1
|
Kleynhans L, Kunsevi-Kilola C, Tshivhula H, Webber T, Keyser A, Prins N, Snyders CI, Shabangu A, Rozot V, Kidd M, Zhang H, Cai H, Wang Y, Ewing AD, Malherbe ST, Azad AK, Arnett E, Restrepo BI, Schlesinger LS, Ronacher K. HUMAN ALVEOLAR MACROPHAGE FUNCTION IS IMPAIRED IN TUBERCULOSIS CONTACTS WITH DIABETES. RESEARCH SQUARE 2024:rs.3.rs-5489046. [PMID: 39649174 PMCID: PMC11623777 DOI: 10.21203/rs.3.rs-5489046/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
Type 2 diabetes (T2D) increases susceptibility to tuberculosis (TB) with the underlying mechanisms remaining unknown. To determine whether immune dysfunction in the lung contributes to TB susceptibility, we obtained paired human alveolar macrophages (HAMs) and monocyte-derived macrophages (MDMs) from TB-exposed individuals with/without T2D. Upon infection with Mycobacterium tuberculosis (M.tb), T2D-HAMs had more M.tb growth and produced more TNF. There were fewer neutrophils in the bronchoalveolar lavage of T2D patients which was inversely correlated with M.tb growth. Both T2D-HAMs and MDMs expressed less CD32, with T2D patients having fewer M1-like MDMs. T2D-MDMs produced less IL-1RA and CSF2. Overall M.tb-induced gene expression was delayed in T2D-HAMs, but genes involved in negative regulation of neutrophil migration were upregulated. T2D-HAM DNA was hypermethylated compared to control HAMs, however genes linked to TNF signalling were hypomethylated. We show here the first in-depth analysis of T2D-HAMs providing an explanation for more severe TB in T2D patients.
Collapse
Affiliation(s)
- Léanie Kleynhans
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SA MRC Centre for TB Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- Mater Research Institute – The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Carine Kunsevi-Kilola
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SA MRC Centre for TB Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Happy Tshivhula
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SA MRC Centre for TB Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Tariq Webber
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SA MRC Centre for TB Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Alana Keyser
- Vaccines for Africa, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Nicole Prins
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SA MRC Centre for TB Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Candice I Snyders
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SA MRC Centre for TB Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Ayanda Shabangu
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SA MRC Centre for TB Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Virginie Rozot
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Martin Kidd
- Centre for Statistical Consultation, Stellenbosch University, Stellenbosch, South Africa
| | - Hao Zhang
- Department of Molecular Microbiology and Immunology, South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX, USA
| | - Hong Cai
- Department of Molecular Microbiology and Immunology, South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX, USA
| | - Yufeng Wang
- Department of Molecular Microbiology and Immunology, South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX, USA
| | - Adam D Ewing
- Mater Research Institute – The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| | - Stephanus T Malherbe
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SA MRC Centre for TB Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Abul K Azad
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | | | - Blanca I Restrepo
- Texas Biomedical Research Institute, San Antonio, TX, USA
- Department of Epidemiology, School of Public Health-Brownsville Campus, University of Texas Health Science Center at Houston, Brownsville, TX, USA
- South Texas Diabetes and Obesity Institute, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, USA
| | | | - Katharina Ronacher
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SA MRC Centre for TB Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- Mater Research Institute – The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
2
|
Ye Z, Li L, Yang L, Zhuang L, Aspatwar A, Wang L, Gong W. Impact of diabetes mellitus on tuberculosis prevention, diagnosis, and treatment from an immunologic perspective. EXPLORATION (BEIJING, CHINA) 2024; 4:20230138. [PMID: 39439490 PMCID: PMC11491313 DOI: 10.1002/exp.20230138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 02/02/2024] [Indexed: 10/25/2024]
Abstract
The coexistence of diabetes mellitus (DM) and tuberculosis (TB) presents a significant global burden, with DM being recognized as a major risk factor for TB. This review comprehensively analyzes the immunological aspects of DM-TB comorbidity, shedding light on the impact of DM on TB pathogenesis and immune responses. It reveals that high blood glucose levels in TB patients contribute to reduced innate immune cell count, compromised phagocytic function, and delayed antigen presentation. These factors ultimately impair the clearance of Mycobacterium tuberculosis (MTB) and delay adaptive immune responses. With the interaction between TB and DM, there is an increase in inflammation and elevated secretion of pro-inflammatory cytokines by immune cells. This exacerbates the inflammatory response and contributes to poor treatment outcomes in TB. Moreover, the review explores the effects of DM on TB prevention, diagnosis, and treatment. It highlights how poor glycemic control, insulin resistance (IR), DM complications, and genetic factors increase the risk of MTB infection in individuals with DM. Additionally, DM-related immune suppression adversely affects the sensitivity of traditional diagnostic tests for TB, potentially resulting in underdiagnosis and delayed intervention. To mitigate the burden of TB in DM patients, the review emphasizes the need for further research on the mechanisms underlying DM reactivation in latent TB infection (LTBI). It shows how important it is to find and treat LTBI in DM patients as soon as possible and suggests looking into biomarkers that are specific to DM to make diagnosis more accurate.
