1
|
Madani WAM, Ramos Y, Cubillos-Ruiz JR, Morales DK. Enterococcal-host interactions in the gastrointestinal tract and beyond. FEMS MICROBES 2024; 5:xtae027. [PMID: 39391373 PMCID: PMC11466040 DOI: 10.1093/femsmc/xtae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/05/2024] [Accepted: 09/06/2024] [Indexed: 10/12/2024] Open
Abstract
The gastrointestinal tract (GIT) is typically considered the natural niche of enterococci. However, these bacteria also inhabit extraintestinal tissues, where they can disrupt organ physiology and cause life-threatening infections. Here, we discuss how enterococci, primarily Enterococcus faecalis, interact with the intestine and other host anatomical locations such as the oral cavity, heart, liver, kidney, and vaginal tract. The metabolic flexibility of these bacteria allows them to quickly adapt to new environments, promoting their persistence in diverse tissues. In transitioning from commensals to pathogens, enterococci must overcome harsh conditions such as nutrient competition, exposure to antimicrobials, and immune pressure. Therefore, enterococci have evolved multiple mechanisms to adhere, colonize, persist, and endure these challenges in the host. This review provides a comprehensive overview of how enterococci interact with diverse host cells and tissues across multiple organ systems, highlighting the key molecular pathways that mediate enterococcal adaptation, persistence, and pathogenic behavior.
Collapse
Affiliation(s)
- Wiam Abdalla Mo Madani
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, NY 10065, United States
| | - Yusibeska Ramos
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, NY 10065, United States
| | - Juan R Cubillos-Ruiz
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, NY 10065, United States
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, NY 10065, United States
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, NY 10065, United States
| | - Diana K Morales
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, NY 10065, United States
| |
Collapse
|
2
|
Alexander NG, Cutts WD, Hooven TA, Kim BJ. Transcription modulation of pathogenic streptococcal and enterococcal species using CRISPRi technology. PLoS Pathog 2024; 20:e1012520. [PMID: 39298373 DOI: 10.1371/journal.ppat.1012520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024] Open
Affiliation(s)
- Natalie G Alexander
- Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama, United States of America
| | - William D Cutts
- Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama, United States of America
| | - Thomas A Hooven
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Richard King Mellon Institute for Pediatric Research, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
- UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Brandon J Kim
- Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama, United States of America
- Department of Microbiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Center for Convergent Biosciences and Medicine, University of Alabama, Tuscaloosa, Alabama, United States of America
- Alabama Life Research Institute, University of Alabama, Tuscaloosa, Alabama, United States of America
| |
Collapse
|
3
|
Yu X, Yuan J, Shi L, Dai S, Yue L, Yan M. Necroptosis in bacterial infections. Front Immunol 2024; 15:1394857. [PMID: 38933265 PMCID: PMC11199740 DOI: 10.3389/fimmu.2024.1394857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Necroptosis, a recently discovered form of cell-programmed death that is distinct from apoptosis, has been confirmed to play a significant role in the pathogenesis of bacterial infections in various animal models. Necroptosis is advantageous to the host, but in some cases, it can be detrimental. To understand the impact of necroptosis on the pathogenesis of bacterial infections, we described the roles and molecular mechanisms of necroptosis caused by different bacterial infections in this review.
