1
|
Laubier J, Van De Wiele A, Barboiron A, Laloë D, Saint-Andrieux C, Castille J, Meloni E, Ernst S, Pellerin M, Floriot S, Daniel-Carlier N, Passet B, Merlet J, Verheyden H, Béringue V, Andréoletti O, Houston F, Vilotte JL, Bourret V, Moazami-Goudarzi K. Variation in the prion protein gene (PRNP) open reading frame sequence in French cervids. Vet Res 2024; 55:105. [PMID: 39227993 PMCID: PMC11373525 DOI: 10.1186/s13567-024-01362-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/15/2024] [Indexed: 09/05/2024] Open
Abstract
The recent emergence of chronic wasting disease (CWD) in Europe has become a new public health risk for monitoring of wild and farmed cervids. This disease, due to prions, has proliferated in North America in a contagious manner. In several mammalian species, polymorphisms in the prion protein gene (PRNP) play a crucial role in the susceptibility to prions and their spread. To obtain a reliable picture of the distribution of PRNP polymorphisms in the two most common cervid species in France, we sequenced the open reading frame (ORF) of this gene in 2114 animals, 1116 roe deer (Capreolus capreolus) and 998 red deer (Cervus elaphus). Selection criteria such as historical origin, spatial distribution and sex ratio have been integrated to establish this sample collection. Except for one heterozygous animal with a non-synonymous mutation at codon 37 (G37A), all the 1116 French roe deer were monomorphic. Red deer showed greater variation with two non-synonymous substitutions (T98A; Q226E), three synonymous substitutions (codons 21, 78 and 136) and a new 24pb deletion (Δ69-77). We found significant regional variations between French regions in the frequency of the identified substitutions. After cloning of the PRNP ORF from animals presenting multiple non-synonymous polymorphisms, we identified six haplotypes and obtained a total of twelve genotypes. As in other European countries, we highlighted the apparent homogeneity of PRNP in the French roe deer and the existence of a greater diversity in the red deer. These results were in line with European phylogeographic studies on these two species.
Collapse
Affiliation(s)
- Johann Laubier
- INRAE, AgroParisTech, GABI, University Paris-Saclay, Jouy-en-Josas, France
| | - Anne Van De Wiele
- Research and Scientific Support Department, French Biodiversity Agency (OFB), Vincennes, France
| | - Aurélie Barboiron
- Research and Scientific Support Department, French Biodiversity Agency (OFB), Vincennes, France
| | - Denis Laloë
- INRAE, AgroParisTech, GABI, University Paris-Saclay, Jouy-en-Josas, France
| | | | - Johan Castille
- INRAE, AgroParisTech, GABI, University Paris-Saclay, Jouy-en-Josas, France
| | - Emma Meloni
- Research and Scientific Support Department, French Biodiversity Agency (OFB), Vincennes, France
| | - Sonja Ernst
- Friedrich-Loeffler-Institut, Isle of Riems, Germany
| | - Maryline Pellerin
- Research and Scientific Support Department, French Biodiversity Agency (OFB), Vincennes, France
| | - Sandrine Floriot
- INRAE, AgroParisTech, GABI, University Paris-Saclay, Jouy-en-Josas, France
| | | | - Bruno Passet
- INRAE, AgroParisTech, GABI, University Paris-Saclay, Jouy-en-Josas, France
| | - Joël Merlet
- INRAE, CEFS, Toulouse University, Castanet Tolosan, France
| | | | - Vincent Béringue
- INRAE, UVSQ, VIM, University Paris-Saclay, Jouy-en-Josas, France
| | - Olivier Andréoletti
- UMR INRAE ENVT 1225, IHAP, École Nationale Vétérinaire de Toulouse, Toulouse, France
| | - Fiona Houston
- Division of Immunology, The Roslin Institute, Royal Dick School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Jean-Luc Vilotte
- INRAE, AgroParisTech, GABI, University Paris-Saclay, Jouy-en-Josas, France
| | | | | |
Collapse
|
2
|
Do K, Benavente R, Catumbela CSG, Khan U, Kramm C, Soto C, Morales R. Adaptation of the protein misfolding cyclic amplification (PMCA) technique for the screening of anti-prion compounds. FASEB J 2024; 38:e23843. [PMID: 39072789 PMCID: PMC11453167 DOI: 10.1096/fj.202400614r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/05/2024] [Accepted: 07/15/2024] [Indexed: 07/30/2024]
Abstract
Prion diseases result from the misfolding of the physiological prion protein (PrPC) to a pathogenic conformation (PrPSc). Compelling evidence indicates that prevention and/or reduction of PrPSc replication are promising therapeutic strategies against prion diseases. However, the existence of different PrPSc conformations (or strains) associated with disease represents a major problem when identifying anti-prion compounds. Efforts to identify strain-specific anti-prion molecules are limited by the lack of biologically relevant high-throughput screening platforms to interrogate compound libraries. Here, we describe adaptations to the protein misfolding cyclic amplification (PMCA) technology (able to faithfully replicate PrPSc strains) that increase its throughput to facilitate the screening of anti-prion molecules. The optimized PMCA platform includes a reduction in sample and reagents, as well as incubation/sonication cycles required to efficiently replicate and detect rodent-adapted and cervid PrPSc strains. The visualization of PMCA products was performed via dot blots, a method that contributed to reduced processing times. These technical changes allowed us to evaluate small molecules with previously reported anti-prion activity. This proof-of-principle screening was evaluated for six rodent-adapted prion strains. Our data show that these compounds targeted either none, all or some PrPSc strains at variable concentrations, demonstrating that this PMCA system is suitable to test compound libraries for putative anti-prion molecules targeting specific PrPSc strains. Further analyses of a small compound library against deer prions demonstrate the potential of this new PMCA format to identify strain-specific anti-prion molecules. The data presented here demonstrate the use of the PMCA technique in the selection of prion strain-specific anti-prion compounds.