Collapse
Affiliation(s)
- Zhaoyang Ye
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and TreatmentSenior Department of TuberculosisThe Eighth Medical Center of PLA General HospitalBeijingChina
- Hebei North UniversityZhangjiakouHebeiChina
- Department of GeriatricsThe Eighth Medical Center of PLA General HospitalBeijingChina
| | | | - Ling Yang
- Hebei North UniversityZhangjiakouHebeiChina
| | - Li Zhuang
- Hebei North UniversityZhangjiakouHebeiChina
| | - Ashok Aspatwar
- Faculty of Medicine and Health TechnologyTampere UniversityTampereFinland
| | - Liang Wang
- Department of GeriatricsThe Eighth Medical Center of PLA General HospitalBeijingChina
| | - Wenping Gong
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and TreatmentSenior Department of TuberculosisThe Eighth Medical Center of PLA General HospitalBeijingChina
| |
Collapse
|
3
|
Chen Z, Kong X, Ma Q, Chen J, Zeng Y, Liu H, Wang X, Lu S. The impact of Mycobacterium tuberculosis on the macrophage cholesterol metabolism pathway. Front Immunol 2024; 15:1402024. [PMID: 38873598 PMCID: PMC11169584 DOI: 10.3389/fimmu.2024.1402024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 05/14/2024] [Indexed: 06/15/2024] Open
Abstract
Mycobacterium tuberculosis (Mtb) is an intracellular pathogen capable of adapting and surviving within macrophages, utilizing host nutrients for its growth and replication. Cholesterol is the main carbon source during the infection process of Mtb. Cholesterol metabolism in macrophages is tightly associated with cell functions such as phagocytosis of pathogens, antigen presentation, inflammatory responses, and tissue repair. Research has shown that Mtb infection increases the uptake of low-density lipoprotein (LDL) and cholesterol by macrophages, and enhances de novo cholesterol synthesis in macrophages. Excessive cholesterol is converted into cholesterol esters, while the degradation of cholesterol esters in macrophages is inhibited by Mtb. Furthermore, Mtb infection suppresses the expression of ATP-binding cassette (ABC) transporters in macrophages, impeding cholesterol efflux. These alterations result in the massive accumulation of cholesterol in macrophages, promoting the formation of lipid droplets and foam cells, which ultimately facilitates the persistent survival of Mtb and the progression of tuberculosis (TB), including granuloma formation, tissue cavitation, and systemic dissemination. Mtb infection may also promote the conversion of cholesterol into oxidized cholesterol within macrophages, with the oxidized cholesterol exhibiting anti-Mtb activity. Recent drug development has discovered that reducing cholesterol levels in macrophages can inhibit the invasion of Mtb into macrophages and increase the permeability of anti-tuberculosis drugs. The development of drugs targeting cholesterol metabolic pathways in macrophages, as well as the modification of existing drugs, holds promise for the development of more efficient anti-tuberculosis medications.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiaomin Wang
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People’s Hospital, Shenzhen, Guangdong, China
| | - Shuihua Lu
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People’s Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
4
|
Roth AT, Philips JA, Chandra P. The role of cholesterol and its oxidation products in tuberculosis pathogenesis. IMMUNOMETABOLISM (COBHAM, SURREY) 2024; 6:e00042. [PMID: 38693938 PMCID: PMC11060060 DOI: 10.1097/in9.0000000000000042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/15/2024] [Indexed: 05/03/2024]
Abstract
Mycobacterium tuberculosis causes tuberculosis (TB), one of the world's most deadly infections. Lipids play an important role in M. tuberculosis pathogenesis. M. tuberculosis grows intracellularly within lipid-laden macrophages and extracellularly within the cholesterol-rich caseum of necrotic granulomas and pulmonary cavities. Evolved from soil saprophytes that are able to metabolize cholesterol from organic matter in the environment, M. tuberculosis inherited an extensive and highly conserved machinery to metabolize cholesterol. M. tuberculosis uses this machinery to degrade host cholesterol; the products of cholesterol degradation are incorporated into central carbon metabolism and used to generate cell envelope lipids, which play important roles in virulence. The host also modifies cholesterol by enzymatically oxidizing it to a variety of derivatives, collectively called oxysterols, which modulate cholesterol homeostasis and the immune response. Recently, we found that M. tuberculosis converts host cholesterol to an oxidized metabolite, cholestenone, that accumulates in the lungs of individuals with TB. M. tuberculosis encodes cholesterol-modifying enzymes, including a hydroxysteroid dehydrogenase, a putative cholesterol oxidase, and numerous cytochrome P450 monooxygenases. Here, we review what is known about cholesterol and its oxidation products in the pathogenesis of TB. We consider the possibility that the biological function of cholesterol metabolism by M. tuberculosis extends beyond a nutritional role.
