1
|
Eid S, Lee S, Verkuyl CE, Almanza D, Hanna J, Shenouda S, Belotserkovsky A, Zhao W, Watts JC. The importance of prion research. Biochem Cell Biol 2024; 102:448-471. [PMID: 38996387 DOI: 10.1139/bcb-2024-0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024] Open
Abstract
Over the past four decades, prion diseases have received considerable research attention owing to their potential to be transmitted within and across species as well as their consequences for human and animal health. The unprecedented nature of prions has led to the discovery of a paradigm of templated protein misfolding that underlies a diverse range of both disease-related and normal biological processes. Indeed, the "prion-like" misfolding and propagation of protein aggregates is now recognized as a common underlying disease mechanism in human neurodegenerative disorders such as Alzheimer's and Parkinson's disease, and the prion principle has led to the development of novel diagnostic and therapeutic strategies for these illnesses. Despite these advances, research into the fundamental biology of prion diseases has declined, likely due to their rarity and the absence of an acute human health crisis. Given the past translational influence, continued research on the etiology, pathogenesis, and transmission of prion disease should remain a priority. In this review, we highlight several important "unsolved mysteries" in the prion disease research field and how solving them may be crucial for the development of effective therapeutics, preventing future outbreaks of prion disease, and understanding the pathobiology of more common human neurodegenerative disorders.
Collapse
Affiliation(s)
- Shehab Eid
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Seojin Lee
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Claire E Verkuyl
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Dustin Almanza
- Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Joseph Hanna
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Sunnybrook Research Institute, Toronto, ON, Canada
| | - Sandra Shenouda
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Ari Belotserkovsky
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Wenda Zhao
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Joel C Watts
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
2
|
Davis AJ, Hesting S, Jaster L, Mosley JE, Raghavan A, Raghavan RK. Spatiotemporal occupancy patterns of chronic wasting disease. Front Vet Sci 2024; 11:1492743. [PMID: 39634764 PMCID: PMC11615082 DOI: 10.3389/fvets.2024.1492743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 10/28/2024] [Indexed: 12/07/2024] Open
Abstract
Introduction Chronic wasting disease (CWD) among cervids in Kansas has seen a consistent rise over the years, both in terms of the number of infections and its geographical spread. In this study, we assessed the occupancy patterns of CWD among white-tailed deer and mule deer across the state. Methods Using surveillance data collected since 2005, we applied a dynamic patch occupancy model within a Bayesian framework, incorporating various environmental covariates. Using principal components analysis, 13 fully orthogonal components representing cervid habitat, soil, and elevation were derived. Competing models with different temporal patterns were fit, and the best model selected based on Watanabe-AIC values and AUC value of 0.89. Results The occupancy pattern produced by this model revealed a steady progression of the disease toward the east and southeast of the state. A random forest analysis of covariates at annual intervals indicated that geographic location, elevation, areas occupied by mixed forests, and several soil attributes (pH, clay content, depth to restrictive layer, available water content, and bulk density) explained most of the variability in the surveillance data (R 2 = 0.96). Discussion The findings reported in this study are the first for the state of Kansas but are consistent with previous findings from other geographic jurisdictions in the US and Canada. This consistency underscores their value in designing surveillance and management programs.
Collapse
Affiliation(s)
- Amy J. Davis
- National Wildlife Research Center, Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, CO, United States
| | - Shane Hesting
- Kansas Department of Wildlife and Parks, Emporia, KS, United States
| | - Levi Jaster
- Kansas Department of Wildlife and Parks, Emporia, KS, United States
| | - Joseph E. Mosley
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| | - Akila Raghavan
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| | - Ram K. Raghavan
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
- Department of Public Health, College of Health Sciences, University of Missouri, Columbia, MO, United States
| |
Collapse
|
3
|
Steadman BS, Bian J, Shikiya RA, Bartz JC. Minor prion substrains overcome transmission barriers. mBio 2024; 15:e0272124. [PMID: 39440977 PMCID: PMC11559082 DOI: 10.1128/mbio.02721-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024] Open
Abstract
Mammalian prion diseases are infectious neurodegenerative diseases caused by the self-templating form of the prion protein PrPSc. Much evidence supports the hypothesis that prions exist as a mixture of a dominant strain and minor prion strains. While it is known that prions can infect new species, the relative contribution of the dominant prion strain and minor strains in crossing the species barrier is unknown. We previously identified minor prion strains from a biologically cloned drowsy (DY) strain of hamster-adapted transmissible mink encephalopathy (TME). Here we show that these minor prion strains have increased infection efficiency to rabbit kidney epithelial cells that express hamster PrPC compared to the dominant strain DY TME. Using protein misfolding cyclic amplification (PMCA), we found that the dominant strain DY TME failed to convert mouse PrPC to PrPSc, even after several serial passages. In contrast, the minor prion strains isolated from biologically cloned DY TME robustly converted mouse PrPC to PrPSc in the first round of PMCA. This observation indicates that minor prion strains from the mutant spectra contribute to crossing the species barrier. Additionally, we found that the PMCA conversion efficiency for the minor prion strains tested was significantly different from each other and from the short-incubation period prion strain HY TME. This suggests that minor strain diversity may be greater than previously anticipated. These observations further expand our understanding of the mechanisms underlying the species barrier effect and has implications for assessing the zoonotic potential of prions. IMPORTANCE Prions from cattle with bovine spongiform encephalopathy have transmitted to humans, whereas scrapie from sheep and goats likely has not, suggesting that some prions can cross species barriers more easily than others. Prions are composed of a dominant strain and minor strains, and the contribution of each population to adapt to new replicative environments is unknown. Recently, minor prion strains were isolated from the biologically cloned prion strain DY TME, and these minor prion strains differed in properties from the dominant prion strain, DY TME. Here we found that these minor prion strains also differed in conversion efficiency and host range compared to the dominant strain DY TME. These novel findings provide evidence that minor prion strains contribute to interspecies transmission, underscoring the significance of minor strain components in important biological processes.