Collapse
Affiliation(s)
- Xing Yu
- Department of Pathogen Biology and Immunology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Jin Yuan
- Clinical Laboratory, Puer Hospital of Traditional Chinese Medicine, Puer, China
| | - Linxi Shi
- Department of Pathogen Biology and Immunology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Shuying Dai
- Department of Pathogen Biology and Immunology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Lei Yue
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Min Yan
- Department of Pathogen Biology and Immunology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, China
| |
Collapse
|
4
|
Bhalla M, Herring S, Lenhard A, Wheeler JR, Aswad F, Klumpp K, Rebo J, Wang Y, Wilhelmsen K, Fortney K, Bou Ghanem EN. The prostaglandin D2 antagonist asapiprant ameliorates clinical severity in young hosts infected with invasive Streptococcus pneumoniae. Infect Immun 2024; 92:e0052223. [PMID: 38629842 PMCID: PMC11075459 DOI: 10.1128/iai.00522-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/29/2024] [Indexed: 05/03/2024] Open
Abstract
Streptococcus pneumoniae (pneumococcus) remains a serious cause of pulmonary and systemic infections globally, and host-directed therapies are lacking. The aim of this study was to test the therapeutic efficacy of asapiprant, an inhibitor of prostaglandin D2 signaling, against pneumococcal infection. Treatment of young mice with asapiprant after pulmonary infection with invasive pneumococci significantly reduced systemic spread, disease severity, and host death. Protection was specific against bacterial dissemination from the lung to the blood but had no effect on pulmonary bacterial burden. Asapiprant-treated mice had enhanced antimicrobial activity in circulating neutrophils, elevated levels of reactive oxygen species (ROS) in lung macrophages/monocytes, and improved pulmonary barrier integrity indicated by significantly reduced diffusion of fluorescein isothiocyanate (FITC)-dextran from lungs into the circulation. These findings suggest that asapiprant protects the host against pneumococcal dissemination by enhancing the antimicrobial activity of immune cells and maintaining epithelial/endothelial barrier integrity in the lungs.
Collapse
Affiliation(s)
- Manmeet Bhalla
- Department of Microbiology and Immunology, School of Medicine, University at Buffalo, Buffalo, New York, USA
| | - Sydney Herring
- Department of Microbiology and Immunology, School of Medicine, University at Buffalo, Buffalo, New York, USA
| | - Alexsandra Lenhard
- Department of Microbiology and Immunology, School of Medicine, University at Buffalo, Buffalo, New York, USA
| | - Joshua R. Wheeler
- Department of Pathology, Stanford University, Stanford, California, USA
| | - Fred Aswad
- BIOAGE Labs Inc., Richmond, California, USA
| | | | | | - Yan Wang
- BIOAGE Labs Inc., Richmond, California, USA
| | | | | | - Elsa N. Bou Ghanem
- Department of Microbiology and Immunology, School of Medicine, University at Buffalo, Buffalo, New York, USA
| |
Collapse
|
5
|
Boeder AM, Spiller F, Carlstrom M, Izídio GS. Enterococcus faecalis: implications for host health. World J Microbiol Biotechnol 2024; 40:190. [PMID: 38702495 DOI: 10.1007/s11274-024-04007-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024]
Abstract
The microbiota represents a crucial area of research in maintaining human health due to its potential for uncovering novel biomarkers, therapies, and molecular mechanisms relevant to population identification and experimental model characterization. Among these microorganisms, Enterococcus faecalis, a Gram-positive bacterium found in the gastrointestinal tract of humans and animals, holds particular significance. Strains of this bacterial species have sparked considerable debate in the literature due to their dual nature; they can either be utilized as probiotics in the food industry or demonstrate resistance to antibiotics, potentially leading to severe illness, disability, and death. Given the diverse characteristics of Enterococcus faecalis strains, this review aims to provide a comprehensive understanding of their impact on various systems within the host, including the immunological, cardiovascular, metabolic, and nervous systems. Furthermore, we summarize the bacterium-host interaction characteristics and molecular effects to highlight their targets, features, and overall impact on microbial communities and host health.
Collapse
Affiliation(s)
- Ariela Maína Boeder
- Department of Pharmacology, Federal University of Santa Catarina, Florianópolis, Brazil
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Fernando Spiller
- Department of Pharmacology, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Mattias Carlstrom
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Geison Souza Izídio
- Department of Pharmacology, Federal University of Santa Catarina, Florianópolis, Brazil.
- Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, Florianópolis, Brazil.
- Department of Psychiatry and Legal Medicine, Autonomous University of Barcelona, Barcelona, Spain.