Collapse
Affiliation(s)
- Andrew T. Roth
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Jennifer A. Philips
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Pallavi Chandra
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
5
|
Shang X, Maimaiti N, Fan J, Wang L, Wang Y, Sun H, Lv J, Zhang X, Wang J, Ma X. Triggering Receptor Expressed on Myeloid Cells 2 Mediates the Involvement of M2-Type Macrophages in Pulmonary Tuberculosis Infection. J Inflamm Res 2024; 17:1919-1928. [PMID: 38562656 PMCID: PMC10982454 DOI: 10.2147/jir.s435216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 03/14/2024] [Indexed: 04/04/2024] Open
Abstract
Background Macrophage play a significant work in the development of tuberculosis. This study aims to investigate the relationship between TREM2 and macrophage polarization, as well as the related cytokines. Methods This study involved 43 pulmonary tuberculosis patients and 37 healthy controls. Enzyme-linked immunosorbent assay (ELISA) was used to detect the expression levels of M1/M2 macrophage-related cytokines IL-10 and IL-12 in the peripheral blood of pulmonary tuberculosis patients. The relative mRNA expression levels of TREM2, IL-10 and IL-12 were detected using quantitative real-time PCR (qRT-PCR). Additionally, Spearman rank correlation analysis was used to preliminarily assess the correlation between TREM2 and M1 / M2 macrophages. Hematoxylin-eosin (HE) staining was performed to observe the pathological manifestations of pulmonary tuberculosis lesions. Immunohistochemical (IHC) staining was used to observe the localization of the macrophage-specific molecule CD68, the M1 specific molecule iNOS, the M2 specific molecule CD163, and TREM2. Results The lesions of pulmonary tuberculosis patients showed Langhans multinucleated macrophages and tuberculous granulomas. The ELISA results indicated that the expression levels of IL-10 and IL-12 were significantly increased in peripheral blood of pulmonary tuberculosis patients. Additionally, the relative mRNA expression levels of TREM2, IL-10 and IL-12 were also significantly higher in the pulmonary tuberculosis group. Furthermore, a positive correlation was observed between TREM2 and IL-10, which are secreted by M2 macrophages. IHC revealed significant positivity of TREM2 and macrophage-related markers in tuberculous granuloma. Specifically, TREM2 and M2 macrophage marker CD163 were significantly expressed in the cytoplasm and membrane of Langhans multinucleated macrophages. Conclusion The role of macrophage polarization in pulmonary tuberculosis is significant, and further investigation is needed to understand relationship between TREM2 and M2 macrophages.
Collapse
Affiliation(s)
- Xiaoqian Shang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang, 830011, People's Republic of China
| | - Naifeisha Maimaiti
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang, 830011, People's Republic of China
| | - Jiahui Fan
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang, 830011, People's Republic of China
| | - Liang Wang
- The Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830011, People's Republic of China
| | - Yuanyuan Wang
- First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830011, People's Republic of China
| | - Hu Sun
- First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830011, People's Republic of China
| | - Jie Lv
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang, 830011, People's Republic of China
| | - Xiufeng Zhang
- Department of Respiratory Medicine, Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570100, People's Republic of China
| | - Jing Wang
- Department of Respiratory Medicine, Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570100, People's Republic of China
| | - Xiumin Ma
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang, 830011, People's Republic of China
| |
Collapse
|
6
|
Zhou S, Zhang D, Li D, Wang H, Ding C, Song J, Huang W, Xia X, Zhou Z, Han S, Jin Z, Yan B, Gonzales J, Via LE, Zhang L, Wang D. Pathogenic mycobacterium upregulates cholesterol 25-hydroxylase to promote granuloma development via foam cell formation. iScience 2024; 27:109204. [PMID: 38420591 PMCID: PMC10901098 DOI: 10.1016/j.isci.2024.109204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/20/2023] [Accepted: 02/07/2024] [Indexed: 03/02/2024] Open
Abstract
Pathogenic mycobacteria orchestrate the complex cell populations known as granuloma that is the hallmark of tuberculosis. Foam cells, a lipid-rich cell-type, are considered critical for granuloma formation; however, the causative factor in foam cell formation remains unclear. Atherosclerosis is a chronic inflammatory disease characterized by the abundant accumulation of lipid-laden-macrophage-derived foam cells during which cholesterol 25-hydroxylase (CH25H) is crucial in foam cell formation. Here, we show that M. marinum (Mm), a relative of M. tuberculosis, induces foam cell formation, leading to granuloma development following CH25H upregulation. Moreover, the Mm-driven increase in CH25H expression is associated with the presence of phthiocerol dimycocerosate, a determinant for Mm virulence and integrity. CH25H-null mice showed decreased foam cell formation and attenuated pathology. Atorvastatin, a recommended first-line lipid-lowering drug, promoted the elimination of M. marinum and concomitantly reduced CH25H production. These results define a previously unknown role for CH25H in controlling macrophage-derived foam cell formation and Tuberculosis pathology.