Collapse
Affiliation(s)
- Katherine Do
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Rebeca Benavente
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Celso S. G. Catumbela
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Uffaf Khan
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Carlos Kramm
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Claudio Soto
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Rodrigo Morales
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
- Centro Integrativo de Biologia y Quimica Aplicada (CIBQA), Universidad Bernardo O’Higgins, Santiago, Chile
| |
Collapse
|
3
|
Eid S, Lee S, Verkuyl CE, Almanza D, Hanna J, Shenouda S, Belotserkovsky A, Zhao W, Watts JC. The importance of prion research. Biochem Cell Biol 2024. [PMID: 38996387 DOI: 10.1139/bcb-2024-0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024] Open
Abstract
Over the past four decades, prion diseases have received considerable research attention owing to their potential to be transmitted within and across species as well as their consequences for human and animal health. The unprecedented nature of prions has led to the discovery of a paradigm of templated protein misfolding that underlies a diverse range of both disease-related and normal biological processes. Indeed, the "prion-like" misfolding and propagation of protein aggregates is now recognized as a common underlying disease mechanism in human neurodegenerative disorders such as Alzheimer's and Parkinson's disease, and the prion principle has led to the development of novel diagnostic and therapeutic strategies for these illnesses. Despite these advances, research into the fundamental biology of prion diseases has declined, likely due to their rarity and the absence of an acute human health crisis. Given the past translational influence, continued research on the etiology, pathogenesis, and transmission of prion disease should remain a priority. In this review, we highlight several important "unsolved mysteries" in the prion disease research field and how solving them may be crucial for the development of effective therapeutics, preventing future outbreaks of prion disease, and understanding the pathobiology of more common human neurodegenerative disorders.
Collapse
Affiliation(s)
- Shehab Eid
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Seojin Lee
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Claire E Verkuyl
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Dustin Almanza
- Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Joseph Hanna
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Sunnybrook Research Institute, Toronto, ON, Canada
| | - Sandra Shenouda
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Ari Belotserkovsky
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Wenda Zhao
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Joel C Watts
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
4
|
Chang SC, Arifin MI, Tahir W, McDonald KJ, Zeng D, Schatzl HM, Hannaoui S, Gilch S. Extraneural infection route restricts prion conformational variability and attenuates the impact of quaternary structure on infectivity. PLoS Pathog 2024; 20:e1012370. [PMID: 38976748 PMCID: PMC11257401 DOI: 10.1371/journal.ppat.1012370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/18/2024] [Accepted: 06/25/2024] [Indexed: 07/10/2024] Open
Abstract
Prions can exist as different strains that consist of conformational variants of the misfolded, pathogenic prion protein isoform PrPSc. Defined by stably transmissible biological and biochemical properties, strains have been identified in a spectrum of prion diseases, including chronic wasting disease (CWD) of wild and farmed cervids. CWD is highly contagious and spreads via direct and indirect transmission involving extraneural sites of infection, peripheral replication and neuroinvasion of prions. Here, we investigated the impact of infection route on CWD prion conformational selection and propagation. We used gene-targeted mouse models expressing deer PrP for intracerebral or intraperitoneal inoculation with fractionated or unfractionated brain homogenates from white-tailed deer, harboring CWD strains Wisc-1 or 116AG. Upon intracerebral inoculation, Wisc-1 and 116AG-inoculated mice differed in conformational stability of PrPSc. In brains of mice infected intraperitoneally with either inoculum, PrPSc propagated with identical conformational stability and fewer PrPSc deposits in most brain regions than intracerebrally inoculated animals. For either inoculum, PrPSc conformational stability in brain and spinal cord was similar upon intracerebral infection but significantly higher in spinal cords of intraperitoneally infected animals. Inoculation with fractionated brain homogenates resulted in lower variance of survival times upon intraperitoneal compared to intracerebral infection. In summary, we demonstrate that extraneural infection mitigates the impact of PrPSc quaternary structure on infection and reduces conformational variability of PrPSc propagated in the brain. These findings provide new insights into the evolution of stable CWD strains in natural, extraneural transmissions.
Collapse
Affiliation(s)
- Sheng Chun Chang
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| | | | - Waqas Tahir
- Canadian and WOAH Reference Laboratory for BSE, Canadian Food Inspection Agency, Lethbridge, Canada
| | | | - Doris Zeng
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| | - Hermann M. Schatzl
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Canada
| | - Samia Hannaoui
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| | - Sabine Gilch
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Canada
| |
Collapse
|
5
|
Groveman BR, Williams K, Race B, Foliaki S, Thomas T, Hughson AG, Walters RO, Zou W, Haigh CL. Lack of Transmission of Chronic Wasting Disease Prions to Human Cerebral Organoids. Emerg Infect Dis 2024; 30:1193-1202. [PMID: 38781931 PMCID: PMC11138967 DOI: 10.3201/eid3006.231568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024] Open
Abstract
Chronic wasting disease (CWD) is a cervid prion disease with unknown zoonotic potential that might pose a risk to humans who are exposed. To assess the potential of CWD to infect human neural tissue, we used human cerebral organoids with 2 different prion genotypes, 1 of which has previously been associated with susceptibility to zoonotic prion disease. We exposed organoids from both genotypes to high concentrations of CWD inocula from 3 different sources for 7 days, then screened for infection periodically for up to 180 days. No de novo CWD propagation or deposition of protease-resistant forms of human prions was evident in CWD-exposed organoids. Some persistence of the original inoculum was detected, which was equivalent in prion gene knockout organoids and thus not attributable to human prion propagation. Overall, the unsuccessful propagation of CWD in cerebral organoids supports a strong species barrier to transmission of CWD prions to humans.
