisms during the period of Cretaceous ~165 million years ago and successfully shifted to mammals. The transition coincided with a substantial loss of genes, many of which are related to the synthesis of nutrients that can be scavenged from hosts or cell wall components that could be targeted by the mammalian immune system. Following the transition, the Pneumocystis genus cospeciated with mammals. Each species specialized at infecting its own host. Host specialization is presumably built at least partially upon surface glycoproteins, whose protogene was acquired prior to the genus formation. P. jirovecii appeared at ~65 million years ago, overlapping with the emergence of the first primates. P. jirovecii and its sister species P. macacae, which infects macaques nowadays, may have had overlapping host ranges in the distant past. Clues from molecular clocks suggest that P. jirovecii did not cospeciate with humans. Molecular evidence suggests that Pneumocystis speciation involved chromosomal rearrangements and the mounting of genetic barriers that inhibit gene flow among species.
Collapse
Affiliation(s)
- Ousmane H. Cissé
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Liang Ma
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Joseph A. Kovacs
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
2
|
Ma L, Lin I, Hunter ST, Blasi B, Danesi P, Weissenbacher-Lang C, Cisse OH, Rothenburger JL, Kovacs JA. Development of Highly Efficient Universal Pneumocystis Primers and Their Application in Investigating the Prevalence and Genetic Diversity of Pneumocystis in Wild Hares and Rabbits. J Fungi (Basel) 2024; 10:355. [PMID: 38786710 PMCID: PMC11121927 DOI: 10.3390/jof10050355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
Despite its ubiquitous infectivity to mammals with strong host specificity, our current knowledge about Pneumocystis has originated from studies of merely 4% of extant mammalian species. Further studies of Pneumocystis epidemiology across a broader range of animal species require the use of assays with high sensitivity and specificity. To this end, we have developed multiple universal Pneumocystis primers targeting different genetic loci with high amplification efficiency. Application of these primers to PCR investigation of Pneumocystis in free-living hares (Lepus townsendii, n = 130) and rabbits (Oryctolagus cuniculus, n = 8) in Canada revealed a prevalence of 81% (105/130) and 25% (2/8), respectively. Genotyping analysis identified five and two variants of Pneumocystis from hares and rabbits, respectively, with significant sequence divergence between the variants from hares. Based on phylogenetic analysis using nearly full-length sequences of the mitochondrial genome, nuclear rRNA operon and dihydropteroate synthase gene for the two most common variants, Pneumocystis in hares and rabbits are more closely related to each other than either are to Pneumocystis in other mammals. Furthermore, Pneumocystis in both hares and rabbits are more closely related to Pneumocystis in primates and dogs than to Pneumocystis in rodents. The high prevalence of Pneumocystis in hares (P. sp. 'townsendii') suggests its widespread transmissibility in the natural environment, similar to P. oryctolagi in rabbits. The presence of multiple distinct Pneumocystis populations in hares contrasts with the lack of apparent intra-species heterogeneity in P. oryctolagi, implying a unique evolution history of P. sp. 'townsendii' in hares.
Collapse
Affiliation(s)
- Liang Ma
- Critical Care Medicine Department, National Institutes of Health Clinical Center, Bethesda, MD 20892, USA; (I.L.); (O.H.C.); (J.A.K.)
| | - Isabella Lin
- Critical Care Medicine Department, National Institutes of Health Clinical Center, Bethesda, MD 20892, USA; (I.L.); (O.H.C.); (J.A.K.)
| | - Summer T. Hunter
- Faculty of Veterinary Medicine, University of Calgary, Canadian Wildlife Health Cooperative (Alberta Region), Calgary, AB T2N 1N4, Canada; (S.T.H.); (J.L.R.)
| | - Barbara Blasi
- Department of Biological Sciences and Pathobiology, Institute of Pathology, University of Veterinary Medicine Vienna, 1210 Wien, Austria; (B.B.); (C.W.-L.)
| | - Patrizia Danesi
- Laboratory of Parasitology, Mycology and Medical Enthomology, Istituto Zooprofilattico delle Venezie, 35020 Legnaro, Italy;
| | - Christiane Weissenbacher-Lang
- Department of Biological Sciences and Pathobiology, Institute of Pathology, University of Veterinary Medicine Vienna, 1210 Wien, Austria; (B.B.); (C.W.-L.)
| | - Ousmane H. Cisse
- Critical Care Medicine Department, National Institutes of Health Clinical Center, Bethesda, MD 20892, USA; (I.L.); (O.H.C.); (J.A.K.)
| | - Jamie L. Rothenburger
- Faculty of Veterinary Medicine, University of Calgary, Canadian Wildlife Health Cooperative (Alberta Region), Calgary, AB T2N 1N4, Canada; (S.T.H.); (J.L.R.)
| | - Joseph A. Kovacs
- Critical Care Medicine Department, National Institutes of Health Clinical Center, Bethesda, MD 20892, USA; (I.L.); (O.H.C.); (J.A.K.)
| |
Collapse
|
3
|
Cissé OH, Ma L, Dekker JP, Khil PP, Youn JH, Brenchley JM, Blair R, Pahar B, Chabé M, Van Rompay KKA, Keesler R, Sukura A, Hirsch V, Kutty G, Liu Y, Peng L, Chen J, Song J, Weissenbacher-Lang C, Xu J, Upham NS, Stajich JE, Cuomo CA, Cushion MT, Kovacs JA. Genomic insights into the host specific adaptation of the Pneumocystis genus. Commun Biol 2021; 4:305. [PMID: 33686174 PMCID: PMC7940399 DOI: 10.1038/s42003-021-01799-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 02/04/2021] [Indexed: 11/21/2022] Open
Abstract
Pneumocystis jirovecii, the fungal agent of human Pneumocystis pneumonia, is closely related to macaque Pneumocystis. Little is known about other Pneumocystis species in distantly related mammals, none of which are capable of establishing infection in humans. The molecular basis of host specificity in Pneumocystis remains unknown as experiments are limited due to an inability to culture any species in vitro. To explore Pneumocystis evolutionary adaptations, we have sequenced the genomes of species infecting macaques, rabbits, dogs and rats and compared them to available genomes of species infecting humans, mice and rats. Complete whole genome sequence data enables analysis and robust phylogeny, identification of important genetic features of the host adaptation, and estimation of speciation timing relative to the rise of their mammalian hosts. Our data reveals insights into the evolution of P. jirovecii, the sole member of the genus able to infect humans. Cissé, Ma et al. utilize genomic data from Pneumocystis species infecting macaques, rabbit, dogs and rats to investigate the molecular basis of host specificity in Pneumocystis. Their analyses provide insight to the specific adaptations enabling the infection of humans by P. jirovecii.