Collapse
Affiliation(s)
- Shuang Zhou
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University; Institute of Infection and Inflammation, China Three Gorges University; College of Basic Medical Sciences, China Three Gorges University, Yichang 443002, P.R. China
| | - Ding Zhang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University; Institute of Infection and Inflammation, China Three Gorges University; College of Basic Medical Sciences, China Three Gorges University, Yichang 443002, P.R. China
| | - Dan Li
- Department of Tuberculosis, The Third People’s Hospital of Yichang, Yichang 443003, P.R. China
| | - Hankun Wang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University; Institute of Infection and Inflammation, China Three Gorges University; College of Basic Medical Sciences, China Three Gorges University, Yichang 443002, P.R. China
| | - Cairong Ding
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University; Institute of Infection and Inflammation, China Three Gorges University; College of Basic Medical Sciences, China Three Gorges University, Yichang 443002, P.R. China
| | - Jingrui Song
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University; Institute of Infection and Inflammation, China Three Gorges University; College of Basic Medical Sciences, China Three Gorges University, Yichang 443002, P.R. China
| | - Weifeng Huang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University; Institute of Infection and Inflammation, China Three Gorges University; College of Basic Medical Sciences, China Three Gorges University, Yichang 443002, P.R. China
| | - Xuan Xia
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University; Institute of Infection and Inflammation, China Three Gorges University; College of Basic Medical Sciences, China Three Gorges University, Yichang 443002, P.R. China
| | - Ziwei Zhou
- State Key Laboratory of Genetic Engineering, Institute of Genetics, MOE Engineering Research Center of Gene Technology, School of Life Science, Fudan University, Shanghai 200433, P.R. China
| | - Shanshan Han
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University; Institute of Infection and Inflammation, China Three Gorges University; College of Basic Medical Sciences, China Three Gorges University, Yichang 443002, P.R. China
| | - Zhu Jin
- Department of Tuberculosis, The Third People’s Hospital of Yichang, Yichang 443003, P.R. China
| | - Bo Yan
- Shanghai Public Health Clinical Center, Fudan University, Shanghai China
| | - Jacqueline Gonzales
- Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20982, USA
| | - Laura E. Via
- Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20982, USA
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Lu Zhang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, MOE Engineering Research Center of Gene Technology, School of Life Science, Fudan University, Shanghai 200433, P.R. China
| | - Decheng Wang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University; Institute of Infection and Inflammation, China Three Gorges University; College of Basic Medical Sciences, China Three Gorges University, Yichang 443002, P.R. China
| |
Collapse
|
7
|
Zhao L, Fan K, Sun X, Li W, Qin F, Shi L, Gao F, Zheng C. Host-directed therapy against mycobacterium tuberculosis infections with diabetes mellitus. Front Immunol 2024; 14:1305325. [PMID: 38259491 PMCID: PMC10800548 DOI: 10.3389/fimmu.2023.1305325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024] Open
Abstract
Tuberculosis (TB) is caused by the bacterial pathogen Mycobacterium tuberculosis (MTB) and is one of the principal reasons for mortality and morbidity worldwide. Currently, recommended anti-tuberculosis drugs include isoniazid, rifampicin, ethambutol, and pyrazinamide. TB treatment is lengthy and inflicted with severe side-effects, including reduced patient compliance with treatment and promotion of drug-resistant strains. TB is also prone to other concomitant diseases such as diabetes and HIV. These drug-resistant and complex co-morbid characteristics increase the complexity of treating MTB. Host-directed therapy (HDT), which effectively eliminates MTB and minimizes inflammatory tissue damage, primarily by targeting the immune system, is currently an attractive complementary approach. The drugs used for HDT are repositioned drugs in actual clinical practice with relative safety and efficacy assurance. HDT is a potentially effective therapeutic intervention for the treatment of MTB and diabetic MTB, and can compensate for the shortcomings of current TB therapies, including the reduction of drug resistance and modulation of immune response. Here, we summarize the state-of-the-art roles and mechanisms of HDT in immune modulation and treatment of MTB, with a special focus on the role of HDT in diabetic MTB, to emphasize the potential of HDT in controlling MTB infection.