Collapse
|
6
|
Marín-Moreno A, Benestad SL, Barrio T, Pirisinu L, Espinosa JC, Tran L, Huor A, Di Bari MA, Eraña H, Maddison BC, D'Agostino C, Fernández-Borges N, Canoyra S, Jerez-Garrido N, Castilla J, Spiropoulos J, Bishop K, Gough KC, Nonno R, Våge J, Andréoletti O, Torres JM. Classical BSE dismissed as the cause of CWD in Norwegian red deer despite strain similarities between both prion agents. Vet Res 2024; 55:62. [PMID: 38750594 PMCID: PMC11097568 DOI: 10.1186/s13567-024-01320-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/16/2024] [Indexed: 05/18/2024] Open
Abstract
The first case of CWD in a Norwegian red deer was detected by a routine ELISA test and confirmed by western blotting and immunohistochemistry in the brain stem of the animal. Two different western blotting tests were conducted independently in two different laboratories, showing that the red deer glycoprofile was different from the Norwegian CWD reindeer and CWD moose and from North American CWD. The isolate showed nevertheless features similar to the classical BSE (BSE-C) strain. Furthermore, BSE-C could not be excluded based on the PrPSc immunohistochemistry staining in the brainstem and the absence of detectable PrPSc in the lymphoid tissues. Because of the known ability of BSE-C to cross species barriers as well as its zoonotic potential, the CWD red deer isolate was submitted to the EURL Strain Typing Expert Group (STEG) as a BSE-C suspect for further investigation. In addition, different strain typing in vivo and in vitro strategies aiming at identifying the BSE-C strain in the red deer isolate were performed independently in three research groups and BSE-C was not found in it. These results suggest that the Norwegian CWD red deer case was infected with a previously unknown CWD type and further investigation is needed to determine the characteristics of this potential new CWD strain.
Collapse
Affiliation(s)
- Alba Marín-Moreno
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | | | - Tomas Barrio
- UMR École Nationale Vétérinaire de Toulouse (ENVT), 1225 Interactions Hôtes-Agents Pathogènes, Institut National Pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Toulouse, France
| | - Laura Pirisinu
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Juan Carlos Espinosa
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Linh Tran
- Norwegian Veterinary Institute, Ås, Norway
| | - Alvina Huor
- UMR École Nationale Vétérinaire de Toulouse (ENVT), 1225 Interactions Hôtes-Agents Pathogènes, Institut National Pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Toulouse, France
| | - Michele Angelo Di Bari
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Hasier Eraña
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Basque Foundation for Science, Bizkaia Technology Park & IKERBASQUE, Bizkaia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Carlos III National Health Institute, Madrid, Spain
| | - Ben C Maddison
- RSK- ADAS Ltd, Technology Drive, Beeston, Nottingham, UK
| | - Claudia D'Agostino
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Natalia Fernández-Borges
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Sara Canoyra
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Nuria Jerez-Garrido
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Joaquín Castilla
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Basque Foundation for Science, Bizkaia Technology Park & IKERBASQUE, Bizkaia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Carlos III National Health Institute, Madrid, Spain
| | | | - Keith Bishop
- RSK- ADAS Ltd, Technology Drive, Beeston, Nottingham, UK
| | | | - Romolo Nonno
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Jorn Våge
- Norwegian Veterinary Institute, Ås, Norway
| | - Olivier Andréoletti
- UMR École Nationale Vétérinaire de Toulouse (ENVT), 1225 Interactions Hôtes-Agents Pathogènes, Institut National Pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Toulouse, France
| | - Juan María Torres
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.
| |
Collapse
|
7
|
Benavente R, Reed JH, Lockwood M, Morales R. PMCA screening of retropharyngeal lymph nodes in white-tailed deer and comparisons with ELISA and IHC. Sci Rep 2023; 13:20171. [PMID: 37978312 PMCID: PMC10656533 DOI: 10.1038/s41598-023-47105-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023] Open
Abstract
Chronic wasting disease (CWD) is a prion disease affecting cervids. CWD diagnosis is conducted through enzyme-linked immunosorbent assay (ELISA) and immunohistochemistry (IHC) in retropharyngeal lymph nodes. Unfortunately, these techniques have limited sensitivity against the biomarker (CWD-prions). Two in vitro prion amplification techniques, real-time quaking-induced conversion (RT-QuIC) and protein misfolding cyclic amplification (PMCA), have shown promise in detecting CWD-prions in tissues and bodily fluids. Recent studies have demonstrated that RT-QuIC yields similar results compared to ELISA and IHC. Here, we analyzed 1003 retropharyngeal lymph nodes (RPLNs) from Texas white-tailed deer. PMCA detected CWD at a higher rate compared to ELISA/IHC, identified different prion strains, and revealed the presence of CWD-prions in places with no previous history. These findings suggest that PMCA exhibits greater sensitivity than current standard techniques and could be valuable for rapid and strain-specific CWD detection.
Collapse
Affiliation(s)
- Rebeca Benavente
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - J Hunter Reed
- Texas Parks and Wildlife Department, Kerrville, TX, USA
| | | | - Rodrigo Morales
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA.
- Centro Integrativo de Biologia y Quimica Aplicada (CIBQA), Universidad Bernardo O'Higgins, Santiago, Chile.
| |
Collapse
|
8
|
Harpaz E, Vuong TT, Tran L, Tranulis MA, Benestad SL, Ersdal C. Inter- and intra-species conversion efficacies of Norwegian prion isolates estimated by serial protein misfolding cyclic amplification. Vet Res 2023; 54:84. [PMID: 37773068 PMCID: PMC10542671 DOI: 10.1186/s13567-023-01220-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/05/2023] [Indexed: 09/30/2023] Open
Abstract
Prion diseases, including chronic wasting disease (CWD) in cervids, are fatal neurodegenerative disorders caused by the misfolding of cellular prion proteins. CWD is known to spread among captive and free-ranging deer in North America. In 2016, an outbreak of contagious CWD was detected among wild reindeer in Norway, marking the first occurrence of the disease in Europe. Additionally, new sporadic forms of CWD have been discovered in red deer in Norway and moose in Fennoscandia. We used serial protein misfolding cyclic amplification to study the ability of Norwegian prion isolates from reindeer, red deer, and moose (two isolates), as well as experimental classical scrapie from sheep, to convert a panel of 16 brain homogenates (substrates) from six different species with various prion protein genotypes. The reindeer CWD isolate successfully converted substrates from all species except goats. The red deer isolate failed to convert sheep and goat substrates but exhibited amplification in all cervid substrates. The two moose isolates demonstrated lower conversion efficacies. The wild type isolate propagated in all moose substrates and in the wild type red deer substrate, while the other isolate only converted two of the moose substrates. The experimental classical scrapie isolate was successfully propagated in substrates from all species tested. Thus, reindeer CWD and classical sheep scrapie isolates were similarly propagated in substrates from different species, suggesting the potential for spillover of these contagious diseases. Furthermore, the roe deer substrate supported conversion of three isolates suggesting that this species may be vulnerable to prion disease.