Collapse
Affiliation(s)
- Ousmane H Cissé
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health (NIH), Bethesda, MD, USA.
| | - Liang Ma
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health (NIH), Bethesda, MD, USA.
| | - John P Dekker
- Bacterial Pathogenesis and Antimicrobial Resistance Unit, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD, USA.,Department of Laboratory Medicine, NIH Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Pavel P Khil
- Bacterial Pathogenesis and Antimicrobial Resistance Unit, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD, USA.,Department of Laboratory Medicine, NIH Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Jung-Ho Youn
- Department of Laboratory Medicine, NIH Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | | | - Robert Blair
- Tulane National Primate Research Center, Tulane University, New Orleans, LA, USA
| | - Bapi Pahar
- Tulane National Primate Research Center, Tulane University, New Orleans, LA, USA
| | - Magali Chabé
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Centre d'Infection et d'Immunité de Lille, Lille, France
| | - Koen K A Van Rompay
- California National Primate Research Center, University of California, Davis, CA, USA
| | - Rebekah Keesler
- California National Primate Research Center, University of California, Davis, CA, USA
| | - Antti Sukura
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Vanessa Hirsch
- Laboratory of Molecular Microbiology, NIAID, NIH, Bethesda, MD, USA
| | - Geetha Kutty
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Yueqin Liu
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Li Peng
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jie Chen
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jun Song
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | - Jie Xu
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Nathan S Upham
- Arizona State University, School of Life Sciences, Tempe, ARI, USA
| | - Jason E Stajich
- Department of Microbiology and Plant Pathology and Institute for Integrative Genome Biology, University of California, Riverside, Riverside-California, Riverside, CA, USA
| | - Christina A Cuomo
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Melanie T Cushion
- Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Joseph A Kovacs
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
4
|
Kutty G, Davis AS, Schuck K, Masterson M, Wang H, Liu Y, Kovacs JA. Characterization of Pneumocystis murina Bgl2, an Endo-β-1,3-Glucanase and Glucanosyltransferase. J Infect Dis 2020; 220:657-665. [PMID: 31100118 DOI: 10.1093/infdis/jiz172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 04/13/2019] [Indexed: 11/13/2022] Open
Abstract
Glucan is the major cell wall component of Pneumocystis cysts. In the current study, we have characterized Pneumocystis Bgl2 (EC 3.2.1.58), an enzyme with glucanosyltransferase and β-1,3 endoglucanase activity in other fungi. Pneumocystis murina, Pneumocystis carinii, and Pneumocystis jirovecii bgl2 complementary DNA sequences encode proteins of 437, 447, and 408 amino acids, respectively. Recombinant P. murina Bgl2 expressed in COS-1 cells demonstrated β-glucanase activity, as shown by degradation of the cell wall of Pneumocystis cysts. It also cleaved reduced laminaripentaose and transferred oligosaccharides, resulting in polymers of 6 and 7 glucan residues, demonstrating glucanosyltransferase activity. Surprisingly, confocal immunofluorescence analysis of P. murina-infected mouse lung sections using an antibody against recombinant Bgl2 showed that the native protein is localized primarily to the trophic form of Pneumocystis in both untreated mice and mice treated with caspofungin, an antifungal drug that inhibits β-1,3-glucan synthase. Thus, like other fungi, Bgl2 of Pneumocystis has both endoglucanase and glucanosyltransferase activities. Given that it is expressed primarily in trophic forms, further studies are needed to better understand its role in the biology of Pneumocystis.
Collapse
Affiliation(s)
- Geetha Kutty
- Critical Care Medicine Department, National Institutes of Health Clinical Center, Bethesda, Maryland
| | - A Sally Davis
- Diagnostic Medicine/Pathobiology, Kansas State University College of Veterinary Medicine, Manhattan
| | - Kaitlynn Schuck
- Diagnostic Medicine/Pathobiology, Kansas State University College of Veterinary Medicine, Manhattan
| | - Mya Masterson
- Diagnostic Medicine/Pathobiology, Kansas State University College of Veterinary Medicine, Manhattan
| | - Honghui Wang
- Critical Care Medicine Department, National Institutes of Health Clinical Center, Bethesda, Maryland
| | - Yueqin Liu
- Critical Care Medicine Department, National Institutes of Health Clinical Center, Bethesda, Maryland
| | - Joseph A Kovacs
- Critical Care Medicine Department, National Institutes of Health Clinical Center, Bethesda, Maryland
| |
Collapse
|
5
|
Cissé OH, Hauser PM. Genomics and evolution of Pneumocystis species. INFECTION GENETICS AND EVOLUTION 2018; 65:308-320. [PMID: 30138710 DOI: 10.1016/j.meegid.2018.08.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 08/15/2018] [Accepted: 08/17/2018] [Indexed: 01/20/2023]
Abstract
The genus Pneumocystis comprises highly diversified fungal species that cause severe pneumonia in individuals with a deficient immune system. These fungi infect exclusively mammals and present a strict host species specificity. These species have co-diverged with their hosts for long periods of time (> 100 MYA). Details of their biology and evolution are fragmentary mainly because of a lack of an established long-term culture system. Recent genomic advances have unlocked new areas of research and allow new hypotheses to be tested. We review here new findings of the genomic studies in relation with the evolutionary trajectory of these fungi and discuss the impact of genomic data analysis in the context of the population genetics. The combination of slow genome decay and limited expansion of specific gene families and introns reflect intimate interactions of these species with their hosts. The evolutionary adaptation of these organisms is profoundly influenced by their population structure, which in turn is determined by intrinsic features such as their self-fertilizing mating system, high host specificity, long generation times, and transmission mode. Essential key questions concerning their adaptation and speciation remain to be answered. The next cornerstone will consist in the establishment of a long-term culture system and genetic manipulation that should allow unravelling the driving forces of Pneumocystis species evolution.