Collapse
Affiliation(s)
- Benjamin S. Steadman
- Department of Medical Microbiology and Immunology, School of Medicine, Creighton University, Omaha, Nebraska, USA
| | - Jifeng Bian
- Virus and Prion Research Unit, National Animal Disease Center, United States Department of Agriculture – Agricultural Research Services, Ames, Iowa, USA
| | - Ronald A. Shikiya
- Department of Medical Microbiology and Immunology, School of Medicine, Creighton University, Omaha, Nebraska, USA
| | - Jason C. Bartz
- Department of Medical Microbiology and Immunology, School of Medicine, Creighton University, Omaha, Nebraska, USA
| |
Collapse
|
4
|
Lambert ZJ, Bian J, Cassmann ED, Greenlee MHW, Greenlee JJ. Scrapie versus Chronic Wasting Disease in White-Tailed Deer. Emerg Infect Dis 2024; 30:1651-1659. [PMID: 39043428 PMCID: PMC11286070 DOI: 10.3201/eid3008.240007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024] Open
Abstract
White-tailed deer are susceptible to scrapie (WTD scrapie) after oronasal inoculation with the classical scrapie agent from sheep. Deer affected by WTD scrapie are difficult to differentiate from deer infected with chronic wasting disease (CWD). To assess the transmissibility of the WTD scrapie agent and tissue phenotypes when further passaged in white-tailed deer, we oronasally inoculated wild-type white-tailed deer with WTD scrapie agent. We found that WTD scrapie and CWD agents were generally similar, although some differences were noted. The greatest differences were seen in bioassays of cervidized mice that exhibited significantly longer survival periods when inoculated with WTD scrapie agent than those inoculated with CWD agent. Our findings establish that white-tailed deer are susceptible to WTD scrapie and that the presence of WTD scrapie agent in the lymphoreticular system suggests the handling of suspected cases should be consistent with current CWD guidelines because environmental shedding may occur.
Collapse
|
5
|
Do K, Benavente R, Catumbela CSG, Khan U, Kramm C, Soto C, Morales R. Adaptation of the protein misfolding cyclic amplification (PMCA) technique for the screening of anti-prion compounds. FASEB J 2024; 38:e23843. [PMID: 39072789 PMCID: PMC11453167 DOI: 10.1096/fj.202400614r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/05/2024] [Accepted: 07/15/2024] [Indexed: 07/30/2024]
Abstract
Prion diseases result from the misfolding of the physiological prion protein (PrPC) to a pathogenic conformation (PrPSc). Compelling evidence indicates that prevention and/or reduction of PrPSc replication are promising therapeutic strategies against prion diseases. However, the existence of different PrPSc conformations (or strains) associated with disease represents a major problem when identifying anti-prion compounds. Efforts to identify strain-specific anti-prion molecules are limited by the lack of biologically relevant high-throughput screening platforms to interrogate compound libraries. Here, we describe adaptations to the protein misfolding cyclic amplification (PMCA) technology (able to faithfully replicate PrPSc strains) that increase its throughput to facilitate the screening of anti-prion molecules. The optimized PMCA platform includes a reduction in sample and reagents, as well as incubation/sonication cycles required to efficiently replicate and detect rodent-adapted and cervid PrPSc strains. The visualization of PMCA products was performed via dot blots, a method that contributed to reduced processing times. These technical changes allowed us to evaluate small molecules with previously reported anti-prion activity. This proof-of-principle screening was evaluated for six rodent-adapted prion strains. Our data show that these compounds targeted either none, all or some PrPSc strains at variable concentrations, demonstrating that this PMCA system is suitable to test compound libraries for putative anti-prion molecules targeting specific PrPSc strains. Further analyses of a small compound library against deer prions demonstrate the potential of this new PMCA format to identify strain-specific anti-prion molecules. The data presented here demonstrate the use of the PMCA technique in the selection of prion strain-specific anti-prion compounds.