Collapse
Affiliation(s)
- Li Zhao
- Department of Tuberculosis III, Wuhan Pulmonary Hospital, Wuhan, Hubei, China
| | - Ke Fan
- Department of Tuberculosis III, Wuhan Pulmonary Hospital, Wuhan, Hubei, China
| | - Xuezhi Sun
- Department of Tuberculosis III, Wuhan Pulmonary Hospital, Wuhan, Hubei, China
| | - Wei Li
- Department of Tuberculosis III, Wuhan Pulmonary Hospital, Wuhan, Hubei, China
| | - Fenfen Qin
- Department of Tuberculosis III, Wuhan Pulmonary Hospital, Wuhan, Hubei, China
| | - Liwen Shi
- Department of Tuberculosis III, Wuhan Pulmonary Hospital, Wuhan, Hubei, China
| | - Feng Gao
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chunlan Zheng
- Department of Tuberculosis III, Wuhan Pulmonary Hospital, Wuhan, Hubei, China
| |
Collapse
|
8
|
Ray JL, Postma B, Kendall RL, Ngo MD, Foo CX, Saunders B, Ronacher K, Gowdy KM, Holian A. Estrogen contributes to sex differences in M2a macrophages during multi-walled carbon nanotube-induced respiratory inflammation. FASEB J 2024; 38:e23350. [PMID: 38071600 PMCID: PMC10752389 DOI: 10.1096/fj.202301571rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/16/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023]
Abstract
Lung diseases characterized by type 2 inflammation are reported to occur with a female bias in prevalence/severity in both humans and mice. This includes previous work examining multi-walled carbon nanotube (MWCNT)-induced eosinophilic inflammation, in which a more exaggerated M2a phenotype was observed in female alveolar macrophages (AMs) compared to males. The mechanisms responsible for this sex difference in AM phenotype are still unclear, but estrogen receptor (ER) signaling is a likely contributor. Accordingly, male AMs downregulated ERα expression after MWCNT exposure while female AMs did not. Thus, ER antagonist Fulvestrant was administered prior to MWCNT instillation. In females, Fulvestrant significantly attenuated MWCNT-induced M2a gene expression and eosinophilia without affecting IL-33. In males, Fulvestrant did not affect eosinophil recruitment but reduced IL-33 and M2a genes compared to controls. Regulation of cholesterol efflux and oxysterol synthesis is a potential mechanism through which estrogen promotes the M2a phenotype. Levels of oxysterols 25-OHC and 7α,25-OHC were higher in the airways of MWCNT-exposed males compared to MWCNT-females, which corresponds with the lower IL-1β production and greater macrophage recruitment previously observed in males. Sex-based changes in cholesterol efflux transporters Abca1 and Abcg1 were also observed after MWCNT exposure with or without Fulvestrant. In vitro culture with estrogen decreased cellular cholesterol and increased the M2a response in female AMs, but did not affect cholesterol content in male AMs and reduced M2a polarization. These results reveal the modulation of (oxy)sterols as a potential mechanism through which estrogen signaling may regulate AM phenotype resulting in sex differences in downstream respiratory inflammation.
Collapse
Affiliation(s)
- Jessica L. Ray
- Center for Environmental Health Sciences, University of Montana, Missoula, MT, USA
| | - Britten Postma
- Center for Environmental Health Sciences, University of Montana, Missoula, MT, USA
| | - Rebekah L. Kendall
- Center for Environmental Health Sciences, University of Montana, Missoula, MT, USA
| | - Minh Dao Ngo
- Mater Research Institute, Translational Research Institute, The University of Queensland, Brisbane, Australia
| | - Cheng Xiang Foo
- Mater Research Institute, Translational Research Institute, The University of Queensland, Brisbane, Australia
| | - Brett Saunders
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, Ohio, USA
| | - Katharina Ronacher
- Mater Research Institute, Translational Research Institute, The University of Queensland, Brisbane, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Australia
| | - Kymberly M. Gowdy
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, Ohio, USA
| | - Andrij Holian
- Center for Environmental Health Sciences, University of Montana, Missoula, MT, USA
| |
Collapse
|
9
|
Foo CX, Fessler MB, Ronacher K. Oxysterols in Infectious Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1440:125-147. [PMID: 38036878 DOI: 10.1007/978-3-031-43883-7_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Oxysterols have emerged as important bioactive lipids in the immune response to infectious diseases. This chapter discusses our current knowledge of oxysterols and their receptors in bacterial and viral infections of the respiratory and gastrointestinal tracts. Oxysterols are produced in response to infections and have multiple roles including chemotaxis of immune cells to the site of infection and regulation of inflammation. Some oxysterols have been shown to possess antiviral or antibacterial activity.Lastly, we delve into the emerging mechanisms of action of oxysterols. Oxysterols can enhance host cell resistance via reduction of membrane accessible cholesterol, modulate membrane immune signalling, and impact inflammasome activation and efferocytosis.
Collapse
Affiliation(s)
- Cheng X Foo
- Mater Research Institute - The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| | - Michael B Fessler
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Katharina Ronacher
- Mater Research Institute - The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia.