Collapse
Affiliation(s)
- Ousmane H Cissé
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Philippe M Hauser
- Institute of Microbiology, Lausanne University Hospital, Lausanne, Switzerland.
| |
Collapse
|
6
|
Kutty G, Davis AS, Ma L, Taubenberger JK, Kovacs JA. Pneumocystis encodes a functional endo-β-1,3-glucanase that is expressed exclusively in cysts. J Infect Dis 2014; 211:719-28. [PMID: 25231017 DOI: 10.1093/infdis/jiu517] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
β-1,3-glucan is a major cell wall component of Pneumocystis cysts. We have characterized endo-β-1,3-glucanase (Eng) from 3 species of Pneumocystis. The gene eng is a single-copy gene that encodes a protein containing 786 amino acids in P. carinii and P. murina, and 788 amino acids in P. jirovecii, including a signal peptide for the former 2 but not the latter. Recombinant Eng expressed in Escherichia coli was able to solubilize the major surface glycoprotein of Pneumocystis, thus potentially facilitating switching of the expressed major surface glycoprotein (Msg) variant. Confocal immunofluorescence analysis of P. murina-infected mouse lung sections localized Eng exclusively to the cyst form of Pneumocystis. No Eng was detected after mice were treated with caspofungin, a β-1,3-glucan synthase inhibitor that is known to reduce the number of cysts. Thus, Eng is a cyst-specific protein that may play a role in Msg variant expression in Pneumocystis.
Collapse
Affiliation(s)
- Geetha Kutty
- Critical Care Medicine Department, National Institutes of Health Clinical Center
| | - A Sally Davis
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Disease, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Liang Ma
- Critical Care Medicine Department, National Institutes of Health Clinical Center
| | - Jeffery K Taubenberger
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Disease, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Joseph A Kovacs
- Critical Care Medicine Department, National Institutes of Health Clinical Center
| |
Collapse
|
7
|
Tibayrenc M, Ayala FJ. Cryptosporidium,Giardia, Cryptococcus, Pneumocystis genetic variability: cryptic biological species or clonal near-clades? PLoS Pathog 2014; 10:e1003908. [PMID: 24722548 PMCID: PMC3983055 DOI: 10.1371/journal.ppat.1003908] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
An abundant literature dealing with the population genetics and taxonomy of Giardia duodenalis, Cryptosporidium spp., Pneumocystis spp., and Cryptococcus spp., pathogens of high medical and veterinary relevance, has been produced in recent years. We have analyzed these data in the light of new population genetic concepts dealing with predominant clonal evolution (PCE) recently proposed by us. In spite of the considerable phylogenetic diversity that exists among these pathogens, we have found striking similarities among them. The two main PCE features described by us, namely highly significant linkage disequilibrium and near-clading (stable phylogenetic clustering clouded by occasional recombination), are clearly observed in Cryptococcus and Giardia, and more limited indication of them is also present in Cryptosporidium and Pneumocystis. Moreover, in several cases, these features still obtain when the near-clades that subdivide the species are analyzed separately (“Russian doll pattern”). Lastly, several sets of data undermine the notion that certain microbes form clonal lineages simply owing to a lack of opportunity to outcross due to low transmission rates leading to lack of multiclonal infections (“starving sex hypothesis”). We propose that the divergent taxonomic and population genetic inferences advanced by various authors about these pathogens may not correspond to true evolutionary differences and could be, rather, the reflection of idiosyncratic practices among compartmentalized scientific communities. The PCE model provides an opportunity to revise the taxonomy and applied research dealing with these pathogens and others, such as viruses, bacteria, parasitic protozoa, and fungi. Micropathogen species definition is extremely difficult, since concepts applied to higher organisms (the biological species concept) are inadequate. In particular, the pathogens here surveyed have given rise to long-lasting controversies about their species status and that of the genotypes that subdivide them. The population genetic approach based on the predominant clonal evolution (PCE) concept proposed by us could bring simple solutions to these controversies, since it permits the description of clearly defined evolutionary entities (clonal multilocus genotypes and near-clades [incompletely isolated clades]) that could be the basis for species description, if the concerned specialists find it justified for applied research. The PCE model also provides a convenient framework for applied studies (molecular epidemiology, vaccine and drug design, clinical research) dealing with these pathogens and others.
Collapse
Affiliation(s)
- Michel Tibayrenc
- Maladies Infectieuses et Vecteurs Ecologie, Génétique, Evolution et Contrôle, MIVEGEC (IRD 224-CNRS 5290-UM1-UM2), IRD Center, BP 64501, Montpellier, France
- * E-mail:
| | - Francisco J. Ayala
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California, United States of America
| |
Collapse
|
8
|
Jarboui MA, Mseddi F, Sellami H, Sellami A, Makni F, Ayadi A. [Pneumocystis: epidemiology and molecular approaches]. ACTA ACUST UNITED AC 2013; 61:239-44. [PMID: 23849772 DOI: 10.1016/j.patbio.2013.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 05/17/2013] [Indexed: 10/26/2022]
Abstract
Pneumocystosis is a common opportunistic infection in immunocompromised patients, especially in AIDS patients. The diagnosis of this pneumonia has presented several difficulties due to the low sensitivity of conventional staining methods and the absence of culture system for Pneumocystis. The molecular biology techniques, especially the PCR, have improved the detection of DNA of this fungus in invasive and noninvasive samples, and in the environment which highlighted human transmission and the existence of environmental source of Pneumocystis. In addition, various molecular biology techniques were used for typing of Pneumocystis strains, especially P. jirovecii, which is characterized by a significant genetic biodiversity. Finally, the widespread use of cotrimoxazole for the treatment and prophylaxis of pneumocystosis has raised questions about possible resistance to sulfa drugs in P. jirovecii.