Collapse
Affiliation(s)
- Katherine Do
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Rebeca Benavente
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Celso S. G. Catumbela
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Uffaf Khan
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Carlos Kramm
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Claudio Soto
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Rodrigo Morales
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
- Centro Integrativo de Biologia y Quimica Aplicada (CIBQA), Universidad Bernardo O’Higgins, Santiago, Chile
| |
Collapse
|
6
|
Harpaz E, Cazzaniga FA, Tran L, Vuong TT, Bufano G, Salvesen Ø, Gravdal M, Aldaz D, Sun J, Kim S, Celauro L, Legname G, Telling GC, Tranulis MA, Benestad SL, Espenes A, Moda F, Ersdal C. Transmission of Norwegian reindeer CWD to sheep by intracerebral inoculation results in an unusual phenotype and prion distribution. Vet Res 2024; 55:94. [PMID: 39075607 PMCID: PMC11285437 DOI: 10.1186/s13567-024-01350-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/02/2024] [Indexed: 07/31/2024] Open
Abstract
Chronic wasting disease (CWD), a prion disease affecting cervids, has been known in North America (NA) since the 1960s and emerged in Norway in 2016. Surveillance and studies have revealed that there are different forms of CWD in Fennoscandia: contagious CWD in Norwegian reindeer and sporadic CWD in moose and red deer. Experimental studies have demonstrated that NA CWD prions can infect various species, but thus far, there have been no reports of natural transmission to non-cervid species. In vitro and laboratory animal studies of the Norwegian CWD strains suggest that these strains are different from the NA strains. In this work, we describe the intracerebral transmission of reindeer CWD to six scrapie-susceptible sheep. Detection methods included immunohistochemistry (IHC), western blot (WB), enzyme-linked immunosorbent assay (ELISA), real-time quaking-induced conversion (RT-QuIC) and protein misfolding cyclic amplification (PMCA). In the brain, grey matter vacuolation was limited, while all sheep exhibited vacuolation of the white matter. IHC and WB conventional detection techniques failed to detect prions; however, positive seeding activity with the RT-QuIC and PMCA amplification techniques was observed in the central nervous system of all but one sheep. Prions were robustly amplified in the lymph nodes of all animals, mainly by RT-QuIC. Additionally, two lymph nodes were positive by WB, and one was positive by ELISA. These findings suggest that sheep can propagate reindeer CWD prions after intracerebral inoculation, resulting in an unusual disease phenotype and prion distribution with a low amount of detectable prions.
Collapse
Affiliation(s)
- Erez Harpaz
- Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, Sandnes, Norway
| | - Federico Angelo Cazzaniga
- Unit of Neurology 5 and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Linh Tran
- Section for Biohazard and Pathology, Norwegian Veterinary Institute, Ås, Norway
| | - Tram T Vuong
- Section for Biohazard and Pathology, Norwegian Veterinary Institute, Ås, Norway
| | - Giuseppe Bufano
- Unit of Neurology 5 and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Øyvind Salvesen
- Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, Sandnes, Norway
- Åkerblå AS, Haugesund, Norway
| | - Maiken Gravdal
- Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, Sandnes, Norway
| | - Devin Aldaz
- Prion Research Center (PRC) and the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Julianna Sun
- Prion Research Center (PRC) and the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Sehun Kim
- Prion Research Center (PRC) and the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Luigi Celauro
- Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Giuseppe Legname
- Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Glenn C Telling
- Prion Research Center (PRC) and the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Michael A Tranulis
- Department of Preclinical Sciences and Pathology, Norwegian University of Life Sciences, Ås, Norway
| | - Sylvie L Benestad
- Section for Biohazard and Pathology, Norwegian Veterinary Institute, Ås, Norway
| | - Arild Espenes
- Department of Preclinical Sciences and Pathology, Norwegian University of Life Sciences, Ås, Norway
| | - Fabio Moda
- Unit of Neurology 5 and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Cecilie Ersdal
- Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, Sandnes, Norway.
| |
Collapse
|
7
|
Esattore B, Bartošová H, Bartošová J. The good, the bad, the comfortable: a review of welfare practices and indicators based on the five domains model in farmed deer. J APPL ANIM WELF SCI 2024:1-15. [PMID: 39037408 DOI: 10.1080/10888705.2024.2381461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/12/2024] [Indexed: 07/23/2024]
Abstract
Increasing consumer interest in game meat has globally expanded wild animal farming, with deer being a prominent non-traditional species farmed in numerous countries. Consequently, methods for assessing the welfare of captive animals have been developed over the last few decades, and despite its limitations, the Five Domains Model has become one of the most popular practical tools for welfare assessment. Our review focuses on welfare indicators in farmed red and fallow deer, the primary deer species in European farms. Among 57 studies, the majority emphasized deer health and nutrition, neglecting aspects like behavior and mental state. Notably, a significant portion explored human-animal interactions, especially in deer transportation. Summarizing literature for each domain, we propose reliable physical, behavioral, and physiological welfare indicators for farmed red and fallow deer. This comprehensive approach addresses current research gaps and contributes to enhancing the overall well-being of farmed deer.
