1
|
Berry GJ, Jhaveri TA, Larkin PMK, Mostafa H, Babady NE. ADLM Guidance Document on Laboratory Diagnosis of Respiratory Viruses. J Appl Lab Med 2024; 9:599-628. [PMID: 38695489 DOI: 10.1093/jalm/jfae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 06/06/2024]
Abstract
Respiratory viral infections are among the most frequent infections experienced worldwide. The COVID-19 pandemic has highlighted the need for testing and currently several tests are available for the detection of a wide range of viruses. These tests vary widely in terms of the number of viral pathogens included, viral markers targeted, regulatory status, and turnaround time to results, as well as their analytical and clinical performance. Given these many variables, selection and interpretation of testing requires thoughtful consideration. The current guidance document is the authors' expert opinion based on the preponderance of available evidence to address key questions related to best practices for laboratory diagnosis of respiratory viral infections including who to test, when to test, and what tests to use. An algorithm is proposed to help laboratories decide on the most appropriate tests to use for the diagnosis of respiratory viral infections.
Collapse
Affiliation(s)
- Gregory J Berry
- Columbia University Vagelos College of Physicians and Surgeons, New York-Presbyterian-Columbia University Irving Medical Center, New York, NY, United States
| | - Tulip A Jhaveri
- Department of Internal Medicine, Division of Infectious Diseases, University of Mississippi Medical Center, Jackson, MS, United States
| | - Paige M K Larkin
- University of Chicago Pritzker School of Medicine, NorthShore University Health System, Chicago, IL, United States
| | - Heba Mostafa
- Johns Hopkins School of Medicine, Department of Pathology, Baltimore, MD, United States
| | - N Esther Babady
- Clinical Microbiology and Infectious Disease Services, Department of Pathology and Laboratory Medicine and Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| |
Collapse
|
3
|
Dimcheff DE, Blair CN, Zhu Y, Chappell JD, Gaglani M, McNeal T, Ghamande S, Steingrub JS, Shapiro NI, Duggal A, Busse LW, Frosch AEP, Peltan ID, Hager DN, Gong MN, Exline MC, Khan A, Wilson JG, Qadir N, Ginde AA, Douin DJ, Mohr NM, Mallow C, Martin ET, Johnson NJ, Casey JD, Stubblefield WB, Gibbs KW, Kwon JH, Talbot HK, Halasa N, Grijalva CG, Baughman A, Womack KN, Hart KW, Swan SA, Surie D, Thornburg NJ, McMorrow ML, Self WH, Lauring AS. Total and Subgenomic RNA Viral Load in Patients Infected With SARS-CoV-2 Alpha, Delta, and Omicron Variants. J Infect Dis 2023; 228:235-244. [PMID: 36883903 PMCID: PMC10420395 DOI: 10.1093/infdis/jiad061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/06/2023] [Indexed: 03/09/2023] Open
Abstract
BACKGROUND Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genomic and subgenomic RNA levels are frequently used as a correlate of infectiousness. The impact of host factors and SARS-CoV-2 lineage on RNA viral load is unclear. METHODS Total nucleocapsid (N) and subgenomic N (sgN) RNA levels were measured by quantitative reverse transcription polymerase chain reaction (RT-qPCR) in specimens from 3204 individuals hospitalized with coronavirus disease 2019 (COVID-19) at 21 hospitals. RT-qPCR cycle threshold (Ct) values were used to estimate RNA viral load. The impact of time of sampling, SARS-CoV-2 variant, age, comorbidities, vaccination, and immune status on N and sgN Ct values were evaluated using multiple linear regression. RESULTS Mean Ct values at presentation for N were 24.14 (SD 4.53) for non-variants of concern, 25.15 (SD 4.33) for Alpha, 25.31 (SD 4.50) for Delta, and 26.26 (SD 4.42) for Omicron. N and sgN RNA levels varied with time since symptom onset and infecting variant but not with age, comorbidity, immune status, or vaccination. When normalized to total N RNA, sgN levels were similar across all variants. CONCLUSIONS RNA viral loads were similar among hospitalized adults, irrespective of infecting variant and known risk factors for severe COVID-19. Total N and subgenomic RNA N viral loads were highly correlated, suggesting that subgenomic RNA measurements add little information for the purposes of estimating infectivity.