Collapse
Affiliation(s)
- M A Jarboui
- Laboratoire de biologie moléculaire parasitaire et fongique, faculté de médecine, université de Sfax, rue de Magida Boulila, 3029 Sfax, Tunisie.
| | | | | | | | | | | |
Collapse
|
9
|
|
10
|
Kutty G, England KJ, Kovacs JA. Expression of Pneumocystis jirovecii major surface glycoprotein in Saccharomyces cerevisiae. J Infect Dis 2013; 208:170-9. [PMID: 23532098 DOI: 10.1093/infdis/jit131] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The major surface glycoprotein (Msg), which is the most abundant protein expressed on the cell surface of Pneumocystis organisms, plays an important role in the attachment of this organism to epithelial cells and macrophages. In the present study, we expressed Pneumocystis jirovecii Msg in Saccharomyces cerevisiae, a phylogenetically related organism. Full-length P. jirovecii Msg was expressed with a DNA construct that used codons optimized for expression in yeast. Unlike in Pneumocystis organisms, recombinant Msg localized to the plasma membrane of yeast rather than to the cell wall. Msg expression was targeted to the yeast cell wall by replacing its signal peptide, serine-threonine-rich region, and glycophosphatidylinositol anchor signal region with the signal peptide of cell wall protein α-agglutinin of S. cerevisiae, the serine-threonine-rich region of epithelial adhesin (Epa1) of Candida glabrata, and the carboxyl region of the cell wall protein (Cwp2) of S. cerevisiae, respectively. Immunofluorescence analysis and treatment with β-1,3 glucanase demonstrated that the expressed Msg fusion protein localized to the yeast cell wall. Surface expression of Msg protein resulted in increased adherence of yeast to A549 alveolar epithelial cells. Heterologous expression of Msg in yeast will facilitate studies of the biologic properties of Pneumocystis Msg.
Collapse
Affiliation(s)
- Geetha Kutty
- Critical Care Medicine Department, National Institutes of Health (NIH) Clinical Center, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
11
|
Tibayrenc M, Ayala FJ. Reproductive clonality of pathogens: a perspective on pathogenic viruses, bacteria, fungi, and parasitic protozoa. Proc Natl Acad Sci U S A 2012; 109:E3305-13. [PMID: 22949662 PMCID: PMC3511763 DOI: 10.1073/pnas.1212452109] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
We propose that clonal evolution in micropathogens be defined as restrained recombination on an evolutionary scale, with genetic exchange scarce enough to not break the prevalent pattern of clonal population structure, a definition already widely used for all kinds of pathogens, although not clearly formulated by many scientists and rejected by others. The two main manifestations of clonal evolution are strong linkage disequilibrium (LD) and widespread genetic clustering ("near-clading"). We hypothesize that this pattern is not mainly due to natural selection, but originates chiefly from in-built genetic properties of pathogens, which could be ancestral and could function as alternative allelic systems to recombination genes ("clonality/sexuality machinery") to escape recombinational load. The clonal framework of species of pathogens should be ascertained before any analysis of biomedical phenotypes (phylogenetic character mapping). In our opinion, this model provides a conceptual framework for the population genetics of any micropathogen.
Collapse
Affiliation(s)
- Michel Tibayrenc
- Maladies Infectieuses et Vecteurs Ecologie, Génétique, Evolution et Contrôle, Institut de Rercherche pour le Développement 224, Centre National de la Recherche Scientifique 5290, Universités Montpellier 1 and 2, 34394 Montpellier Cedex 5, France; and
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697
| | - Francisco J. Ayala
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697
| |
Collapse
|
12
|
Chabé M, Aliouat-Denis CM, Delhaes L, Aliouat EM, Viscogliosi E, Dei-Cas E. Pneumocystis: from a doubtful unique entity to a group of highly diversified fungal species. FEMS Yeast Res 2010; 11:2-17. [PMID: 21114625 DOI: 10.1111/j.1567-1364.2010.00698.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
At the end of the 20th century the unique taxonomically enigmatic entity called Pneumocystis carinii was identified as a heterogeneous group of microscopic Fungi, constituted of multiple stenoxenic biological entities largely spread across ecosystems, closely adapted to, and coevolving in parallel with, mammal species. The discoveries and reasoning that led to the current conceptions about the taxonomy of Pneumocystis at the species level are examined here. The present review also focuses on the biological, morphological and phylogenetical features of Pneumocystis jirovecii, Pneumocystis oryctolagi, Pneumocystis murina, P. carinii and Pneumocystis wakefieldiae, the five Pneumocystis species described until now, mainly on the basis of the phylogenetic species concept. Interestingly, Pneumocystis organisms exhibit a successful adaptation enabling them to dwell and replicate in the lungs of both immunocompromised and healthy mammals, which can act as infection reservoirs. The role of healthy carriers in aerial disease transmission is nowadays recognized as a major contribution to Pneumocystis circulation, and Pneumocystis infection of nonimmunosuppressed hosts has emerged as a public health issue. More studies need to be undertaken both on the clinical consequences of the presence of Pneumocystis in healthy carriers and on the intricate Pneumocystis life cycle to better define its epidemiology, to adapt existing therapies to each clinical context and to discover new drug targets.
Collapse
Affiliation(s)
- Magali Chabé
- Biology and Diversity of Emergent Eukaryotic Pathogens (BDEEP)-Center for Infection and Immunity of Lille, Pasteur Institute of Lille, Inserm U1019, CNRS UMR 8204, University Lille-Nord-de-France, Lille, France.