Collapse
Affiliation(s)
- Bruno Esattore
- Department of Ethology, Institute of Animal Science, Prague, Czech Republic
| | - Hana Bartošová
- Department of Ethology, Institute of Animal Science, Prague, Czech Republic
| | - Jitka Bartošová
- Department of Ethology, Institute of Animal Science, Prague, Czech Republic
| |
Collapse
|
8
|
Marín-Moreno A, Benestad SL, Barrio T, Pirisinu L, Espinosa JC, Tran L, Huor A, Di Bari MA, Eraña H, Maddison BC, D'Agostino C, Fernández-Borges N, Canoyra S, Jerez-Garrido N, Castilla J, Spiropoulos J, Bishop K, Gough KC, Nonno R, Våge J, Andréoletti O, Torres JM. Classical BSE dismissed as the cause of CWD in Norwegian red deer despite strain similarities between both prion agents. Vet Res 2024; 55:62. [PMID: 38750594 PMCID: PMC11097568 DOI: 10.1186/s13567-024-01320-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/16/2024] [Indexed: 05/18/2024] Open
Abstract
The first case of CWD in a Norwegian red deer was detected by a routine ELISA test and confirmed by western blotting and immunohistochemistry in the brain stem of the animal. Two different western blotting tests were conducted independently in two different laboratories, showing that the red deer glycoprofile was different from the Norwegian CWD reindeer and CWD moose and from North American CWD. The isolate showed nevertheless features similar to the classical BSE (BSE-C) strain. Furthermore, BSE-C could not be excluded based on the PrPSc immunohistochemistry staining in the brainstem and the absence of detectable PrPSc in the lymphoid tissues. Because of the known ability of BSE-C to cross species barriers as well as its zoonotic potential, the CWD red deer isolate was submitted to the EURL Strain Typing Expert Group (STEG) as a BSE-C suspect for further investigation. In addition, different strain typing in vivo and in vitro strategies aiming at identifying the BSE-C strain in the red deer isolate were performed independently in three research groups and BSE-C was not found in it. These results suggest that the Norwegian CWD red deer case was infected with a previously unknown CWD type and further investigation is needed to determine the characteristics of this potential new CWD strain.
Collapse
Affiliation(s)
- Alba Marín-Moreno
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | | | - Tomas Barrio
- UMR École Nationale Vétérinaire de Toulouse (ENVT), 1225 Interactions Hôtes-Agents Pathogènes, Institut National Pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Toulouse, France
| | - Laura Pirisinu
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Juan Carlos Espinosa
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Linh Tran
- Norwegian Veterinary Institute, Ås, Norway
| | - Alvina Huor
- UMR École Nationale Vétérinaire de Toulouse (ENVT), 1225 Interactions Hôtes-Agents Pathogènes, Institut National Pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Toulouse, France
| | - Michele Angelo Di Bari
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Hasier Eraña
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Basque Foundation for Science, Bizkaia Technology Park & IKERBASQUE, Bizkaia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Carlos III National Health Institute, Madrid, Spain
| | - Ben C Maddison
- RSK- ADAS Ltd, Technology Drive, Beeston, Nottingham, UK
| | - Claudia D'Agostino
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Natalia Fernández-Borges
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Sara Canoyra
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Nuria Jerez-Garrido
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Joaquín Castilla
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Basque Foundation for Science, Bizkaia Technology Park & IKERBASQUE, Bizkaia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Carlos III National Health Institute, Madrid, Spain
| | | | - Keith Bishop
- RSK- ADAS Ltd, Technology Drive, Beeston, Nottingham, UK
| | | | - Romolo Nonno
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Jorn Våge
- Norwegian Veterinary Institute, Ås, Norway
| | - Olivier Andréoletti
- UMR École Nationale Vétérinaire de Toulouse (ENVT), 1225 Interactions Hôtes-Agents Pathogènes, Institut National Pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Toulouse, France
| | - Juan María Torres
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.
| |
Collapse
|
9
|
Benavente R, Reed JH, Lockwood M, Morales R. PMCA screening of retropharyngeal lymph nodes in white-tailed deer and comparisons with ELISA and IHC. Sci Rep 2023; 13:20171. [PMID: 37978312 PMCID: PMC10656533 DOI: 10.1038/s41598-023-47105-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023] Open
Abstract
Chronic wasting disease (CWD) is a prion disease affecting cervids. CWD diagnosis is conducted through enzyme-linked immunosorbent assay (ELISA) and immunohistochemistry (IHC) in retropharyngeal lymph nodes. Unfortunately, these techniques have limited sensitivity against the biomarker (CWD-prions). Two in vitro prion amplification techniques, real-time quaking-induced conversion (RT-QuIC) and protein misfolding cyclic amplification (PMCA), have shown promise in detecting CWD-prions in tissues and bodily fluids. Recent studies have demonstrated that RT-QuIC yields similar results compared to ELISA and IHC. Here, we analyzed 1003 retropharyngeal lymph nodes (RPLNs) from Texas white-tailed deer. PMCA detected CWD at a higher rate compared to ELISA/IHC, identified different prion strains, and revealed the presence of CWD-prions in places with no previous history. These findings suggest that PMCA exhibits greater sensitivity than current standard techniques and could be valuable for rapid and strain-specific CWD detection.
