1
|
Heimonen J, Chow EJ, Wang Y, Hughes JP, Rogers J, Emanuels A, O’Hanlon J, Han PD, Wolf CR, Logue JK, Ogokeh CE, Rolfes MA, Uyeki TM, Starita L, Englund JA, Chu HY. Risk of Subsequent Respiratory Virus Detection After Primary Virus Detection in a Community Household Study-King County, Washington, 2019-2021. J Infect Dis 2024; 229:422-431. [PMID: 37531658 PMCID: PMC10873185 DOI: 10.1093/infdis/jiad305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/19/2023] [Accepted: 07/31/2023] [Indexed: 08/04/2023] Open
Abstract
BACKGROUND The epidemiology of respiratory viral infections is complex. How infection with one respiratory virus affects risk of subsequent infection with the same or another respiratory virus is not well described. METHODS From October 2019 to June 2021, enrolled households completed active surveillance for acute respiratory illness (ARI), and participants with ARI self-collected nasal swab specimens; after April 2020, participants with ARI or laboratory-confirmed severe acute respiratory syndrome coronavirus 2 and their household members self-collected nasal swab specimens. Specimens were tested using multiplex reverse-transcription polymerase chain reaction for respiratory viruses. A Cox regression model with a time-dependent covariate examined risk of subsequent detections following a specific primary viral detection. RESULTS Rhinovirus was the most frequently detected pathogen in study specimens (406 [9.5%]). Among 51 participants with multiple viral detections, rhinovirus to seasonal coronavirus (8 [14.8%]) was the most common viral detection pairing. Relative to no primary detection, there was a 1.03-2.06-fold increase in risk of subsequent virus detection in the 90 days after primary detection; risk varied by primary virus: human parainfluenza virus, rhinovirus, and respiratory syncytial virus were statistically significant. CONCLUSIONS Primary virus detection was associated with higher risk of subsequent virus detection within the first 90 days after primary detection.
Collapse
Affiliation(s)
- Jessica Heimonen
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Eric J Chow
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, USA
- Prevention Division, Public Health—Seattle & King County, Seattle, Washington, USA
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | - Yongzhe Wang
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - James P Hughes
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Biostatistics, University of Washington, Seattle, Washington, USA
| | - Julia Rogers
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Anne Emanuels
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Jessica O’Hanlon
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Peter D Han
- Brotman Baty Institute for Precision Medicine, Seattle, Washington, USA
| | - Caitlin R Wolf
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Jennifer K Logue
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Constance E Ogokeh
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- Military and Health Research Foundation, Laurel, Maryland, USA
| | - Melissa A Rolfes
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Timothy M Uyeki
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Lea Starita
- Brotman Baty Institute for Precision Medicine, Seattle, Washington, USA
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Janet A Englund
- Division of Pediatric Infectious Diseases, Seattle Children's Research Institute, Seattle, Washington, USA
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Helen Y Chu
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
2
|
Takashima MD, Grimwood K, Sly PD, Lambert SB, Ware RS. Interference between rhinovirus and other RNA respiratory viruses in the first 2-years of life: A longitudinal community-based birth cohort study. J Clin Virol 2022; 155:105249. [PMID: 35939878 DOI: 10.1016/j.jcv.2022.105249] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 07/27/2022] [Accepted: 07/30/2022] [Indexed: 10/16/2022]
Abstract
BACKGROUND Cross-sectional studies report negative associations between rhinovirus and other RNA respiratory viruses. However, longitudinal studies with frequent, serial sampling are needed to identify the directionality of this relationship and its nature. OBJECTIVE To investigate the association between rhinovirus and other RNA respiratory viruses detected 1-week apart. METHODS The Observational Research in Childhood Infectious Diseases cohort study was conducted in Brisbane, Australia (2010-2014). Parents collected nasal swabs weekly from birth until age 2-years. Swabs were analysed by real-time polymerase chain reaction. The association between new rhinovirus detections and five other RNA viruses (influenza, respiratory syncytial virus, parainfluenza viruses, seasonal human coronaviruses, and human metapneumovirus) in paired swabs 1-week apart were investigated. RESULTS Overall, 157 children provided 8,101 swabs, from which 4,672 paired swabs 1-week apart were analysed. New rhinovirus detections were negatively associated with new pooled RNA respiratory virus detections 1-week later (adjusted odds ratio (aOR) 0.48; 95% confidence interval (CI): 0.13-0.83), as were pooled RNA virus detections with new rhinovirus detections the following week (aOR 0.34; 95%CI: 0.09-0.60). At the individual species level, rhinovirus had the strongest negative association with new seasonal human coronavirus detections in the subsequent week (aOR 0.34; 95%CI: 0.120.95) and respiratory syncytial virus had the strongest negative association with rhinovirus 1-week later (aOR 0.21; 95%CI: 0.050.88). CONCLUSION A strong, negative bidirectional association was observed between rhinovirus and other RNA viruses in a longitudinal study of a community-based cohort of young Australian children. This suggests within-host interference between RNA respiratory viruses.
Collapse
Affiliation(s)
- Mari D Takashima
- Menzies Health Institute Queensland and School of Medicine and Dentistry, Griffith University, Gold Coast 4222, Queensland, Australia.
| | - Keith Grimwood
- Menzies Health Institute Queensland and School of Medicine and Dentistry, Griffith University, Gold Coast 4222, Queensland, Australia; Departments of Infectious Diseases and Paediatrics, Gold Coast Health, Gold Coast 4215, Queensland, Australia
| | - Peter D Sly
- Children's Health and Environment Program, Child Health Research Centre, The University of Queensland, South Brisbane 4101, Queensland, Australia; Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia 4072, Queensland, Australia
| | - Stephen B Lambert
- UQ Centre for Clinical Research, The University of Queensland, Herston 4006, Queensland, Australia; National Centre for Immunisation Research and Surveillance, Westmead 2145, New South Wales, Australia
| | - Robert S Ware
- Menzies Health Institute Queensland and School of Medicine and Dentistry, Griffith University, Gold Coast 4222, Queensland, Australia
| |
Collapse
|