| | | | | | | | | | | |
Collapse
|
13
|
YABUUCHI K, TAJIMA M, KOTANI Y, AIHARA K, KAWASAKI A, KANEKO S, TAKAGI Y, KAWAI S, SHIOYA K, OKAMOTO A, KAGIYAMA S, KUROSAWA T. A Diagnostic Method for Pneumocystis carinii a Causative Agent of Pneumonia in Immunodeficient Rats. Exp Anim 2010; 59:261-7. [DOI: 10.1538/expanim.59.261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Affiliation(s)
- Kaori YABUUCHI
- Institute of Experimental Animal Sciences, Osaka University Graduate School of Medicine
| | - Masaru TAJIMA
- Institute of Experimental Animal Sciences, Osaka University Graduate School of Medicine
| | - Yuko KOTANI
- Institute of Experimental Animal Sciences, Osaka University Graduate School of Medicine
| | - Katsumi AIHARA
- Institute of Experimental Animal Sciences, Osaka University Graduate School of Medicine
| | - Aiko KAWASAKI
- Institute of Experimental Animal Sciences, Osaka University Graduate School of Medicine
| | - Shiro KANEKO
- Institute of Experimental Animal Sciences, Osaka University Graduate School of Medicine
| | - Yasuhiro TAKAGI
- Institute of Experimental Animal Sciences, Osaka University Graduate School of Medicine
| | - Sumiko KAWAI
- Institute of Experimental Animal Sciences, Osaka University Graduate School of Medicine
| | - Kyoko SHIOYA
- National Cardiovascular Center, Research Institute Laboratory Animal Unit
| | - Akira OKAMOTO
- Institute of Experimental Animal Sciences, Osaka University Graduate School of Medicine
| | - Soichiro KAGIYAMA
- Institute of Experimental Animal Sciences, Osaka University Graduate School of Medicine
| | - Tsutomu KUROSAWA
- Institute of Experimental Animal Sciences, Osaka University Graduate School of Medicine
| |
Collapse
|
14
|
Chabé M, Nevez G, Totet A, Fréalle E, Delhaes L, Aliouat E, Dei-Cas E. Transmission de Pneumocystis. J Mycol Med 2009. [DOI: 10.1016/j.mycmed.2009.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
15
|
Aliouat-Denis CM, Chabé M, Demanche C, Aliouat EM, Viscogliosi E, Guillot J, Delhaes L, Dei-Cas E. Pneumocystis species, co-evolution and pathogenic power. INFECTION GENETICS AND EVOLUTION 2008; 8:708-26. [DOI: 10.1016/j.meegid.2008.05.001] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Revised: 05/02/2008] [Accepted: 05/03/2008] [Indexed: 01/13/2023]
|
16
|
Dei-Cas E, Chabé M, Moukhlis R, Durand-Joly I, Aliouat EM, Stringer JR, Cushion M, Noël C, de Hoog GS, Guillot J, Viscogliosi E. Pneumocystis oryctolagisp. nov., an uncultured fungus causing pneumonia in rabbits at weaning: review of current knowledge, and description of a new taxon on genotypic, phylogenetic and phenotypic bases. FEMS Microbiol Rev 2006; 30:853-71. [PMID: 17064284 DOI: 10.1111/j.1574-6976.2006.00037.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
The genus Pneumocystis comprises noncultivable, highly diversified fungal pathogens dwelling in the lungs of mammals. The genus includes numerous host-species-specific species that are able to induce severe pneumonitis, especially in severely immunocompromised hosts. Pneumocystis organisms attach specifically to type-1 epithelial alveolar cells, showing a high level of subtle and efficient adaptation to the alveolar microenvironment. Pneumocystis species show little difference at the light microscopy level but DNA sequences of Pneumocystis from humans, other primates, rodents, rabbits, insectivores and other mammals present a host-species-related marked divergence. Consistently, selective infectivity could be proven by cross-infection experiments. Furthermore, phylogeny among primate Pneumocystis species was correlated with the phylogeny of their hosts. This observation suggested that cophylogeny could explain both the current distribution of pathogens in their hosts and the speciation. Thus, molecular, ultrastructural and biological differences among organisms from different mammals strengthen the view of multiple species existing within the genus Pneumocystis. The following species were subsequently described: Pneumocystis jirovecii in humans, Pneumocystis carinii and Pneumocystis wakefieldiae in rats, and Pneumocystis murina in mice. The present work focuses on Pneumocystis oryctolagi sp. nov. from Old-World rabbits. This new species has been described on the basis of both biological and phylogenetic species concepts.
Collapse
|
17
|
Keely SP, Fischer JM, Cushion MT, Stringer JR. Phylogenetic identification of Pneumocystis murina sp. nov., a new species in laboratory mice. Microbiology (Reading) 2004; 150:1153-1165. [PMID: 15133075 DOI: 10.1099/mic.0.26921-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pneumocystisis a fungal genus that contains multiple species. One member of the genus that has not been formally analysed for its phylogenetic relationships and possible species status is thePneumocystisfound in laboratory mice,Pneumocystis murinasp. nov. (type strain ATCC PRA-111T=CBS 114898T), formerly known asPneumocystis cariniif. sp.muris. To advance research in this area, approximately 3000 bp of additional DNA sequence were obtained from the locus encoding rRNAs. This sequence and others were used to determine genetic distances betweenP. murinaand other members of the genus. These distances indicated thatP. murinaDNA is most similar to that of the species ofPneumocystisfound in laboratory rats. Nevertheless,P. murinais at least as diverged from these otherPneumocystisspecies as species in other fungal genera are from each other. The 18S rRNA gene sequence divergence exhibited byP. murinacould not be ascribed to accelerated evolution of this gene as similar levels of divergence were observed at seven other loci. When five genes were used to construct phylogenetic trees for fivePneumocystistaxa, includingP. murina, all the trees had the same topology, indicating that genes do not flow among these taxa. The gene trees were all strongly supported by statistical tests. When sequences from the rRNA-encoding locus were used to estimate the time of divergence ofP. murina, the results indicated thatP. murinais as old as the mouse. Taken together, these data support previous recognition of multiple species in the genus and indicate thatP. murinais a phylogenetic species as well.