Collapse
Affiliation(s)
- Erez Harpaz
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Svebastadveien 112, 4325, Sandnes, Norway
| | - Tram Thu Vuong
- Department of Biohazard and Pathology, Norwegian Veterinary Institute, P.O. box 64, 1431, Ås, Norway
| | - Linh Tran
- Department of Biohazard and Pathology, Norwegian Veterinary Institute, P.O. box 64, 1431, Ås, Norway
| | - Michael Andreas Tranulis
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Universitetstunet 3, 1433, Ås, Norway
| | - Sylvie L Benestad
- Department of Biohazard and Pathology, Norwegian Veterinary Institute, P.O. box 64, 1431, Ås, Norway
| | - Cecilie Ersdal
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Svebastadveien 112, 4325, Sandnes, Norway.
| |
Collapse
|
9
|
Napper S, Schatzl HM. Oral vaccination as a potential strategy to manage chronic wasting disease in wild cervid populations. Front Immunol 2023; 14:1156451. [PMID: 37122761 PMCID: PMC10140515 DOI: 10.3389/fimmu.2023.1156451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/31/2023] [Indexed: 05/02/2023] Open
Abstract
Prion diseases are a novel class of infectious disease based in the misfolding of the cellular prion protein (PrPC) into a pathological, self-propagating isoform (PrPSc). These fatal, untreatable neurodegenerative disorders affect a variety of species causing scrapie in sheep and goats, bovine spongiform encephalopathy (BSE) in cattle, chronic wasting disease (CWD) in cervids, and Creutzfeldt-Jacob disease (CJD) in humans. Of the animal prion diseases, CWD is currently regarded as the most significant threat due its ongoing geographical spread, environmental persistence, uptake into plants, unpredictable evolution, and emerging evidence of zoonotic potential. The extensive efforts to manage CWD have been largely ineffective, highlighting the need for new disease management tools, including vaccines. Development of an effective CWD vaccine is challenged by the unique biology of these diseases, including the necessity, and associated dangers, of overcoming immune tolerance, as well the logistical challenges of vaccinating wild animals. Despite these obstacles, there has been encouraging progress towards the identification of safe, protective antigens as well as effective strategies of formulation and delivery that would enable oral delivery to wild cervids. In this review we highlight recent strategies for antigen selection and optimization, as well as considerations of various platforms for oral delivery, that will enable researchers to accelerate the rate at which candidate CWD vaccines are developed and evaluated.
Collapse
Affiliation(s)
- Scott Napper
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Hermann M. Schatzl
- Calgary Prion Research Unit, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
10
|
Koutsoumanis K, Allende A, Alvarez‐Ordoñez A, Bolton D, Bover‐Cid S, Chemaly M, Davies R, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Peixe L, Skandamis P, Suffredini E, Miller MW, Mysterud A, Nöremark M, Simmons M, Tranulis MA, Vaccari G, Viljugrein H, Ortiz‐Pelaez A, Ru G. Monitoring of chronic wasting disease (CWD) (IV). EFSA J 2023; 21:e07936. [PMID: 37077299 PMCID: PMC10107390 DOI: 10.2903/j.efsa.2023.7936] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023] Open
Abstract
The European Commission requested an analysis of the Chronic Wasting Disease (CWD) monitoring programme in Norway, Sweden, Finland, Iceland, Estonia, Latvia, Lithuania and Poland (9 January 2017-28 February 2022). Thirteen cases were detected in reindeer, 15 in moose and 3 in red deer. They showed two phenotypes, distinguished by the presence or absence of detectable disease-associated normal cellular prion protein (PrP) in lymphoreticular tissues. CWD was detected for the first time in Finland, Sweden and in other areas of Norway. In countries where the disease was not detected, the evidence was insufficient to rule out its presence altogether. Where cases were detected, the prevalence was below 1%. The data also suggest that the high-risk target groups for surveillance should be revised, and 'road kill' removed. Data show that, in addition to differences in age and sex, there are differences in the prion protein gene (PRNP) genotypes between positive and negative wild reindeer. A stepwise framework has been proposed with expanded minimum background surveillance to be implemented in European countries with relevant cervid species. Additional surveillance may include ad hoc surveys for four different objectives, specific to countries with/without cases, focusing on parallel testing of obex and lymph nodes from adult cervids in high-risk target groups, sustained over time, using sampling units and a data-driven design prevalence. Criteria for assessing the probability of CWD presence have been outlined, based on the definition of the geographical area, an annual assessment of risk of introduction, sustained minimum background surveillance, training and engagement of stakeholders and a surveillance programme based on data-driven parameters. All positive cases should be genotyped. Sample sizes for negative samples have been proposed to detect and estimate the frequency of PRNP polymorphisms. Double-strand sequencing of the entire PRNP open reading frame should be undertaken for all selected samples, with data collated in a centralised collection system at EU level.
Collapse
|
11
|
Wang F, Pritzkow S, Soto C. PMCA for ultrasensitive detection of prions and to study disease biology. Cell Tissue Res 2023; 392:307-321. [PMID: 36567368 PMCID: PMC9790818 DOI: 10.1007/s00441-022-03727-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/08/2022] [Indexed: 12/27/2022]
Abstract
The emergence of a novel class of infectious agent composed exclusively of a misfolded protein (termed prions) has been a challenge in modern biomedicine. Despite similarities on the behavior of prions with respect to conventional pathogens, the many uncertainties regarding the biology and virulence of prions make them a worrisome paradigm. Since prions do not contain nucleic acids and rely on a very different way of replication and spreading, it was necessary to invent a novel technology to study them. In this article, we provide an overview of such a technology, termed protein misfolding cyclic amplification (PMCA), and summarize its many applications to detect prions and understand prion biology.