- Laboratório de Genética do Comportamento, Universidade Federal de Santa Catarina, Centro de Ciências Biológicas, Departamento de Biologia Celular, Embriologia e Genética, Florianopolis, SC, Brazil.
| |
Collapse
|
6
|
Miller WR, Nguyen A, Singh KV, Rizvi S, Khan A, Erickson SG, Egge SL, Cruz M, Dinh AQ, Diaz L, Thornton PC, Zhang R, Xu L, Garsin DA, Shamoo Y, Arias CA. Membrane Lipids Augment Cell Envelope Stress Signaling via the MadRS System to Defend Against Antimicrobial Peptides and Antibiotics in Enterococcus faecalis. J Infect Dis 2024:jiae173. [PMID: 38578967 DOI: 10.1093/infdis/jiae173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 04/07/2024] Open
Abstract
Enterococci have evolved resistance mechanisms to protect their cell envelopes against bacteriocins and host cationic antimicrobial peptides (CAMPs) produced in the gastrointestinal environment. Activation of the membrane stress response has also been tied to resistance to the lipopeptide antibiotic daptomycin. However, the actual effectors mediating resistance have not been elucidated. Here, we show that the MadRS (formerly YxdJK) membrane antimicrobial peptide defense system controls a network of genes, including a previously uncharacterized three gene operon (madEFG) that protects the E. faecalis cell envelope from antimicrobial peptides. Constitutive activation of the system confers protection against CAMPs and daptomycin in the absence of a functional LiaFSR system and leads to persistence of cardiac microlesions in vivo. Moreover, changes in the lipid cell membrane environment alter CAMP susceptibility and expression of the MadRS system. Thus, we provide a framework supporting a multilayered envelope defense mechanism for resistance and survival coupled to virulence.
Collapse
Affiliation(s)
- William R Miller
- Division of Infectious Diseases, Houston Methodist Hospital, Houston, Texas, USA
- Center for Infectious Diseases, Houston Methodist Research Institute, Houston, Texas, USA
- Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - April Nguyen
- Division of Infectious Diseases, Houston Methodist Hospital, Houston, Texas, USA
- Center for Infectious Diseases, Houston Methodist Research Institute, Houston, Texas, USA
- McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
- Microbiology and Molecular Genetics, Graduate School of Biomedical Sciences, University of Texas Health Science Center, Houston, TX, USA
| | - Kavindra V Singh
- Division of Infectious Diseases, Houston Methodist Hospital, Houston, Texas, USA
- Center for Infectious Diseases, Houston Methodist Research Institute, Houston, Texas, USA
| | - Samie Rizvi
- Division of Infectious Diseases, Houston Methodist Hospital, Houston, Texas, USA
- Center for Infectious Diseases, Houston Methodist Research Institute, Houston, Texas, USA
| | - Ayesha Khan
- McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
- Microbiology and Molecular Genetics, Graduate School of Biomedical Sciences, University of Texas Health Science Center, Houston, TX, USA
| | - Sam G Erickson
- McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Stephanie L Egge
- Division of Infectious Diseases, Houston Methodist Hospital, Houston, Texas, USA
- Center for Infectious Diseases, Houston Methodist Research Institute, Houston, Texas, USA
| | - Melissa Cruz
- McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
- Microbiology and Molecular Genetics, Graduate School of Biomedical Sciences, University of Texas Health Science Center, Houston, TX, USA
| | - An Q Dinh
- Division of Infectious Diseases, Houston Methodist Hospital, Houston, Texas, USA
- Center for Infectious Diseases, Houston Methodist Research Institute, Houston, Texas, USA
| | - Lorena Diaz
- Genomics and Resistant Microbes Group, Facultad de Medicina Clinica Alemana, Universidad del Desarrollo and Millennium Initiative for Collaborative Research On Bacterial Resistance (MICROB-R), Santiago, Chile
- Molecular Genetics and Antimicrobial Resistance Unit, Universidad El Bosque, Bogota, Colombia
| | - Philip C Thornton