Collapse
MESH Headings
- Animals
- Animals, Laboratory/microbiology
- DNA, Ribosomal/analysis
- DNA, Ribosomal Spacer/analysis
- Mice
- Mice, SCID
- Molecular Sequence Data
- Phylogeny
- Pneumocystis/classification
- Pneumocystis/genetics
- Pneumonia, Pneumocystis/microbiology
- RNA, Ribosomal, 18S/genetics
- RNA, Ribosomal, 5.8S/genetics
- Sequence Analysis, DNA
Collapse
Affiliation(s)
- Scott P Keely
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267-0524, USA
| | - Jared M Fischer
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267-0524, USA
| | - Melanie T Cushion
- Department of Internal Medicine, Division of Infectious Diseases, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267-0524, USA
| | - James R Stringer
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267-0524, USA
| |
Collapse
|
18
|
Demanche C, Berthelemy M, Petit T, Polack B, Wakefield AE, Dei-Cas E, Guillot J. Phylogeny of Pneumocystis carinii from 18 primate species confirms host specificity and suggests coevolution. J Clin Microbiol 2001; 39:2126-33. [PMID: 11376046 PMCID: PMC88100 DOI: 10.1128/jcm.39.6.2126-2133.2001] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2001] [Accepted: 04/08/2001] [Indexed: 11/20/2022] Open
Abstract
Primates are regularly infected by fungal organisms identified as Pneumocystis carinii. They constitute a valuable population for the confirmation of P. carinii host specificity. In this study, the presence of P. carinii was assessed by direct examination and nested PCR at mitochondrial large subunit (mtLSU) rRNA and dihydropteroate synthetase (DHPS) genes in 98 lung tissue samples from captive or wild nonhuman primates. Fifty-nine air samples corresponding to the environment of different primate species in zoological parks were also examined. Cystic forms of P. carinii were detected in smears from 7 lung tissue samples corresponding to 5 New World primate species. Amplifications at the mtLSU rRNA gene were positive for 29 lung tissue samples representing 18 different primate species or subspecies and 2 air samples corresponding to the environment of two simian colonies. Amplifications at the DHPS gene were positive for 8 lung tissue samples representing 6 different primate species. Direct sequencing of nested PCR products demonstrated that a specific mtLSU rRNA and DHPS sequence could be attributed to each primate species or subspecies. No nonhuman primate harbored the human type of P. carinii (P. carinii f. sp. hominis). Genetic divergence in primate-derived P. carinii organisms varied in terms of the phylogenetic divergence existing among the corresponding host species, suggesting coevolution.
Collapse
Affiliation(s)
- C Demanche
- UMR 956 INRA-AFSSA-ENVA Biologie Moléculaire et Immunologie Parasitaires et Fongiques, Ecole Nationale Vétérinaire d'Alfort, 7, Avenue du Général de Gaulle, 94704 Maisons-Alfort, France
| | | | | | | | | | | | | |
Collapse
|
19
|
Amit Z, Kaneshiro ES. Heterogeneity of Pneumocystis sterol profiles of samples from different sites in the same pair of lungs suggests coinfection by distinct organism populations. J Clin Microbiol 2001; 39:1137-9. [PMID: 11230442 PMCID: PMC87888 DOI: 10.1128/jcm.39.3.1137-1139.2001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sterol profiles of samples taken from different sites of a Pneumocystis-infected human lung showed large variations in pneumocysterol similar to those that occur among samples from different patients. Thus, the influence of diet or drugs on pneumocysterol accumulation was ruled out, suggesting distinct phenotypic populations as the basis for the heterogeneity.
Collapse
Affiliation(s)
- Z Amit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio 45221, USA
| | | |
Collapse
|
20
|
Hosoya N, Takahashi T, Wada M, Endo T, Nakamura T, Sakashita H, Kimura K, Ohnishi K, Nakamura Y, Mizuochi T, Iwamoto A. Genotyping of Pneumocystis carinii f. sp. hominis isolates in Japan based on nucleotide sequence variations in internal transcribed spacer regions of rRNA genes. Microbiol Immunol 2001; 44:591-6. [PMID: 10981832 DOI: 10.1111/j.1348-0421.2000.tb02538.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Genotyping of Pneumocystis carinii (Pc) isolated from 24 bronchoalveolar lavage (BAL) fluid specimens in Japan was examined based on nucleotide sequence variations in internal transcribed spacer regions 1 and 2 (ITS1 and ITS2, respectively) of rRNA genes. We found 11 ITS1 genotypes including 2 novel ones and 11 ITS2 genotypes including 3 new ones. Combining the ITS1 and ITS2 genotypes resulted in 30 ITS genotypes, of which 10 are newly described in this report. Two or more genotypes in ITS regions in a specimen were observed in 16 of 24 patients. Our results will be of help for the epidemiological investigation of Pc infection.
Collapse
Affiliation(s)
- N Hosoya
- Department of Infectious Diseases, Institute of Medical Science, The University of Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Human-parasite relationships have played an essential role in the emergence or re-emergence of some parasitic diseases. These interactions are due to numerous causes. Some are linked to humans (immunodeficiencies due to AIDS among other causes, treatments, nosocomial contaminations, genetic predisposition), others concern the parasite (particular genotypes having modified their parasitic specificity). Several of these causes were predominant in the emergence of parasitoses such as cryptosporidiasis, microsporidioses or, to a certain point, pneumocystosis, the transmission of which has become zoonotic or even anthroponotic, inter-human. Re-emergent diseases (toxoplasmosis, leishmaniasis, giardiasis, strongyloidiasis, scabies) had already been described in human pathology, but their frequency or symptomatology have been drastically modified. In this case also, the unbalanced host-parasite relationship is largely responsible but it can not be dissociated from other causes, especially environmental and nutritional.
Collapse
Affiliation(s)
- P Ambroise-Thomas
- Interactions Cellulaires Parasite-Hôte (ICPH), ER CNRS 2014, Faculté de Médecine, Université Joseph Fourier, 38043, Grenoble, France.
| |
Collapse
|
22
|
Denis CM, Mazars E, Guyot K, Odberg-Ferragut C, Viscogliosi E, Dei-Cas E, Wakefield AE. Genetic divergence at the SODA locus of six different formae speciales of Pneumocystis carinii. Med Mycol 2000; 38:289-300. [PMID: 10975697 DOI: 10.1080/mmy.38.4.289.300] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Genetic divergence at the SODA (manganese-dependent superoxide dismutase, MnSOD) locus were compared in six Pneumocystis carinii formae speciales isolated from mouse, rabbit, human, macaque and pig. A degenerate oligonucleotide primer strategy was designed to amplify 85-90% of the full-length SODA gene from P. carinii genomic DNA isolates. DNA sequence analysis revealed an A/T bias in the nucleotide composition (71-77.2%) and the presence of seven small introns (41-142 bp), interrupting each P. carinii open reading frame (ORF) at the same position. The MnSOD deduced amino acid sequences from all P. carinii isolates shared residues which were conserved within the MnSOD family and which are required for enzymatic activity and binding of the cofactor metal. Phylogenetic analysis including MnSOD sequences from representatives of the fungal phyla Basidiomycota and Ascomycota indicated that the P. carinii formae speciales form a monophyletic group that is related to the budding yeasts (subphylum Saccharomycotina, previously called class Hemiascomycetes) in the Ascomycota. In the whole Pneumocystis group, P. carinii f. sp. hominis, P. carinii f. sp. macacae and P. carinii f. sp. oryctolagi MnSOD sequences clustered together, as did the rat-derived P. carinii and P. carinii f. sp. muris sequences.