Collapse
Affiliation(s)
- Fei Wang
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - Sandra Pritzkow
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - Claudio Soto
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, University of Texas McGovern Medical School, Houston, TX, 77030, USA.
| |
Collapse
|
12
|
Tranulis MA, Tryland M. The Zoonotic Potential of Chronic Wasting Disease-A Review. Foods 2023; 12:foods12040824. [PMID: 36832899 PMCID: PMC9955994 DOI: 10.3390/foods12040824] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/17/2023] Open
Abstract
Prion diseases are transmissible neurodegenerative disorders that affect humans and ruminant species consumed by humans. Ruminant prion diseases include bovine spongiform encephalopathy (BSE) in cattle, scrapie in sheep and goats and chronic wasting disease (CWD) in cervids. In 1996, prions causing BSE were identified as the cause of a new prion disease in humans; variant Creutzfeldt-Jakob disease (vCJD). This sparked a food safety crisis and unprecedented protective measures to reduce human exposure to livestock prions. CWD continues to spread in North America, and now affects free-ranging and/or farmed cervids in 30 US states and four Canadian provinces. The recent discovery in Europe of previously unrecognized CWD strains has further heightened concerns about CWD as a food pathogen. The escalating CWD prevalence in enzootic areas and its appearance in a new species (reindeer) and new geographical locations, increase human exposure and the risk of CWD strain adaptation to humans. No cases of human prion disease caused by CWD have been recorded, and most experimental data suggest that the zoonotic risk of CWD is very low. However, the understanding of these diseases is still incomplete (e.g., origin, transmission properties and ecology), suggesting that precautionary measures should be implemented to minimize human exposure.
Collapse
Affiliation(s)
- Michael A. Tranulis
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 5003 As, Norway
- Correspondence: ; Tel.: +47-67232040
| | - Morten Tryland
- Department of Forestry and Wildlife Management, Faculty of Applied Ecology, Agricultural Sciences and Biotechnology, Inland Norway University of Applied Sciences, 2480 Koppang, Norway
| |
Collapse
|
13
|
Race B, Baune C, Williams K, Striebel JF, Hughson AG, Chesebro B. Second passage experiments of chronic wasting disease in transgenic mice overexpressing human prion protein. Vet Res 2022; 53:111. [PMID: 36527166 PMCID: PMC9758843 DOI: 10.1186/s13567-022-01130-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Chronic wasting disease (CWD) is a prion disease of cervids including deer, elk, reindeer, and moose. Human consumption of cervids is common, therefore assessing the risk potential of CWD transmission to humans is critical. In a previous study, we tested CWD transmission via intracerebral inoculation into transgenic mice (tg66 and tgRM) that over-expressed human prion protein. Mice screened by traditional prion detection assays were negative. However, in a group of 88 mice screened by the ultrasensitive RT-QuIC assay, we identified 4 tg66 mice that produced inconsistent positive RT-QuIC reactions. These data could be false positive reactions, residual input inoculum or indicative of subclinical infections suggestive of cross species transmission of CWD to humans. Additional experiments were required to understand the nature of the prion seeding activity in this model. In this manuscript, second passage experiments using brains from mice with weak prion seeding activity showed they were not infectious to additional recipient tg66 mice. Clearance experiments showed that input CWD prion seeding activity was eliminated by 180 days in tg66 mice and PrPKO mice, which are unable to replicate prion protein, indicating that the weak positive levels of seeding activity detected at later time points was not likely residual inoculum. The failure of CWD prions to cause disease in tg66 after two sequential passages suggested that a strong species barrier prevented CWD infection of mice expressing human prion protein.
Collapse
Affiliation(s)
- Brent Race
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 South Fourth Street, Hamilton, MT, 59840, USA.
| | - Chase Baune
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 South Fourth Street, Hamilton, MT, 59840, USA
| | - Katie Williams
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 South Fourth Street, Hamilton, MT, 59840, USA
| | - James F Striebel
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 South Fourth Street, Hamilton, MT, 59840, USA
| | - Andrew G Hughson
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 South Fourth Street, Hamilton, MT, 59840, USA
| | - Bruce Chesebro
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 South Fourth Street, Hamilton, MT, 59840, USA
| |
Collapse
|
14
|
Transmission, Strain Diversity, and Zoonotic Potential of Chronic Wasting Disease. Viruses 2022; 14:v14071390. [PMID: 35891371 PMCID: PMC9316268 DOI: 10.3390/v14071390] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/11/2022] [Accepted: 06/12/2022] [Indexed: 02/01/2023] Open
Abstract
Chronic wasting disease (CWD) is a prion disease affecting several species of captive and free-ranging cervids. In the past few decades, CWD has been spreading uncontrollably, mostly in North America, resulting in a high increase of CWD incidence but also a substantially higher number of geographical regions affected. The massive increase in CWD poses risks at several levels, including contamination of the environment, transmission to animals cohabiting with cervids, and more importantly, a putative transmission to humans. In this review, I will describe the mechanisms and routes responsible for the efficient transmission of CWD, the strain diversity of natural CWD, its spillover and zoonotic potential and strategies to minimize the CWD threat.