Collapse
Affiliation(s)
- Derek E Dimcheff
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Christopher N Blair
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Yuwei Zhu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - James D Chappell
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Manjusha Gaglani
- Baylor Scott and White Health, Texas A&M University College of Medicine, Temple, Texas, USA
| | - Tresa McNeal
- Baylor Scott and White Health, Texas A&M University College of Medicine, Temple, Texas, USA
| | - Shekhar Ghamande
- Baylor Scott and White Health, Texas A&M University College of Medicine, Temple, Texas, USA
| | - Jay S Steingrub
- Department of Medicine, Baystate Medical Center, Springfield, Massachusetts, USA
| | - Nathan I Shapiro
- Department of Emergency Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Abhijit Duggal
- Department of Medicine, Cleveland Clinic, Cleveland, Ohio, USA
| | | | - Anne E P Frosch
- Department of Medicine, Hennepin County Medical Center, Minneapolis, Minnesota, USA
| | - Ithan D Peltan
- Department of Medicine, Intermountain Medical Center, Murray, Utah, USA
- Department of Medicine, University of Utah, Salt Lake City, Utah, USA
| | - David N Hager
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michelle N Gong
- Department of Medicine, Montefiore Health System, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Matthew C Exline
- Department of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Akram Khan
- Department of Medicine, Oregon Health and Sciences University, Portland, Oregon, USA
| | - Jennifer G Wilson
- Department of Emergency Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Nida Qadir
- Department of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Adit A Ginde
- Department of Emergency Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - David J Douin
- Department of Anesthesiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Nicholas M Mohr
- Department of Emergency Medicine, University of Iowa, Iowa City, Iowa, USA
| | | | - Emily T Martin
- School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Nicholas J Johnson
- Department of Emergency Medicine and Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle, Washington, USA
| | - Jonathan D Casey
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - William B Stubblefield
- Department of Emergency Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Kevin W Gibbs
- Department of Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Jennie H Kwon
- Department of Medicine, Washington University, St Louis, Missouri, USA
| | - H Keipp Talbot
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Health Policy, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Natasha Halasa
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Carlos G Grijalva
- Department of Health Policy, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Adrienne Baughman
- Department of Emergency Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Kelsey N Womack
- Vanderbilt Institute for Clinical and Translational Research, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Kimberly W Hart
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Sydney A Swan
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Diya Surie
- COVID-19 Response Team, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Natalie J Thornburg
- COVID-19 Response Team, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Meredith L McMorrow
- COVID-19 Response Team, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Wesley H Self
- Department of Emergency Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Clinical and Translational Research, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Adam S Lauring
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | | |
Collapse
|
4
|
Bonenfant G, Deyoe JE, Wong T, Grijalva CG, Cui D, Talbot HK, Hassell N, Halasa N, Chappell J, Thornburg NJ, Rolfes MA, Wentworth DE, Zhou B. Surveillance and Correlation of Severe Acute Respiratory Syndrome Coronavirus 2 Viral RNA, Antigen, Virus Isolation, and Self-Reported Symptoms in a Longitudinal Study With Daily Sampling. Clin Infect Dis 2022; 75:1698-1705. [PMID: 35442437 PMCID: PMC9213875 DOI: 10.1093/cid/ciac282] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/04/2022] [Indexed: 11/14/2022] Open
Abstract
The novel coronavirus pandemic incited unprecedented demand for assays that detect viral nucleic acids, viral proteins, and corresponding antibodies. The 320 molecular diagnostics in receipt of US Food and Drug Administration emergency use authorization mainly focus on viral detection; however, no currently approved test can be used to infer infectiousness, that is, the presence of replicable virus. As the number of tests conducted increased, persistent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA positivity by reverse-transcription polymerase chain reaction (RT-PCR) in some individuals led to concerns over quarantine guidelines. To this end, we attempted to design an assay that reduces the frequency of positive test results from individuals who do not shed culturable virus. We describe multiplex quantitative RT-PCR assays that detect genomic RNA (gRNA) and subgenomic RNA (sgRNA) species of SARS-CoV-2, including spike, nucleocapsid, membrane, envelope, and ORF8. Viral RNA abundances calculated from these assays were compared with antigen presence, self-reported symptoms, and culture outcome (virus isolation) using samples from a 14-day longitudinal household transmission study. By characterizing the clinical and molecular dynamics of infection, we show that sgRNA detection has higher predictive value for culture outcome compared to detection of gRNA alone. Our findings suggest that sgRNA presence correlates with active infection and may help identify individuals shedding culturable virus.
Collapse
Affiliation(s)
- Gaston Bonenfant
- COVID-19 Emergency Response, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, USA
| | - Jessica E. Deyoe
- COVID-19 Emergency Response, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, USA
| | - Terianne Wong
- COVID-19 Emergency Response, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | | | - Dan Cui
- COVID-19 Emergency Response, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- General Dynamics Information Technology, Inc, Falls Church, Virginia, USA
| | - H. Keipp Talbot
- Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Norman Hassell
- COVID-19 Emergency Response, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Natasha Halasa
- Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - James Chappell
- Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Natalie J. Thornburg
- COVID-19 Emergency Response, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Melissa A. Rolfes
- COVID-19 Emergency Response, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - David E. Wentworth
- COVID-19 Emergency Response, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Bin Zhou
- COVID-19 Emergency Response, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|