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
10
|
Fessler MB, Madenspacher JH, Baker PJ, Hilligan KL, Bohrer AC, Castro E, Meacham J, Chen SH, Johnson RF, McDonald JG, Martin NP, Tucker CJ, Mahapatra D, Cesta M, Mayer-Barber KD. Endogenous and Therapeutic 25-Hydroxycholesterols May Worsen Early SARS-CoV-2 Pathogenesis in Mice. Am J Respir Cell Mol Biol 2023; 69:638-648. [PMID: 37578898 DOI: 10.1165/rcmb.2023-0007oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 08/14/2023] [Indexed: 08/16/2023] Open
Abstract
Oxysterols (i.e., oxidized cholesterol species) have complex roles in biology. 25-Hydroxycholesterol (25HC), a product of the activity of cholesterol-25-hydroxylase (CH25H) on cholesterol, has recently been shown to be broadly antiviral, suggesting therapeutic potential against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, 25HC can also amplify inflammation and be converted by CYP7B1 (cytochrome P450 family 7 subfamily B member 1) to 7α,25-dihydroxycholesterol, a lipid with chemoattractant activity, via the G protein-coupled receptor EBI2 (Epstein-Barr virus-induced gene 2)/GPR183 (G protein-coupled receptor 183). Here, using in vitro studies and two different murine models of SARS-CoV-2 infection, we investigate the effects of these two oxysterols on SARS-CoV-2 pneumonia. We show that although 25HC and enantiomeric-25HC are antiviral in vitro against human endemic coronavirus-229E, they did not inhibit SARS-CoV-2; nor did supplemental 25HC reduce pulmonary SARS-CoV-2 titers in the K18-human ACE2 (angiotensin-converting enzyme 2) mouse model in vivo. Treatment with 25HC also did not alter immune cell influx into the airway, airspace cytokines, lung pathology, weight loss, symptoms, or survival but was associated with increased airspace albumin, an indicator of microvascular injury, and increased plasma proinflammatory cytokines. Conversely, mice treated with the EBI2/GPR183 inhibitor NIBR189 displayed a modest increase in lung viral load only at late time points but no change in weight loss. Consistent with these findings, although Ch25h and 25HC were upregulated in the lungs of SARS-CoV-2-infected wild-type mice, lung viral titers and weight loss in Ch25h-/- and Gpr183-/- mice infected with the β variant were similar to those in control animals. Taken together, endogenous 25HCs do not significantly regulate early SARS-CoV-2 replication or pathogenesis, and supplemental 25HC may have proinjury rather than therapeutic effects in SARS-CoV-2 pneumonia.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Reed F Johnson
- SARS-CoV-2 Virology Core, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Jeffrey G McDonald
- Department of Molecular Genetics and
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, Texas; and
| | | | - Charles J Tucker
- Fluorescence Microscopy and Imaging Center, Signal Transduction Laboratory, and
| | | | - Mark Cesta
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | | |
Collapse
|
11
|
Foo CX, Bartlett S, Chew KY, Ngo MD, Bielefeldt-Ohmann H, Arachchige BJ, Matthews B, Reed S, Wang R, Smith C, Sweet MJ, Burr L, Bisht K, Shatunova S, Sinclair JE, Parry R, Yang Y, Lévesque JP, Khromykh A, Rosenkilde MM, Short KR, Ronacher K. GPR183 antagonism reduces macrophage infiltration in influenza and SARS-CoV-2 infection. Eur Respir J 2023; 61:2201306. [PMID: 36396144 PMCID: PMC9686317 DOI: 10.1183/13993003.01306-2022] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/20/2022] [Indexed: 11/19/2022]
Abstract
RATIONALE Severe viral respiratory infections are often characterised by extensive myeloid cell infiltration and activation and persistent lung tissue injury. However, the immunological mechanisms driving excessive inflammation in the lung remain poorly understood. OBJECTIVES To identify the mechanisms that drive immune cell recruitment in the lung during viral respiratory infections and identify novel drug targets to reduce inflammation and disease severity. METHODS Preclinical murine models of influenza A virus and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. RESULTS Oxidised cholesterols and the oxysterol-sensing receptor GPR183 were identified as drivers of monocyte/macrophage infiltration to the lung during influenza A virus (IAV) and SARS-CoV-2 infection. Both IAV and SARS-CoV-2 infection upregulated the enzymes cholesterol 25-hydroxylase (CH25H) and cytochrome P450 family 7 subfamily member B1 (CYP7B1) in the lung, resulting in local production of the oxidised cholesterols 25-hydroxycholesterol (25-OHC) and 7α,25-dihydroxycholesterol (7α,25-OHC). Loss-of-function mutation of Gpr183 or treatment with a GPR183 antagonist reduced macrophage infiltration and inflammatory cytokine production in the lungs of IAV- or SARS-CoV-2-infected mice. The GPR183 antagonist significantly attenuated the severity of SARS-CoV-2 infection and viral loads. Analysis of single-cell RNA-sequencing data on bronchoalveolar lavage samples from healthy controls and COVID-19 patients with moderate and severe disease revealed that CH25H, CYP7B1 and GPR183 are significantly upregulated in macrophages during COVID-19. CONCLUSION This study demonstrates that oxysterols drive inflammation in the lung via GPR183 and provides the first preclinical evidence for the therapeutic benefit of targeting GPR183 during severe viral respiratory infections.