Collapse
|
15
|
Silva CJ. Chronic Wasting Disease (CWD) in Cervids and the Consequences of a Mutable Protein Conformation. ACS OMEGA 2022; 7:12474-12492. [PMID: 35465121 PMCID: PMC9022204 DOI: 10.1021/acsomega.2c00155] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 03/18/2022] [Indexed: 05/15/2023]
Abstract
Chronic wasting disease (CWD) is a prion disease of cervids (deer, elk, moose, etc.). It spreads readily from CWD-contaminated environments and among wild cervids. As of 2022, North American CWD has been found in 29 states, four Canadian provinces and South Korea. The Scandinavian form of CWD originated independently. Prions propagate their pathology by inducing a natively expressed prion protein (PrPC) to adopt the prion conformation (PrPSc). PrPC and PrPSc differ solely in their conformation. Like other prion diseases, transmissible CWD prions can arise spontaneously. The CWD prions can respond to selection pressures resulting in the emergence of new strain phenotypes. Annually, 11.5 million Americans hunt and harvest nearly 6 million deer, indicating that CWD is a potential threat to an important American food source. No tested CWD strain has been shown to be zoonotic. However, this may not be true for emerging strains. Should a zoonotic CWD strain emerge, it could adversely impact the hunting economy and game meat consumers.
Collapse
Affiliation(s)
- Christopher J. Silva
- Produce Safety & Microbiology
Research Unit, Western Regional Research Center, Agricultural Research
Service, United States Department of Agriculture, Albany, California 94710, United States of America
| |
Collapse
|
16
|
Transmission of cervid prions to humanized mice demonstrates the zoonotic potential of CWD. Acta Neuropathol 2022; 144:767-784. [PMID: 35996016 PMCID: PMC9468132 DOI: 10.1007/s00401-022-02482-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/05/2022] [Accepted: 08/07/2022] [Indexed: 01/28/2023]
Abstract
Prions cause infectious and fatal neurodegenerative diseases in mammals. Chronic wasting disease (CWD), a prion disease of cervids, spreads efficiently among wild and farmed animals. Potential transmission to humans of CWD is a growing concern due to its increasing prevalence. Here, we provide evidence for a zoonotic potential of CWD prions, and its probable signature using mice expressing human prion protein (PrP) as an infection model. Inoculation of these mice with deer CWD isolates resulted in atypical clinical manifestation with prion seeding activity and efficient transmissible infectivity in the brain and, remarkably, in feces, but without classical neuropathological or Western blot appearances of prion diseases. Intriguingly, the protease-resistant PrP in the brain resembled that found in a familial human prion disease and was transmissible upon second passage. Our results suggest that CWD might infect humans, although the transmission barrier is likely higher compared to zoonotic transmission of cattle prions. Notably, our data suggest a different clinical presentation, prion signature, and tissue tropism, which causes challenges for detection by current diagnostic assays. Furthermore, the presence of infectious prions in feces is concerning because if this occurs in humans, it is a source for human-to-human transmission. These findings have strong implications for public health and CWD management.
Collapse
|
17
|
Tranulis MA, Gavier-Widén D, Våge J, Nöremark M, Korpenfelt SL, Hautaniemi M, Pirisinu L, Nonno R, Benestad SL. Chronic wasting disease in Europe: new strains on the horizon. Acta Vet Scand 2021; 63:48. [PMID: 34823556 PMCID: PMC8613970 DOI: 10.1186/s13028-021-00606-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 09/30/2021] [Indexed: 01/05/2023] Open
Abstract
Prion diseases are fatal neurodegenerative disorders with known natural occurrence in humans and a few other mammalian species. The diseases are experimentally transmissible, and the agent is derived from the host-encoded cellular prion protein (PrPC), which is misfolded into a pathogenic conformer, designated PrPSc (scrapie). Aggregates of PrPSc molecules, constitute proteinaceous infectious particles, known as prions. Classical scrapie in sheep and goats and chronic wasting disease (CWD) in cervids are known to be infectious under natural conditions. In CWD, infected animals can shed prions via bodily excretions, allowing direct host-to-host transmission or indirectly via prion-contaminated environments. The robustness of prions means that transmission via the latter route can be highly successful and has meant that limiting the spread of CWD has proven difficult. In 2016, CWD was diagnosed for the first time in Europe, in reindeer (Rangifer tarandus) and European moose (Alces alces). Both were diagnosed in Norway, and, subsequently, more cases were detected in a semi-isolated wild reindeer population in the Nordfjella area, in which the first case was identified. This population was culled, and all reindeer (approximately 2400) were tested for CWD; 18 positive animals, in addition to the first diagnosed case, were found. After two years and around 25,900 negative tests from reindeer (about 6500 from wild and 19,400 from semi-domesticated) in Norway, a new case was diagnosed in a wild reindeer buck on Hardangervidda, south of the Nordfjella area, in 2020. Further cases of CWD were also identified in moose, with a total of eight in Norway, four in Sweden, and two cases in Finland. The mean age of these cases is 14.7 years, and the pathological features are different from North American CWD and from the Norwegian reindeer cases, resembling atypical prion diseases such as Nor98/atypical scrapie and H- and L-forms of BSE. In this review, these moose cases are referred to as atypical CWD. In addition, two cases were diagnosed in red deer (Cervus elaphus) in Norway. The emergence of CWD in Europe is a threat to European cervid populations, and, potentially, a food-safety challenge, calling for a swift, evidence-based response. Here, we review data on surveillance, epidemiology, and disease characteristics, including prion strain features of the newly identified European CWD agents.
Collapse
|
18
|
Moazami-Goudarzi K, Andréoletti O, Vilotte JL, Béringue V. Review on PRNP genetics and susceptibility to chronic wasting disease of Cervidae. Vet Res 2021; 52:128. [PMID: 34620247 PMCID: PMC8499490 DOI: 10.1186/s13567-021-00993-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/10/2021] [Indexed: 12/17/2022] Open
Abstract
To date, chronic wasting disease (CWD) is the most infectious form of prion disease affecting several captive, free ranging and wild cervid species. Responsible for marked population declines in North America, its geographical spread is now becoming a major concern in Europe. Polymorphisms in the prion protein gene (PRNP) are an important factor influencing the susceptibility to prions and their rate of propagation. All reported cervid PRNP genotypes are affected by CWD. However, in each species, some polymorphisms are associated with lower attack rates and slower progression of the disease. This has potential consequences in terms of genetic selection, CWD diffusion and strain evolution. CWD also presents a zoonotic risk due to prions capacity to cross species barriers. This review summarizes our current understanding of CWD control, focusing on PRNP genetic, strain diversity and capacity to infect other animal species, including humans.