- Division of Infectious Diseases, Houston Methodist Hospital, Houston, Texas, USA
- Center for Infectious Diseases, Houston Methodist Research Institute, Houston, Texas, USA
| | - Rutan Zhang
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington, USA
| | - Libin Xu
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington, USA
| | - Danielle A Garsin
- McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
- Microbiology and Molecular Genetics, Graduate School of Biomedical Sciences, University of Texas Health Science Center, Houston, TX, USA
| | - Yousif Shamoo
- Department of Biosciences, Rice University, Houston, TX, USA
| | - Cesar A Arias
- Division of Infectious Diseases, Houston Methodist Hospital, Houston, Texas, USA
- Center for Infectious Diseases, Houston Methodist Research Institute, Houston, Texas, USA
- Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
7
|
Chen Z, Wang L, He D, Liu Q, Han Q, Zhang J, Zhang AM, Song Y. Exploration of the Antibacterial and Anti-Inflammatory Activity of a Novel Antimicrobial Peptide Brevinin-1BW. Molecules 2024; 29:1534. [PMID: 38611812 PMCID: PMC11013252 DOI: 10.3390/molecules29071534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Antibiotic resistance has emerged as a grave threat to global public health, leading to an increasing number of treatment failures. Antimicrobial peptides (AMPs) are widely regarded as potential substitutes for traditional antibiotics since they are less likely to induce resistance when used. A novel AMP named Brevinin-1BW (FLPLLAGLAASFLPTIFCKISRKC) was obtained by the Research Center of Molecular Medicine of Yunnan Province from the skin of the Pelophylax nigromaculatus. Brevinia-1BW had effective inhibitory effects on Gram-positive bacteria, with a minimum inhibitory concentration (MIC) of 3.125 μg/mL against Enterococcus faecalis (ATCC 29212) and 6.25 μg/mL against both Staphylococcus aureus (ATCC 25923) and multidrug-resistant Staphylococcus aureus (ATCC 29213) but had weaker inhibitory effects on Gram-negative bacteria, with a MIC of ≥100 μg/mL. Studies using scanning electron microscopy (SEM) and flow cytometry have revealed that it exerts its antibacterial activity by disrupting bacterial membranes. Additionally, it possesses strong biofilm inhibitory and eradication activities as well as significant lipopolysaccharide (LPS)-binding activity. Furthermore, Brevinin-1BW has shown a significant anti-inflammatory effect in LPS-treated RAW264.7 cells. In conclusion, Brevinin-1BW is anticipated to be a promising clinical agent with potent anti-Gram-positive bacterial and anti-inflammatory properties.
Collapse
Affiliation(s)
- Zhizhi Chen
- Research Center of Molecular Medicine of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650504, China; (Z.C.); (L.W.); (D.H.); (Q.L.); (Q.H.); (J.Z.); (A.-M.Z.)
| | - Lei Wang
- Research Center of Molecular Medicine of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650504, China; (Z.C.); (L.W.); (D.H.); (Q.L.); (Q.H.); (J.Z.); (A.-M.Z.)
| | - Dongxia He
- Research Center of Molecular Medicine of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650504, China; (Z.C.); (L.W.); (D.H.); (Q.L.); (Q.H.); (J.Z.); (A.-M.Z.)
| | - Qi Liu
- Research Center of Molecular Medicine of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650504, China; (Z.C.); (L.W.); (D.H.); (Q.L.); (Q.H.); (J.Z.); (A.-M.Z.)
| | - Qinqin Han
- Research Center of Molecular Medicine of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650504, China; (Z.C.); (L.W.); (D.H.); (Q.L.); (Q.H.); (J.Z.); (A.-M.Z.)
| | - Jinyang Zhang
- Research Center of Molecular Medicine of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650504, China; (Z.C.); (L.W.); (D.H.); (Q.L.); (Q.H.); (J.Z.); (A.-M.Z.)
| | - A-Mei Zhang
- Research Center of Molecular Medicine of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650504, China; (Z.C.); (L.W.); (D.H.); (Q.L.); (Q.H.); (J.Z.); (A.-M.Z.)
| | - Yuzhu Song
- Research Center of Molecular Medicine of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650504, China; (Z.C.); (L.W.); (D.H.); (Q.L.); (Q.H.); (J.Z.); (A.-M.Z.)