Collapse
Affiliation(s)
- Cheng Xiang Foo
- Mater Research Institute, Translational Research Institute, The University of Queensland, Brisbane, Australia
- Contributed equally to this work
| | - Stacey Bartlett
- Mater Research Institute, Translational Research Institute, The University of Queensland, Brisbane, Australia
- Contributed equally to this work
| | - Keng Yih Chew
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Minh Dao Ngo
- Mater Research Institute, Translational Research Institute, The University of Queensland, Brisbane, Australia
| | - Helle Bielefeldt-Ohmann
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Australia
| | | | - Benjamin Matthews
- Centre for Clinical Research, The University of Queensland, Brisbane, Australia
| | - Sarah Reed
- Centre for Clinical Research, The University of Queensland, Brisbane, Australia
| | - Ran Wang
- Mater Research Institute, Translational Research Institute, The University of Queensland, Brisbane, Australia
| | - Christian Smith
- Mater Research Institute, Translational Research Institute, The University of Queensland, Brisbane, Australia
| | - Matthew J Sweet
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Australia
- Institute for Molecular Bioscience (IMB), IMB Centre for Inflammation and Disease Research, The University of Queensland, Brisbane, Australia
| | - Lucy Burr
- Dept of Respiratory Medicine, Mater Adult Hospital, Brisbane, Australia
| | - Kavita Bisht
- Mater Research Institute, Translational Research Institute, The University of Queensland, Brisbane, Australia
| | - Svetlana Shatunova
- Mater Research Institute, Translational Research Institute, The University of Queensland, Brisbane, Australia
| | - Jane E Sinclair
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Rhys Parry
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Yuanhao Yang
- Mater Research Institute, Translational Research Institute, The University of Queensland, Brisbane, Australia
| | - Jean-Pierre Lévesque
- Mater Research Institute, Translational Research Institute, The University of Queensland, Brisbane, Australia
| | - Alexander Khromykh
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Australia
| | | | - Kirsty R Short
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Australia
| | - Katharina Ronacher
- Mater Research Institute, Translational Research Institute, The University of Queensland, Brisbane, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Australia
| |
Collapse
|
12
|
Conlon TM, Yildirim AÖ. Oxysterol metabolism dictates macrophage influx during SARS-CoV-2 infection. Eur Respir J 2023; 61:13993003.02417-2022. [PMID: 36858446 DOI: 10.1183/13993003.02417-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/07/2023] [Indexed: 03/03/2023]
Affiliation(s)
- Thomas M Conlon
- Institute of Lung Health and Immunity (LHI), Comprehensive Pneumology Center (CPC), Helmholtz Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Ali Önder Yildirim
- Institute of Lung Health and Immunity (LHI), Comprehensive Pneumology Center (CPC), Helmholtz Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
| |
Collapse
|
13
|
Fessler MB, Madenspacher J, Baker PJ, Hilligan KL, Castro E, Meacham J, Chen SH, Johnson RF, Martin NP, Tucker C, Mahapatra D, Cesta M, Mayer-Barber KD. Evaluation of endogenous and therapeutic 25-hydroxycholesterols in murine models of pulmonary SARS-CoV-2 infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.09.12.507671. [PMID: 36263064 PMCID: PMC9580384 DOI: 10.1101/2022.09.12.507671] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Oxysterols (i.e., oxidized cholesterol species) have complex roles in biology. 25-hydroxycholesterol (25HC), a product of activity of cholesterol-25-hydroxylase (CH25H) upon cholesterol, has recently been shown to be broadly antiviral, suggesting therapeutic potential against SARS-CoV-2. However, 25HC can also amplify inflammation and tissue injury and be converted by CYP7B1 to 7α,25HC, a lipid with chemoattractant activity via the G protein-coupled receptor, EBI2/GPR183. Here, using in vitro studies and two different murine models of SARS-CoV-2 infection, we investigate the effects of these two oxysterols on SARS-CoV-2 pneumonia. We show that while 25HC and enantiomeric-25HC are antiviral in vitro against human endemic coronavirus-229E, they did not inhibit SARS-CoV-2; nor did supplemental 25HC reduce pulmonary SARS-CoV-2 titers in the K18-human ACE2 mouse model in vivo. 25HC treatment also did not alter immune cell influx into the airway, airspace cytokines, lung pathology, weight loss, symptoms, or survival but was associated with increased airspace albumin, an indicator of microvascular injury, and increased plasma pro-inflammatory cytokines. Conversely, mice treated with the EBI2/GPR183 inhibitor NIBR189 displayed a modest increase in lung viral load only at late time points, but no change in weight loss. Consistent with these findings, although Ch25h was upregulated in the lungs of SARS-CoV-2-infected WT mice, lung viral titers and weight loss in Ch25h-/- and Gpr183-/- mice infected with the beta variant were similar to control animals. Taken together, endogenous 25-hydroxycholesterols do not significantly regulate early SARS-CoV-2 replication or pathogenesis and supplemental 25HC may have pro-injury rather than therapeutic effects in SARS-CoV-2 pneumonia.