Collapse
Affiliation(s)
- Rebeca Benavente
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - J Hunter Reed
- Texas Parks and Wildlife Department, Kerrville, TX, USA
| | | | - Rodrigo Morales
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA.
- Centro Integrativo de Biologia y Quimica Aplicada (CIBQA), Universidad Bernardo O'Higgins, Santiago, Chile.
| |
Collapse
|
10
|
Harpaz E, Vuong TT, Tran L, Tranulis MA, Benestad SL, Ersdal C. Inter- and intra-species conversion efficacies of Norwegian prion isolates estimated by serial protein misfolding cyclic amplification. Vet Res 2023; 54:84. [PMID: 37773068 PMCID: PMC10542671 DOI: 10.1186/s13567-023-01220-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/05/2023] [Indexed: 09/30/2023] Open
Abstract
Prion diseases, including chronic wasting disease (CWD) in cervids, are fatal neurodegenerative disorders caused by the misfolding of cellular prion proteins. CWD is known to spread among captive and free-ranging deer in North America. In 2016, an outbreak of contagious CWD was detected among wild reindeer in Norway, marking the first occurrence of the disease in Europe. Additionally, new sporadic forms of CWD have been discovered in red deer in Norway and moose in Fennoscandia. We used serial protein misfolding cyclic amplification to study the ability of Norwegian prion isolates from reindeer, red deer, and moose (two isolates), as well as experimental classical scrapie from sheep, to convert a panel of 16 brain homogenates (substrates) from six different species with various prion protein genotypes. The reindeer CWD isolate successfully converted substrates from all species except goats. The red deer isolate failed to convert sheep and goat substrates but exhibited amplification in all cervid substrates. The two moose isolates demonstrated lower conversion efficacies. The wild type isolate propagated in all moose substrates and in the wild type red deer substrate, while the other isolate only converted two of the moose substrates. The experimental classical scrapie isolate was successfully propagated in substrates from all species tested. Thus, reindeer CWD and classical sheep scrapie isolates were similarly propagated in substrates from different species, suggesting the potential for spillover of these contagious diseases. Furthermore, the roe deer substrate supported conversion of three isolates suggesting that this species may be vulnerable to prion disease.
Collapse
Affiliation(s)
- Erez Harpaz
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Svebastadveien 112, 4325, Sandnes, Norway
| | - Tram Thu Vuong
- Department of Biohazard and Pathology, Norwegian Veterinary Institute, P.O. box 64, 1431, Ås, Norway
| | - Linh Tran
- Department of Biohazard and Pathology, Norwegian Veterinary Institute, P.O. box 64, 1431, Ås, Norway
| | - Michael Andreas Tranulis
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Universitetstunet 3, 1433, Ås, Norway
| | - Sylvie L Benestad
- Department of Biohazard and Pathology, Norwegian Veterinary Institute, P.O. box 64, 1431, Ås, Norway
| | - Cecilie Ersdal
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Svebastadveien 112, 4325, Sandnes, Norway.
| |
Collapse
|
11
|
Koutsoumanis K, Allende A, Alvarez‐Ordoñez A, Bolton D, Bover‐Cid S, Chemaly M, Davies R, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Peixe L, Skandamis P, Suffredini E, Miller MW, Mysterud A, Nöremark M, Simmons M, Tranulis MA, Vaccari G, Viljugrein H, Ortiz‐Pelaez A, Ru G. Monitoring of chronic wasting disease (CWD) (IV). EFSA J 2023; 21:e07936. [PMID: 37077299 PMCID: PMC10107390 DOI: 10.2903/j.efsa.2023.7936] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023] Open
Abstract
The European Commission requested an analysis of the Chronic Wasting Disease (CWD) monitoring programme in Norway, Sweden, Finland, Iceland, Estonia, Latvia, Lithuania and Poland (9 January 2017-28 February 2022). Thirteen cases were detected in reindeer, 15 in moose and 3 in red deer. They showed two phenotypes, distinguished by the presence or absence of detectable disease-associated normal cellular prion protein (PrP) in lymphoreticular tissues. CWD was detected for the first time in Finland, Sweden and in other areas of Norway. In countries where the disease was not detected, the evidence was insufficient to rule out its presence altogether. Where cases were detected, the prevalence was below 1%. The data also suggest that the high-risk target groups for surveillance should be revised, and 'road kill' removed. Data show that, in addition to differences in age and sex, there are differences in the prion protein gene (PRNP) genotypes between positive and negative wild reindeer. A stepwise framework has been proposed with expanded minimum background surveillance to be implemented in European countries with relevant cervid species. Additional surveillance may include ad hoc surveys for four different objectives, specific to countries with/without cases, focusing on parallel testing of obex and lymph nodes from adult cervids in high-risk target groups, sustained over time, using sampling units and a data-driven design prevalence. Criteria for assessing the probability of CWD presence have been outlined, based on the definition of the geographical area, an annual assessment of risk of introduction, sustained minimum background surveillance, training and engagement of stakeholders and a surveillance programme based on data-driven parameters. All positive cases should be genotyped. Sample sizes for negative samples have been proposed to detect and estimate the frequency of PRNP polymorphisms. Double-strand sequencing of the entire PRNP open reading frame should be undertaken for all selected samples, with data collated in a centralised collection system at EU level.