Collapse
Affiliation(s)
- C M Denis
- Department of Paediatrics, Institute of Molecular Medicine, University of Oxford, UK.
| | | | | | | | | | | | | |
Collapse
|
23
|
Kaneshiro ES, Wyder MA. C27 to C32 sterols found in Pneumocystis, an opportunistic pathogen of immunocompromised mammals. Lipids 2000; 35:317-24. [PMID: 10783009 DOI: 10.1007/s11745-000-0528-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Pneumocystis carinii is the paradigm of opportunistic infections in immunocompromised mammals. Prior to the acquired immunodeficiency syndrome (AIDS) pandemic and the use of immunosuppressive therapy in organ transplant and cancer patients, P. carinii was regarded as a curiosity, rarely observed clinically. Interest in this organism exploded when it was identified as the agent of P. carinii pneumonia (PcP), the direct cause of death among many AIDS patients. Aggressive prophylaxis has decreased the number of acute PcP cases, but it remains among the most prevalent opportunistic infections found within this patient population. The taxonomic assignment of P. carinii has long been argued; molecular genetics data now demonstrate that it is a fungus. Several antimycotic drugs are targeted against ergosterol or its biosynthesis, but these are not as effective against PcP as they are against other fungal infections. This can now be explained in part by the identification of the sterols of P. carinii. The organism lacks ergosterol but contains distinct C28 and C29 delta7 24-alkylsterols. Also, 24-methylenelanost-8-en-3beta-ol (C31) and pneumocysterol, (24Z)-ethylidenelanost-8-en-3beta-ol (C32) were recently identified in organisms infecting humans. Together, the delta7 24-alkylsterols and pneumocysterol are regarded as signature lipids of the pathogen that can be useful for the diagnosis of PcP, since no other lung pathogen is known to contain them. Cholesterol (C27), the dominant sterol component in P. carinii, is probably totally scavenged from the host. De novo synthesis of sterols has been demonstrated by the presence of lovastatin-sensitive 3-hydroxy-3-methylglutaryl-CoA reductase activity, the incorporation of radiolabeled mevalonate and squalene into P. carinii sterols, and the reduction in cellular ATP in cells treated with inhibitors of enzymes in sterol biosynthesis.
Collapse
Affiliation(s)
- E S Kaneshiro
- Department of Biological Sciences, University of Cincinnati, Ohio 45221-0006, USA.
| | | |
Collapse
|
24
|
|
25
|
Dei-Cas E, Brun-Pascaud M, Bille-Hansen V, Allaert A, Aliouat EM. Animal models of pneumocystosis. FEMS IMMUNOLOGY AND MEDICAL MICROBIOLOGY 1998; 22:163-8. [PMID: 9792075 DOI: 10.1111/j.1574-695x.1998.tb01201.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
As in vitro culture systems allowing to isolate Pneumocystis samples from patients or other mammal hosts are still not available, animal models have critical importance in Pneumocystis research. The parasite was reported in numerous mammals but P. carinii pneumonia (PCP) experimental models were essentially developed by using rats, mice, rabbits and ferrets. The rat treated with corticosteroids for 9-12 weeks is a useful PCP model. Like laboratory rats, conventional mice develop PCP after prolonged corticosteroid administration. The ferret (Mustela putorius furo) also develop PCP under corticosteroid regime. Whilst bronchoalveolar lavage (BAL) is really difficult to perform on live laboratory rodents, serial BAL sampling can be performed on live ferrets. Rabbits currently develop spontaneous PCP at weaning without corticosteroid administration. For this reason this model has been used for studying the host immune response as well as Pneumocystis-surfactant interactions. Pigs and horses also develop spontaneous PCP. Treated with corticosteroids, piglets develop extensive PCP and could be used as a non-rodent model. Pneumocystis was detected in many non-human primates. Primates could represent a source of parasites taxonomically related to P. carinii sp. f. hominis. Moreover, primates might be used as experimental hosts to human Pneumocystis. A marked variability of parasite levels among corticosteroid-treated animals and the fact that the origin of the parasite strain remains unknown, are important drawbacks of the corticosteroid-treated models. For these reasons, inoculated animal models of PCP were developed. The intratracheal inoculation of lung homogenates containing viable parasites in corticosteroid-treated non-latently infected rats resulted in extensive, reproducible Pneumocystis infections. Extensive PCP can be obtained within 5-7 weeks, whilst 9-12 weeks are needed in the classical model. The severe combined immunodeficiency (SCID) mouse inoculated by nasal route and the athymic nude rats intratracheally inoculated were used to test the infectivity of Pneumocystis samples coming from cultures or from different hosts. They were also used to test the anti-Pneumocystis activity of antimicrobial molecules.
Collapse
Affiliation(s)
- E Dei-Cas
- Faculty of Medicine and Regional University Hospital Centre, Lille, France.
| | | | | | | | | |
Collapse
|
26
|
Mazars E, Dei-Cas E. Epidemiological and taxonomic impact of Pneumocystis biodiversity. FEMS IMMUNOLOGY AND MEDICAL MICROBIOLOGY 1998; 22:75-80. [PMID: 9792063 DOI: 10.1111/j.1574-695x.1998.tb01189.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A cluster of antigenic, genomic, karyotypic, isoenzymatic and morphological differences have been reported among Pneumocystis populations. Multilocus enzyme electrophoresis revealed strong linkage disequilibrium suggesting that Pneumocystis genotypes from different hosts have been genetically isolated from each other for a very long time. At least in some cases, genetic diversity is associated with phenotypic differences as revealed by in vitro, ultrastructural and cross infection studies. Thus, biodiversity in Pneumocystis has obvious epidemiological implications. Cross infection experiments revealed that Pneumocystis host species-related genetic differences are associated with close host species specificity, which suggests that transmission cannot take place between hosts of different species and that immunocompromised patients contract the infection primarily from infected humans. But these affirmations do not preclude other reservoirs for human pneumocystosis and research has to be extended to natural populations of synanthropic or wild mammals. Transmission of human pneumocystosis was also approached by typing human Pneumocystis isolates from patients or carriers, which should allow the follow up of parasite strains in human populations. As the strains of Pneumocystis found in different host species were considered for a long time to be morphologically indistinguishable, only one species of Pneumocystis was accepted for almost one century. At present, the scientific community is progressively accepting that the terminology 'P. carinii' is hiding a heterogeneous group of microorganisms. As available data made it impossible to establish if genetic divergence derives from clonal reproduction or speciation, no new species names have been attributed to Pneumocystis populations, but a trinomial nomenclature, including the Latin name of the host, was adopted in 1994. It has to be outlined finally that works on biodiversity of Pneumocystis populations are basically important as they have revealed a new group of eukaryotic, pathogenic, heterogeneous microorganisms with fungal affinities, difficult to cultivate until now and widely spread in ecosystems. These researches are opening a virgin field for microbiology research.