Collapse
Affiliation(s)
| | - Olivier Andréoletti
- UMR INRAE ENVT 1225 - IHAP, École Nationale Vétérinaire de Toulouse, 31076, Toulouse, France
| | - Jean-Luc Vilotte
- University Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Vincent Béringue
- University Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
| |
Collapse
|
19
|
Güere ME, Våge J, Tharaldsen H, Kvie KS, Bårdsen BJ, Benestad SL, Vikøren T, Madslien K, Rolandsen CM, Tranulis MA, Røed KH. Chronic wasting disease in Norway-A survey of prion protein gene variation among cervids. Transbound Emerg Dis 2021; 69:e20-e31. [PMID: 34346562 DOI: 10.1111/tbed.14258] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 11/29/2022]
Abstract
Susceptibility of cervids to Chronic Wasting Disease (CWD), a prion disease, can be modulated by variations in the prion protein gene (PRNP), encoding the cellular prion protein (PrPC ). In prion diseases, PrPC is conformationally converted to pathogenic conformers (PrPSc ), aggregates of which comprise infectious prions. CWD has recently been observed in its contagious form in Norwegian reindeer (Rangifer tarandus) and in novel, potentially sporadic forms, here called 'atypical CWD', in moose (Alces alces) and red deer (Cervus elaphus). To estimate relative susceptibility of different Norwegian cervid species to CWD, their non-synonymous PRNP variants were analyzed. In reindeer, seven PRNP alleles were observed and in red deer and moose two alleles were present, whereas roe deer (Capreolus capreolus) PRNP was monomorphic. One 'archetypal' PRNP allele associated with susceptibility was common to all four cervid species. The distribution of PRNP alleles differed between wild and semi-domesticated reindeer, with alleles associated with a high susceptibility occurring, on average, above 55% in wild reindeer and below 20% in semi-domesticated reindeer. This difference may reflect the diverse origins of the populations and/or selection processes during domestication and breeding. Overall, PRNP genetic data indicate considerable susceptibility to CWD among Norwegian cervids and suggest that PRNP homozygosity may be a risk factor for the atypical CWD observed in moose. The CWD isolates found in the Norwegian cervid species differ from those previously found in Canada and USA. Our study provides an overview of the PRNP genetics in populations exposed to these emerging strains that will provide a basis for understanding these strains' dynamics in relation to PRNP variability.
Collapse
Affiliation(s)
- Mariella Evelyn Güere
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Jørn Våge
- Norwegian Veterinary Institute, OIE Reference Laboratory for CWD, Ås, Norway
| | - Helene Tharaldsen
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Kjersti Sternang Kvie
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Bård-Jørgen Bårdsen
- Arctic Ecology Department, Fram Centre, Norwegian Institute for Nature Research, Tromsø, Norway
| | | | - Turid Vikøren
- Norwegian Veterinary Institute, OIE Reference Laboratory for CWD, Ås, Norway
| | - Knut Madslien
- Norwegian Veterinary Institute, OIE Reference Laboratory for CWD, Ås, Norway
| | - Christer Moe Rolandsen
- Terrestrial Ecology Department, Norwegian Institute for Nature Research, Trondheim, Norway
| | - Michael Andreas Tranulis
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Knut Håkon Røed
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
20
|
Bian J, Kim S, Kane SJ, Crowell J, Sun JL, Christiansen J, Saijo E, Moreno JA, DiLisio J, Burnett E, Pritzkow S, Gorski D, Soto C, Kreeger TJ, Balachandran A, Mitchell G, Miller MW, Nonno R, Vikøren T, Våge J, Madslien K, Tran L, Vuong TT, Benestad SL, Telling GC. Adaptive selection of a prion strain conformer corresponding to established North American CWD during propagation of novel emergent Norwegian strains in mice expressing elk or deer prion protein. PLoS Pathog 2021; 17:e1009748. [PMID: 34310663 PMCID: PMC8341702 DOI: 10.1371/journal.ppat.1009748] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 08/05/2021] [Accepted: 06/24/2021] [Indexed: 12/24/2022] Open
Abstract
Prions are infectious proteins causing fatal, transmissible neurodegenerative diseases of animals and humans. Replication involves template-directed refolding of host encoded prion protein, PrPC, by its infectious conformation, PrPSc. Following its discovery in captive Colorado deer in 1967, uncontrollable contagious transmission of chronic wasting disease (CWD) led to an expanded geographic range in increasing numbers of free-ranging and captive North American (NA) cervids. Some five decades later, detection of PrPSc in free-ranging Norwegian (NO) reindeer and moose marked the first indication of CWD in Europe. To assess the properties of these emergent NO prions and compare them with NA CWD we used transgenic (Tg) and gene targeted (Gt) mice expressing PrP with glutamine (Q) or glutamate (E) at residue 226, a variation in wild type cervid PrP which influences prion strain selection in NA deer and elk. Transmissions of NO moose and reindeer prions to Tg and Gt mice recapitulated the characteristic features of CWD in natural hosts, revealing novel prion strains with disease kinetics, neuropathological profiles, and capacities to infect lymphoid tissues and cultured cells that were distinct from those causing NA CWD. In support of strain variation, PrPSc conformers comprising emergent NO moose and reindeer CWD were subject to selective effects imposed by variation at residue 226 that were different from those controlling established NA CWD. Transmission of particular NO moose CWD prions in mice expressing E at 226 resulted in selection of a kinetically optimized conformer, subsequent transmission of which revealed properties consistent with NA CWD. These findings illustrate the potential for adaptive selection of strain conformers with improved fitness during propagation of unstable NO prions. Their potential for contagious transmission has implications for risk analyses and management of emergent European CWD. Finally, we found that Gt mice expressing physiologically controlled PrP levels recapitulated the lymphotropic properties of naturally occurring CWD strains resulting in improved susceptibilities to emergent NO reindeer prions compared with over-expressing Tg counterparts. These findings underscore the refined advantages of Gt models for exploring the mechanisms and impacts of strain selection in peripheral compartments during natural prion transmission. Prions cause fatal, transmissible neurodegenerative diseases in animals and humans. They are composed of an infectious, neurotoxic protein (PrP) which replicates by imposing pathogenic conformations on its normal, host-encoded counterpart. Chronic wasting disease (CWD) is a contagious prion disorder threatening increasing numbers of free-ranging and captive North American deer, elk, and moose. While CWD detection in Norwegian reindeer and moose in 2016 marked the advent of disease in Europe, its origins and relationship to North American CWD were initially unclear. Here we show, using mice engineered to express deer or elk PrP, that Norwegian reindeer and moose CWD are caused by novel prion strains with properties distinct from those of North American CWD. We found that selection and propagation of North American and Norwegian CWD strains was controlled by a key amino acid residue in host PrP. We also found that particular Norwegian isolates adapted during their propagation in mice to produce prions with characteristics of the North American strain. Our findings defining the transmission profiles of novel Norwegian prions and their unstable potential to produce adapted strains with improved fitness for contagious transmission have implications for risk analyses and management of emergent European CWD.