Collapse
|
12
|
Wang F, Pritzkow S, Soto C. PMCA for ultrasensitive detection of prions and to study disease biology. Cell Tissue Res 2023; 392:307-321. [PMID: 36567368 PMCID: PMC9790818 DOI: 10.1007/s00441-022-03727-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/08/2022] [Indexed: 12/27/2022]
Abstract
The emergence of a novel class of infectious agent composed exclusively of a misfolded protein (termed prions) has been a challenge in modern biomedicine. Despite similarities on the behavior of prions with respect to conventional pathogens, the many uncertainties regarding the biology and virulence of prions make them a worrisome paradigm. Since prions do not contain nucleic acids and rely on a very different way of replication and spreading, it was necessary to invent a novel technology to study them. In this article, we provide an overview of such a technology, termed protein misfolding cyclic amplification (PMCA), and summarize its many applications to detect prions and understand prion biology.
Collapse
Affiliation(s)
- Fei Wang
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - Sandra Pritzkow
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - Claudio Soto
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, University of Texas McGovern Medical School, Houston, TX, 77030, USA.
| |
Collapse
|
13
|
Sun JL, Telling GC. New developments in prion disease research using genetically modified mouse models. Cell Tissue Res 2023; 392:33-46. [PMID: 36929219 DOI: 10.1007/s00441-023-03761-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 03/03/2023] [Indexed: 03/18/2023]
Abstract
While much of what we know about the general principles of protein-based information transfer derives from studies of experimentally adapted rodent prions, these laboratory strains are limited in their ability to recapitulate features of human and animal prions and the diseases they produce. Here, we review how recent approaches using genetically modified mice have informed our understanding of naturally occurring prion diseases, their strain properties, and the factors controlling their transmission and evolution. In light of the increasing importance of chronic wasting disease, the application of mouse transgenesis to study this burgeoning and highly contagious prion disorder, in particular recent insights derived from gene-targeting approaches, will be a major focus of this review.
Collapse
Affiliation(s)
- Julianna L Sun
- Prion Research Center, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, USA
| | - Glenn C Telling
- Prion Research Center, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, USA.
| |
Collapse
|
14
|
Tranulis MA, Tryland M. The Zoonotic Potential of Chronic Wasting Disease-A Review. Foods 2023; 12:foods12040824. [PMID: 36832899 PMCID: PMC9955994 DOI: 10.3390/foods12040824] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/17/2023] Open
Abstract
Prion diseases are transmissible neurodegenerative disorders that affect humans and ruminant species consumed by humans. Ruminant prion diseases include bovine spongiform encephalopathy (BSE) in cattle, scrapie in sheep and goats and chronic wasting disease (CWD) in cervids. In 1996, prions causing BSE were identified as the cause of a new prion disease in humans; variant Creutzfeldt-Jakob disease (vCJD). This sparked a food safety crisis and unprecedented protective measures to reduce human exposure to livestock prions. CWD continues to spread in North America, and now affects free-ranging and/or farmed cervids in 30 US states and four Canadian provinces. The recent discovery in Europe of previously unrecognized CWD strains has further heightened concerns about CWD as a food pathogen. The escalating CWD prevalence in enzootic areas and its appearance in a new species (reindeer) and new geographical locations, increase human exposure and the risk of CWD strain adaptation to humans. No cases of human prion disease caused by CWD have been recorded, and most experimental data suggest that the zoonotic risk of CWD is very low. However, the understanding of these diseases is still incomplete (e.g., origin, transmission properties and ecology), suggesting that precautionary measures should be implemented to minimize human exposure.