- School of Medicine, Kunming University of Science and Technology, Kunming 650504, China
| |
Collapse
|
8
|
Miller WR, Nguyen A, Singh KV, Rizvi S, Khan A, Erickson SG, Egge SL, Cruz M, Dinh AQ, Diaz L, Zhang R, Xu L, Garsin DA, Shamoo Y, Arias CA. Membrane Lipids Augment Cell Envelope Stress Signaling and Resistance to Antibiotics and Antimicrobial Peptides in Enterococcus faecalis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.17.562839. [PMID: 37904970 PMCID: PMC10614854 DOI: 10.1101/2023.10.17.562839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Enterococci have evolved resistance mechanisms to protect their cell envelopes against bacteriocins and host cationic antimicrobial peptides (CAMPs) produced in the gastrointestinal environment. Activation of the membrane stress response has also been tied to resistance to the lipopeptide antibiotic daptomycin. However, the actual effectors mediating resistance have not been elucidated. Here, we show that the MadRS (formerly YxdJK) membrane antimicrobial peptide defense system controls a network of genes, including a previously uncharacterized three gene operon (madEFG) that protects the E. faecalis cell envelope from antimicrobial peptides. Constitutive activation of the system confers protection against CAMPs and daptomycin in the absence of a functional LiaFSR system and leads to persistence of cardiac microlesions in vivo. Moreover, changes in the lipid cell membrane environment alter CAMP susceptibility and expression of the MadRS system. Thus, we provide a framework supporting a multilayered envelope defense mechanism for resistance and survival coupled to virulence.
Collapse
Affiliation(s)
- William R Miller
- Division of Infectious Diseases, Houston Methodist Hospital, Houston, Texas, USA
- Center for Infectious Diseases, Houston Methodist Research Institute, Houston, Texas, USA
- Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - April Nguyen
- Division of Infectious Diseases, Houston Methodist Hospital, Houston, Texas, USA
- Center for Infectious Diseases, Houston Methodist Research Institute, Houston, Texas, USA
- McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
- Microbiology and Molecular Genetics, Graduate School of Biomedical Sciences, University of Texas Health Science Center, Houston, TX, USA
| | - Kavindra V Singh
- Division of Infectious Diseases, Houston Methodist Hospital, Houston, Texas, USA
- Center for Infectious Diseases, Houston Methodist Research Institute, Houston, Texas, USA
| | - Samie Rizvi
- Division of Infectious Diseases, Houston Methodist Hospital, Houston, Texas, USA
- Center for Infectious Diseases, Houston Methodist Research Institute, Houston, Texas, USA
| | - Ayesha Khan
- McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
- Microbiology and Molecular Genetics, Graduate School of Biomedical Sciences, University of Texas Health Science Center, Houston, TX, USA
| | - Sam G Erickson
- McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Stephanie L Egge
- Division of Infectious Diseases, Houston Methodist Hospital, Houston, Texas, USA
- Center for Infectious Diseases, Houston Methodist Research Institute, Houston, Texas, USA
| | - Melissa Cruz
- McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
- Microbiology and Molecular Genetics, Graduate School of Biomedical Sciences, University of Texas Health Science Center, Houston, TX, USA
| | - An Q Dinh
- Division of Infectious Diseases, Houston Methodist Hospital, Houston, Texas, USA
- Center for Infectious Diseases, Houston Methodist Research Institute, Houston, Texas, USA
| | - Lorena Diaz
- Genomics and Resistant Microbes Group, Facultad de Medicina Clinica Alemana, Universidad del Desarrollo and Millennium Initiative for Collaborative Research On Bacterial Resistance (MICROB-R), Santiago, Chile
| | - Rutan Zhang
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington, USA
| | - Libin Xu
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington, USA
| | - Danielle A Garsin
- McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
- Microbiology and Molecular Genetics, Graduate School of Biomedical Sciences, University of Texas Health Science Center, Houston, TX, USA
| | - Yousif Shamoo
- Department of Biosciences, Rice University, Houston, TX, USA
| | - Cesar A Arias
- Division of Infectious Diseases, Houston Methodist Hospital, Houston, Texas, USA
- Center for Infectious Diseases, Houston Methodist Research Institute, Houston, Texas, USA
- Department of Medicine, Weill Cornell Medical College, New York, New York, USA
- Molecular Genetics and Antimicrobial Resistance Unit, Universidad El Bosque, Bogota, Colombia
| |
Collapse
|
9
|
Dai X, Ma R, Jiang W, Deng Z, Chen L, Liang Y, Shao L, Zhao W. Enterococcus faecalis-Induced Macrophage Necroptosis Promotes Refractory Apical Periodontitis. Microbiol Spectr 2022; 10:e0104522. [PMID: 35708336 PMCID: PMC9431707 DOI: 10.1128/spectrum.01045-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/01/2022] [Indexed: 12/01/2022] Open
Abstract