Collapse
Affiliation(s)
- E Mazars
- Department of Microbiology of Ecosystems, Pasteur Institute of Lille, France.
| | | |
Collapse
|
27
|
Brun Pascaud M, Herreros E, Aliouat EM, Dei-Cas E. Evaluation of drug efficacy by using animal models or in vitro systems. FEMS IMMUNOLOGY AND MEDICAL MICROBIOLOGY 1998; 22:173-9. [PMID: 9792077 DOI: 10.1111/j.1574-695x.1998.tb01203.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The efficacy of most therapeutic and prophylactic protocols against Pneumocystis carinii pneumonia used in human patients has been tested in animal models, especially in the corticosteroid-treated rat. The advantages and drawbacks of this model have been examined in brief in Chapter 1 of this section. More recently, the nude rat, intratracheally inoculated with Pneumocystis, was used to test new anti-microbian molecules for their anti-Pneumocystis activity. In vitro systems, co-cultures of Pneumocystis with feeder cells as well as axenic cultures, were also used many times for drug screening. In this paper, the most used in vivo or in vitro drug screening systems are described. Moreover, as immunocompromised individuals, AIDS patients, especially, are often infected simultaneously by several infectious agents, a recent co-infection model is described.
Collapse
|
28
|
Hauser PM, Blanc DS, Bille J, Francioli P. Typing methods to approach Pneumocystis carinii genetic heterogeneity. FEMS IMMUNOLOGY AND MEDICAL MICROBIOLOGY 1998; 22:27-35. [PMID: 9792058 DOI: 10.1111/j.1574-695x.1998.tb01184.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The study of the genetic heterogeneity of P. carinii is complicated by the lack of an in vitro culture system, as well as by the likely occurrence of co-infections with several special forms or types in a single host. Karyotyping and multilocus enzyme electrophoresis are useful for studies at the evolutionary level. However, these methods require a large number of cells, which prevents their use for the special form infecting humans. DNA sequence analysis of genomic regions is useful to study P. carinii diversity, both at the evolutionary and epidemiological levels. To type the special form specific to humans, several methods are currently used to detect polymorphism in PCR products of polymorphic regions of the genome: DNA sequencing, type-specific hybridisations, and single-strand conformation polymorphism. All these methods still need evaluation. The frequency of potential co-infections in humans determined by these various methods is different. The differences could be due to methodological problems or to real variations between patient populations, geographical locations and/or prophylaxis regimens. In the future, elucidating the population structure of P. carinii and the frequency of potential co-infections is going to be crucial for a better understanding of its epidemiology, and thus for a better prevention of P. carinii pneumonia in humans.
Collapse
Affiliation(s)
- P M Hauser
- Centre Hospitalier Universitaire Vaudois, Division Autonome de Médecine Préventive Hospitalière, Lausanne, Switzerland.
| | | | | | | |
Collapse
|
29
|
NIELSEN MH, SETTNES OP, ALIOUAT EM, CAILLIEZ JC, DEI-CAS E. Different ultrastructural morphology ofPneumocystis cariniiderived from mice, rats, and rabbits. APMIS 1998. [DOI: 10.1111/j.1699-0463.1998.tb00223.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
30
|
Abstract
Pneumocystis carinii pneumonia remains a prevalent opportunistic disease among immunocompromised individuals. Although aggressive prophylaxis has decreased the number of acute P. carinii pneumonia cases, many patients cannot tolerate the available drugs, and experience recurrence of the infection, which can be fatal. It is now generally agreed that the organism should be placed with the fungi, but the identification of extant fungal species representing its closest kins, remains debated. Most recent data indicate that P. carinii represents a diverse group of organisms. Since the lack of methods for the continuous subcultivation of this organism hampered P. carinii research, molecular cloning and nucleotide sequencing approaches led the way for understanding the biochemical nature of this pathogen. However, within the last 5 years, the development of improved protocols for isolating and purifying viable organisms from infected mammalian host lungs has enabled direct biochemical and metabolism studies on the organism. The protein moiety of the major high mol. wt surface antigen, represented by numerous isoforms, is encoded by different genes. These proteins are post-transcriptionally modified by carbohydrates and lipids. The organism has the shikimic acid pathway that leads to the formation of compounds which mammals cannot synthesise (e.g., folic acid), hence drugs that inhibit these pathways are effective against the pathogen. Ornithine decarboxylase has now been detected; rapid and complete depletion of polyamines occurs in response to difluoromethylornithine (DFMO). Instead of ergosterol (the major sterol of higher fungi), P. carinii synthesises distinct delta7, C-24-alkylated sterols. An unusual C32 sterol, pneumocysterol, has been identified in human-derived P. carinii. Another signature lipid discovered is cis-9,10-epoxy stearic acid. CoQ10, identified as the major ubiquinone homologue, is synthesised de novo by P. carinii. Atovaquone and other hydroxynaphthoquinone drugs with anti-P. carinii activity probably inhibit pathogen respiration as CoQ analogues. Unlike its effects on Plasmodium, atovaquone does not inhibit the P. carinii dihydroorotate dehydrogenase and pyrimidine metabolism.
Collapse
Affiliation(s)
- E S Kaneshiro
- Department of Biological Sciences, University of Cincinnati, OH, USA.
| |
Collapse
|