Collapse
Affiliation(s)
- Michael A. Tranulis
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 5003 As, Norway
- Correspondence: ; Tel.: +47-67232040
| | - Morten Tryland
- Department of Forestry and Wildlife Management, Faculty of Applied Ecology, Agricultural Sciences and Biotechnology, Inland Norway University of Applied Sciences, 2480 Koppang, Norway
| |
Collapse
|
15
|
Ufer DJ, Christensen SA, Pomeranz E, Ortega DL. A behavioral economic assessment of the role of stakeholder preferences in managing an infectious wildlife disease. WILDLIFE SOC B 2022. [DOI: 10.1002/wsb.1411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Danielle J. Ufer
- Department of Agricultural, Food and Resource Economics Michigan State University 446 W Circle Drive East Lansing MI 48824 USA
| | - Sonja A. Christensen
- Department of Fisheries and Wildlife Michigan State University 480 Wilson Road East Lansing MI 48824 USA
| | - Emily Pomeranz
- Michigan Department of Natural Resources 4166 Legacy Parkway Lansing MI 48911 USA
| | - David L. Ortega
- Department of Agricultural, Food and Resource Economics Michigan State University 446 W Circle Drive East Lansing MI 48824 USA
| |
Collapse
|
16
|
Transmission, Strain Diversity, and Zoonotic Potential of Chronic Wasting Disease. Viruses 2022; 14:v14071390. [PMID: 35891371 PMCID: PMC9316268 DOI: 10.3390/v14071390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/11/2022] [Accepted: 06/12/2022] [Indexed: 02/01/2023] Open
Abstract
Chronic wasting disease (CWD) is a prion disease affecting several species of captive and free-ranging cervids. In the past few decades, CWD has been spreading uncontrollably, mostly in North America, resulting in a high increase of CWD incidence but also a substantially higher number of geographical regions affected. The massive increase in CWD poses risks at several levels, including contamination of the environment, transmission to animals cohabiting with cervids, and more importantly, a putative transmission to humans. In this review, I will describe the mechanisms and routes responsible for the efficient transmission of CWD, the strain diversity of natural CWD, its spillover and zoonotic potential and strategies to minimize the CWD threat.
Collapse
|
17
|
Harpaz E, Salvesen Ø, Rauset GR, Mahmood A, Tran L, Ytrehus B, Benestad SL, Tranulis MA, Espenes A, Ersdal C. No evidence of uptake or propagation of reindeer CWD prions in environmentally exposed sheep. Acta Vet Scand 2022; 64:13. [PMID: 35668456 PMCID: PMC9169292 DOI: 10.1186/s13028-022-00632-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/24/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chronic wasting disease (CWD) is a prion disease of cervids first reported in North America in the 1960s. In Europe, CWD was first diagnosed in 2016 in a wild reindeer in Norway. Detection of two more cases in the same mountain area led to the complete culling of this partially confined reindeer population of about 2400 animals. A total of 19 CWD positive animals were identified. The affected area is extensively used for the grazing of sheep during summers. There are many mineral licks intended for sheep in the area, but these have also been used by reindeer. This overlap in area use raised concerns for cross-species prion transmission between reindeer and sheep. In this study, we have used global positioning system (GPS) data from sheep and reindeer, including tracking one of the CWD positive reindeer, to investigate spatial and time-relevant overlaps between these two species. Since prions can accumulate in lymphoid follicles following oral uptake, samples of gut-associated lymphoid tissue (GALT) from 425 lambs and 78 adult sheep, which had grazed in the region during the relevant timeframe, were analyzed for the presence of prions. The recto-anal mucosa associated lymphoid tissue (RAMALT) from all the animals were examined by histology, immunohistochemistry (IHC) and enzyme-linked immunosorbent assay (ELISA), and the ileal Peyer's patch (IPP) from a subsample of 37 lambs were examined by histology and IHC, for the detection of prions. RESULTS GPS data showed an overlap in area use between the infected reindeer herd and the sheep. In addition, the GPS positions of an infected reindeer and some of the sampled sheep showed temporospatial overlap. No prions were detected in the GALT of the investigated sheep even though the mean lymphoid follicle number in RAMALT and IPP samples were high. CONCLUSION The absence of prions in the GALT of sheep that have shared pasture with CWD-infected reindeer, may suggest that transmission of this novel CWD strain to sheep does not easily occur under the conditions found in these mountains. We document that the lymphoid follicle rich RAMALT could be a useful tool to screen for prions in sheep.
Collapse
Affiliation(s)
- Erez Harpaz
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Svebastadveien, 112, 4325, Sandnes, Norway
| | - Øyvind Salvesen
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Svebastadveien, 112, 4325, Sandnes, Norway
| | - Geir Rune Rauset
- Norwegian Institute for Nature Research (NINA), Torgarden, P.O. Box 5685, 7485, Trondheim, Norway
| | - Aqsa Mahmood
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Svebastadveien, 112, 4325, Sandnes, Norway
| | - Linh Tran
- Norwegian Veterinary Institute, P.O. box 64, 1431, Ås, Norway
| | - Bjørnar Ytrehus
- Norwegian Institute for Nature Research (NINA), Torgarden, P.O. Box 5685, 7485, Trondheim, Norway.,Department of Biomedical Science and Veterinary Public Health, Swedish University of Agricultural Sciences, P.O. Box 7028, 750 07, Uppsala, Sweden
| | | | - Michael Andreas Tranulis
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Universitetstunet 3, 1433, Ås, Norway
| | - Arild Espenes
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Universitetstunet 3, 1433, Ås, Norway
| | - Cecilie Ersdal
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Svebastadveien, 112, 4325, Sandnes, Norway.