The persistence of residual bacteria, particularly Enterococcus faecalis, contributes to refractory periapical periodontitis, which still lacks effective therapy. The role of receptor-interacting protein kinase 3 (RIPK3)- and mixed lineage kinase domain-like protein (MLKL)-mediated necroptosis, a highly proinflammatory form of regulated cell death, has recently drawn much attention. However, the role of necroptosis in the pathogenesis of refractory periapical periodontitis remains unclear. We investigated whether the RIPK3/MLKL signaling pathway was activated in periapical lesion specimens obtained from patients diagnosed with refractory periapical periodontitis. RIPK3-deficient mice were then used to determine the role of necroptosis under this condition in vivo. We found that the phosphorylation levels of RIPK3 and MLKL were elevated in periapical lesion specimens of patients with refractory periapical periodontitis. In addition, necroptosis was induced in an E. faecalis-infected refractory periapical periodontitis mouse model, in which inhibition of necroptosis by RIPK3 deficiency could markedly alleviate inflammation and bone destruction. Moreover, double-labeling immunofluorescence suggested that macrophage necroptosis may be involved in the development of refractory periapical periodontitis. Then, we established an in vitro macrophage infection model with E. faecalis. E. faecalis infection was found to induce necroptotic cell death in macrophages through the RIPK3/MLKL signaling pathway, which was markedly alleviated by the RIPK3- or MLKL-specific inhibitor. Our study revealed that RIPK3/MLKL-mediated macrophage necroptosis contributes to the development of refractory periapical periodontitis and suggests that inhibitors or treatments targeting necroptosis represent a plausible strategy for the management of refractory periapical periodontitis. IMPORTANCE Oral infectious diseases represent a major neglected global population health challenge, imposing an increasing burden on public health and economy. Refractory apical periodontitis (RAP), mainly caused by Enterococcus faecalis, is a representative oral infectious disease with considerable therapeutic challenges. The interplay between E. faecalis and the host often leads to the activation of programmed cell death. This study identifies an important role of macrophage necroptosis induced by E. faecalis in the pathogenesis of RAP. Manipulating RIPK3/MLKL-mediated necroptosis may represent novel therapeutic targets, not only for RAP but also for other E. faecalis-associated infectious diseases.
Collapse
Affiliation(s)
- Xingzhu Dai
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Rongyang Ma
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Weiyi Jiang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zilong Deng
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lijuan Chen
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuee Liang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Longquan Shao
- Stomatology Hospital, Southern Medical University, Guangzhou, China
| | - Wanghong Zhao
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
10
|
Barnes AMT, Frank KL, Dale JL, Manias DA, Powers JL, Dunny GM. Enterococcus faecalis colonizes and forms persistent biofilm microcolonies on undamaged endothelial surfaces in a rabbit endovascular infection model. FEMS MICROBES 2021; 2:xtab014. [PMID: 34734186 PMCID: PMC8557322 DOI: 10.1093/femsmc/xtab014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 09/23/2021] [Indexed: 01/03/2023] Open
Abstract
Infectious endocarditis (IE) is an uncommon disease with significant morbidity and mortality. The pathogenesis of IE has historically been described as a cascade of host-specific events beginning with endothelial damage and thrombus formation and followed by bacterial colonization of the nascent thrombus. Enterococcus faecalis is a Gram-positive commensal bacterial member of the gastrointestinal tract microbiota in most terrestrial animals and a leading cause of opportunistic biofilm-associated infections, including endocarditis. Here, we provide evidence that E. faecalis can colonize the endocardial surface without pre-existing damage and in the absence of thrombus formation in a rabbit endovascular infection model. Using previously described light and scanning electron microscopy techniques, we show that inoculation of a well-characterized E. faecalis lab strain in the marginal ear vein of New Zealand White rabbits resulted in rapid colonization of the endocardium throughout the heart within 4 days of administration. Unexpectedly, ultrastructural imaging revealed that the microcolonies were firmly attached directly to the endocardium in areas without morphological evidence of gross tissue damage. Further, the attached bacterial aggregates were not associated with significant cellular components of coagulation or host extracellular matrix damage repair (i.e. platelets). These results suggest that the canonical model of mechanical surface damage as a prerequisite for bacterial attachment to host sub-endothelial components is not required. Furthermore, these findings are consistent with a model of initial establishment of stable, endocarditis-associated E. faecalis biofilm microcolonies that may provide a reservoir for the eventual valvular infection characteristic of clinical endocarditis. The similarities between the E. faecalis colonization and biofilm morphologies seen in this rabbit endovascular infection model and our previously published murine gastrointestinal colonization model indicate that biofilm production and common host cell attachment factors are conserved in disparate mammalian hosts under both commensal and pathogenic contexts.