Collapse
Affiliation(s)
- Jifeng Bian
- Prion Research Center (PRC), the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Sehun Kim
- Prion Research Center (PRC), the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Sarah J. Kane
- Prion Research Center (PRC), the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Jenna Crowell
- Prion Research Center (PRC), the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Julianna L. Sun
- Prion Research Center (PRC), the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
- Program in Cell and Molecular Biology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Jeffrey Christiansen
- Prion Research Center (PRC), the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Eri Saijo
- Prion Research Center (PRC), the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Julie A. Moreno
- Prion Research Center (PRC), the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - James DiLisio
- Prion Research Center (PRC), the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Emily Burnett
- Prion Research Center (PRC), the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Sandra Pritzkow
- Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, Department of Neurology, University of Texas Houston Medical School, Houston, Texas, United States of America
| | - Damian Gorski
- Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, Department of Neurology, University of Texas Houston Medical School, Houston, Texas, United States of America
| | - Claudio Soto
- Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, Department of Neurology, University of Texas Houston Medical School, Houston, Texas, United States of America
| | - Terry J. Kreeger
- Wyoming Game and Fish Department, Wheatland, Wyoming, United States of America
| | - Aru Balachandran
- Canadian Food Inspection Agency, National and OIE Reference Laboratory for Scrapie and CWD, Ottawa, Canada
| | - Gordon Mitchell
- Canadian Food Inspection Agency, National and OIE Reference Laboratory for Scrapie and CWD, Ottawa, Canada
| | - Michael W. Miller
- Colorado Parks and Wildlife, Fort Collins, Colorado, United States of America
| | - Romolo Nonno
- Istituto Superiore di Sanità, Department of Veterinary Public Health, Nutrition and Food Safety, Rome, Italy
| | - Turid Vikøren
- Norwegian Veterinary Institute, OIE Reference laboratory for CWD, Oslo, Norway
| | - Jørn Våge
- Norwegian Veterinary Institute, OIE Reference laboratory for CWD, Oslo, Norway
| | - Knut Madslien
- Norwegian Veterinary Institute, OIE Reference laboratory for CWD, Oslo, Norway
| | - Linh Tran
- Norwegian Veterinary Institute, OIE Reference laboratory for CWD, Oslo, Norway
| | - Tram Thu Vuong
- Norwegian Veterinary Institute, OIE Reference laboratory for CWD, Oslo, Norway
| | - Sylvie L. Benestad
- Norwegian Veterinary Institute, OIE Reference laboratory for CWD, Oslo, Norway
| | - Glenn C. Telling
- Prion Research Center (PRC), the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
- Program in Cell and Molecular Biology, Colorado State University, Fort Collins, Colorado, United States of America
- * E-mail:
| |
Collapse
|
21
|
Pritzkow S, Gorski D, Ramirez F, Telling GC, Benestad SL, Soto C. North American and Norwegian Chronic Wasting Disease prions exhibit different potential for interspecies transmission and zoonotic risk. J Infect Dis 2021; 225:542-551. [PMID: 34302479 DOI: 10.1093/infdis/jiab385] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/23/2021] [Indexed: 12/17/2022] Open
Abstract
Chronic wasting disease (CWD) is a rapidly spreading prion disorder affecting various species of wild and captive cervids. The risk that CWD poses to co-habiting animals or more importantly to humans is largely unknown. In this study we investigated differences in the capacity of CWD isolates obtained from six different cervid species to induce prion conversion in vitro by PMCA. We define and quantify spillover and zoonotic potential indices as the efficiency by which CWD prions sustain prion generation in vitro at expenses of normal prion proteins from various mammals and human, respectively. Our data suggest that reindeer and red deer from Norway could be the most transmissible CWD prions to other mammals, whereas North American CWD prions were more prone to generate human prions in vitro. Our results suggest that Norway and North American CWD prions correspond to different strains with distinct spillover and zoonotic potentials.
Collapse
Affiliation(s)
- Sandra Pritzkow
- Mitchell Center for Alzheimer's disease and related Brain disorders, Department of Neurology, University of Texas McGovern Medical School at Houston, Texas, USA
| | - Damian Gorski
- Mitchell Center for Alzheimer's disease and related Brain disorders, Department of Neurology, University of Texas McGovern Medical School at Houston, Texas, USA
| | - Frank Ramirez
- Mitchell Center for Alzheimer's disease and related Brain disorders, Department of Neurology, University of Texas McGovern Medical School at Houston, Texas, USA
| | - Glenn C Telling
- Prion Research Center, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Sylvie L Benestad
- Norwegian Veterinary Institute, OIE Reference Laboratory for CWD, Oslo, Norway
| | - Claudio Soto
- Mitchell Center for Alzheimer's disease and related Brain disorders, Department of Neurology, University of Texas McGovern Medical School at Houston, Texas, USA
| |
Collapse
|