| |
Collapse
|
18
|
Silva CJ. Chronic Wasting Disease (CWD) in Cervids and the Consequences of a Mutable Protein Conformation. ACS OMEGA 2022; 7:12474-12492. [PMID: 35465121 PMCID: PMC9022204 DOI: 10.1021/acsomega.2c00155] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 03/18/2022] [Indexed: 05/15/2023]
Abstract
Chronic wasting disease (CWD) is a prion disease of cervids (deer, elk, moose, etc.). It spreads readily from CWD-contaminated environments and among wild cervids. As of 2022, North American CWD has been found in 29 states, four Canadian provinces and South Korea. The Scandinavian form of CWD originated independently. Prions propagate their pathology by inducing a natively expressed prion protein (PrPC) to adopt the prion conformation (PrPSc). PrPC and PrPSc differ solely in their conformation. Like other prion diseases, transmissible CWD prions can arise spontaneously. The CWD prions can respond to selection pressures resulting in the emergence of new strain phenotypes. Annually, 11.5 million Americans hunt and harvest nearly 6 million deer, indicating that CWD is a potential threat to an important American food source. No tested CWD strain has been shown to be zoonotic. However, this may not be true for emerging strains. Should a zoonotic CWD strain emerge, it could adversely impact the hunting economy and game meat consumers.
Collapse
Affiliation(s)
- Christopher J. Silva
- Produce Safety & Microbiology
Research Unit, Western Regional Research Center, Agricultural Research
Service, United States Department of Agriculture, Albany, California 94710, United States of America
| |
Collapse
|
19
|
Transmission of cervid prions to humanized mice demonstrates the zoonotic potential of CWD. Acta Neuropathol 2022; 144:767-784. [PMID: 35996016 PMCID: PMC9468132 DOI: 10.1007/s00401-022-02482-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/05/2022] [Accepted: 08/07/2022] [Indexed: 01/28/2023]
Abstract
Prions cause infectious and fatal neurodegenerative diseases in mammals. Chronic wasting disease (CWD), a prion disease of cervids, spreads efficiently among wild and farmed animals. Potential transmission to humans of CWD is a growing concern due to its increasing prevalence. Here, we provide evidence for a zoonotic potential of CWD prions, and its probable signature using mice expressing human prion protein (PrP) as an infection model. Inoculation of these mice with deer CWD isolates resulted in atypical clinical manifestation with prion seeding activity and efficient transmissible infectivity in the brain and, remarkably, in feces, but without classical neuropathological or Western blot appearances of prion diseases. Intriguingly, the protease-resistant PrP in the brain resembled that found in a familial human prion disease and was transmissible upon second passage. Our results suggest that CWD might infect humans, although the transmission barrier is likely higher compared to zoonotic transmission of cattle prions. Notably, our data suggest a different clinical presentation, prion signature, and tissue tropism, which causes challenges for detection by current diagnostic assays. Furthermore, the presence of infectious prions in feces is concerning because if this occurs in humans, it is a source for human-to-human transmission. These findings have strong implications for public health and CWD management.
Collapse
|
20
|
Differential Accumulation of Misfolded Prion Strains in Natural Hosts of Prion Diseases. Viruses 2021; 13:v13122453. [PMID: 34960722 PMCID: PMC8706046 DOI: 10.3390/v13122453] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/01/2021] [Accepted: 12/03/2021] [Indexed: 01/01/2023] Open
Abstract
Prion diseases, also known as transmissible spongiform encephalopathies (TSEs), are a group of neurodegenerative protein misfolding diseases that invariably cause death. TSEs occur when the endogenous cellular prion protein (PrPC) misfolds to form the pathological prion protein (PrPSc), which templates further conversion of PrPC to PrPSc, accumulates, and initiates a cascade of pathologic processes in cells and tissues. Different strains of prion disease within a species are thought to arise from the differential misfolding of the prion protein and have different clinical phenotypes. Different strains of prion disease may also result in differential accumulation of PrPSc in brain regions and tissues of natural hosts. Here, we review differential accumulation that occurs in the retinal ganglion cells, cerebellar cortex and white matter, and plexuses of the enteric nervous system in cattle with bovine spongiform encephalopathy, sheep and goats with scrapie, cervids with chronic wasting disease, and humans with prion diseases. By characterizing TSEs in their natural host, we can better understand the pathogenesis of different prion strains. This information is valuable in the pursuit of evaluating and discovering potential biomarkers and therapeutics for prion diseases.
Collapse
|