Collapse
Affiliation(s)
- Aaron M T Barnes
- Department of Microbiology and Immunology, University of Minnesota School of Medicine, Minneapolis, MN 55455, USA
| | - Kristi L Frank
- Department of Microbiology and Immunology, University of Minnesota School of Medicine, Minneapolis, MN 55455, USA
| | - Jennifer L Dale
- Department of Microbiology and Immunology, University of Minnesota School of Medicine, Minneapolis, MN 55455, USA
| | - Dawn A Manias
- Department of Microbiology and Immunology, University of Minnesota School of Medicine, Minneapolis, MN 55455, USA
| | - Jennifer L Powers
- Department of Microbiology and Immunology, University of Minnesota School of Medicine, Minneapolis, MN 55455, USA
| | - Gary M Dunny
- Department of Microbiology and Immunology, University of Minnesota School of Medicine, Minneapolis, MN 55455, USA
| |
Collapse
|
11
|
Barnes AMT, Frank KL, Dunny GM. Enterococcal Endocarditis: Hiding in Plain Sight. Front Cell Infect Microbiol 2021; 11:722482. [PMID: 34527603 PMCID: PMC8435889 DOI: 10.3389/fcimb.2021.722482] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/09/2021] [Indexed: 12/12/2022] Open
Abstract
Enterococcus faecalis is a major opportunistic bacterial pathogen of increasing clinical relevance. A substantial body of experimental evidence suggests that early biofilm formation plays a critical role in these infections, as well as in colonization and persistence in the GI tract as a commensal member of the microbiome in most terrestrial animals. Animal models of experimental endocarditis generally involve inducing mechanical valve damage by cardiac catheterization prior to infection, and it has long been presumed that endocarditis vegetation formation resulting from bacterial attachment to the endocardial endothelium requires some pre-existing tissue damage. Here we review both historical and contemporary animal model studies demonstrating the robust ability of E. faecalis to directly attach and form stable microcolony biofilms encased within a bacterially-derived extracellular matrix on the undamaged endovascular endothelial surface. We also discuss the morphological similarities when these biofilms form on other host tissues, including when E. faecalis colonizes the GI epithelium as a commensal member of the normal vertebrate microbiome - hiding in plain sight where it can serve as a source for systemic infection via translocation. We propose that these phenotypes may allow the organism to persist as an undetected infection in asymptomatic individuals and thus provide an infectious reservoir for later clinical endocarditis.
Collapse
Affiliation(s)
- Aaron M. T. Barnes
- Department of Microbiology and Immunology, University of Minnesota School of Medicine, Minneapolis, MN, United States
- Department of Laboratory Medicine and Pathology, University of Minnesota School of Medicine, Minneapolis, MN, United States
| | - Kristi L. Frank
- Department of Microbiology and Immunology, University of Minnesota School of Medicine, Minneapolis, MN, United States
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Gary M. Dunny
- Department of Microbiology and Immunology, University of Minnesota School of Medicine, Minneapolis, MN, United States
| |
Collapse
|
12
|
Li Y, Wen C, Zhong J, Ling J, Jiang Q. Enterococcus faecalis OG1RF induces apoptosis in MG63 cells via caspase-3/-8/-9 without activation of caspase-1/GSDMD. Oral Dis 2021; 28:2026-2035. [PMID: 34370363 DOI: 10.1111/odi.13996] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 05/05/2021] [Accepted: 08/01/2021] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Regulated cell death is key in the pathogenesis of persistent apical periodontitis. Here, we investigated the mechanisms of regulated cell death in osteoblast-like MG63 cells infected with Enterococcus faecalis OG1RF. MATERIALS AND METHODS MG63 cells were infected with live E. faecalis OG1RF at the indicated multiplicity of infection for the indicated infection time. We evaluated the cells by flow cytometry, terminal deoxynucleotidyl transferase dUTP nick end labelling assay and lactate dehydrogenase release analysis; measured the activity of caspase-1/-3/-8/-9 and the release of interleukin-1β; and determined the expression of apoptosis-associated proteins and gasdermin D by apoptosis antibody array and Western blotting. RESULTS Enterococcus faecalis OG1RF reduced the mitochondrial membrane potential of the infected cells, increased the percentage of apoptotic and terminal deoxynucleotidyl transferase dUTP nick end labelling-positive cells, and enhanced lactate dehydrogenase release. The expression of caspase-3 and survivin and the activity of caspase-3/-8/-9 were upregulated, while the expression of death receptor 6 was downregulated. The activity of caspase-1/gasdermin D and the release of interleukin-1β remained unaltered. CONCLUSION Enterococcus faecalis OG1RF induced both intrinsic and extrinsic MG63 cell apoptosis via caspase-3/-8/-9 activation but did not activate the pyroptotic pathway regulated by caspase-1/gasdermin D.
Collapse
Affiliation(s)
- Yang Li
- Department of Endodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Cheng Wen
- Department of Endodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Jialin Zhong
- Department of Endodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Junqi Ling
- Department of Endodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China.,Guangdong Province Key Laboratory of Stomatology, Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Qianzhou Jiang
- Department of Endodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| |
Collapse
|
13
|
Affiliation(s)
- Armand O. Brown
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
- * E-mail: (AOB); (DAG)
| | - Danielle A. Garsin
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
- * E-mail: (AOB); (DAG)
| |
Collapse
|
14
|
Amini Tapouk F, Nabizadeh R, Mirzaei N, Hosseini Jazani N, Yousefi M, Valizade Hasanloei MA. Comparative efficacy of hospital disinfectants against nosocomial infection pathogens. Antimicrob Resist Infect Control 2020; 9:115. [PMID: 32698895 PMCID: PMC7374963 DOI: 10.1186/s13756-020-00781-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/09/2020] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Due to the increasing rate of hospital-acquired infections, it is essential to select appropriate disinfectant agents. In this study, the efficacy of hospital disinfectants against nosocomial infection pathogens was compared. METHODS High level disinfectants (Steranios 2%, Deconex HLDPA, and Microzed Quatenol) were tested for their antibacterial effects by determining their minimum inhibitory (MIC) and minimum bactericidal concentrations (MBC) against Enterococcus faecalis ATCC 29212 and Burkholderia cepacia ATCC 10673. RESULTS E. faecalis, as gram-positive bacterium, was more susceptible to high level disinfectants compared to gram-negative B.cepacia. The MIC = MBC values of 2% Steranios, Deconex HLDPA and Microzed Quatenol against E. faecalis and B.cepacia were 0.31, 9.77, 2.2 mg/L and 9.8, 78.13, 70.31 mg/L, respectively. CONCLUSIONS According to the findings of this study, the most effective disinfectants against both E. faecalis and B.cepacia were Steranios 2%, Microzed Quatenol, and Deconex HLDPA in order. Considering the importance of these bacterial strains in healthcare-associated infections, the use of these effective disinfectants is recommended in the hospitals.
Collapse
Affiliation(s)
- Fahim Amini Tapouk
- Department of Environmental Health Engineering, School of Public Health, International Campus, Tehran University of Medical Sciences (IC-TUMS), Tehran, Iran
| | - Ramin Nabizadeh
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran. .,Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran.
| | - Nezam Mirzaei
- Department of Environmental Health Engineering, Faculty of Health, Kashan University of Medical Sciences, Kashan, Iran
| | - Nima Hosseini Jazani
- Department of Microbiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Mahmood Yousefi
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|