Collapse
Affiliation(s)
- Michael B. Fessler
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709
| | - Jennifer Madenspacher
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709
| | - Paul J. Baker
- Inflammation & Innate Immunity Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Kerry L. Hilligan
- Immunobiology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Ehydel Castro
- Inflammation & Innate Immunity Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Julie Meacham
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709
| | - Shih-Heng Chen
- Viral Vector Core Facility, Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709
| | - Reed F. Johnson
- SARS-CoV-2 Virology Core, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Negin P. Martin
- Viral Vector Core Facility, Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709
| | - C.J. Tucker
- Fluorescence Microscopy and Imaging Center, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709
| | | | - Mark Cesta
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709
| | - Katrin D. Mayer-Barber
- Inflammation & Innate Immunity Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
14
|
Kim JS, Lim H, Seo JY, Kang KR, Yu SK, Kim CS, Kim DK, Kim HJ, Seo YS, Lee GJ, You JS, Oh JS. GPR183 Regulates 7α,25-Dihydroxycholesterol-Induced Oxiapoptophagy in L929 Mouse Fibroblast Cell. Molecules 2022; 27:4798. [PMID: 35956750 PMCID: PMC9369580 DOI: 10.3390/molecules27154798] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 11/16/2022] Open
Abstract
7α,25-dihydroxycholesterol (7α,25-DHC) is an oxysterol synthesized from 25-hydroxycholesterol by cytochrome P450 family 7 subfamily B member 1 (CYP7B1) and is a monooxygenase (oxysterol-7α-hydroxylase) expressed under inflammatory conditions in various cell types. In this study, we verified that 7α,25-DHC-induced oxiapoptophagy is mediated by apoptosis, oxidative stress, and autophagy in L929 mouse fibroblasts. MTT assays and live/dead cell staining revealed that cytotoxicity was increased by 7α,25-DHC in L929 cells. Consequentially, cells with condensed chromatin and altered morphology were enhanced in L929 cells incubated with 7α,25-DHC for 48 h. Furthermore, apoptotic population was increased by 7α,25-DHC exposure through the cascade activation of caspase-9, caspase-3, and poly (ADP-ribose) polymerase in the intrinsic pathway of apoptosis in these cells. 7α,25-DHC upregulated reactive oxygen species (ROS) in L929 cells. Expression of autophagy biomarkers, including beclin-1 and LC3, was significantly increased by 7α,25-DHC treatment in L929 cells. 7α,25-DHC inhibits the phosphorylation of Akt associated with autophagy and increases p53 expression in L929 cells. In addition, inhibition of G-protein-coupled receptor 183 (GPR183), a receptor of 7α,25-DHC, using GPR183 specific antagonist NIBR189 suppressed 7α,25-DHC-induced apoptosis, ROS production, and autophagy in L929 cells. Collectively, GPR183 regulates 7α,25-DHC-induced oxiapoptophagy in L929 cells.
Collapse
Affiliation(s)
- Jae-Sung Kim
- Institute of Dental Science, School of Dentistry, Chosun University, Gwangju 61452, Korea; (J.-S.K.); (H.L.); (J.-Y.S.); (K.-R.K.); (S.-K.Y.); (C.S.K.); (D.K.K.); (H.-J.K.)
| | - HyangI Lim
- Institute of Dental Science, School of Dentistry, Chosun University, Gwangju 61452, Korea; (J.-S.K.); (H.L.); (J.-Y.S.); (K.-R.K.); (S.-K.Y.); (C.S.K.); (D.K.K.); (H.-J.K.)
| | - Jeong-Yeon Seo
- Institute of Dental Science, School of Dentistry, Chosun University, Gwangju 61452, Korea; (J.-S.K.); (H.L.); (J.-Y.S.); (K.-R.K.); (S.-K.Y.); (C.S.K.); (D.K.K.); (H.-J.K.)
| | - Kyeong-Rok Kang
- Institute of Dental Science, School of Dentistry, Chosun University, Gwangju 61452, Korea; (J.-S.K.); (H.L.); (J.-Y.S.); (K.-R.K.); (S.-K.Y.); (C.S.K.); (D.K.K.); (H.-J.K.)
| | - Sun-Kyoung Yu
- Institute of Dental Science, School of Dentistry, Chosun University, Gwangju 61452, Korea; (J.-S.K.); (H.L.); (J.-Y.S.); (K.-R.K.); (S.-K.Y.); (C.S.K.); (D.K.K.); (H.-J.K.)
| | - Chun Sung Kim
- Institute of Dental Science, School of Dentistry, Chosun University, Gwangju 61452, Korea; (J.-S.K.); (H.L.); (J.-Y.S.); (K.-R.K.); (S.-K.Y.); (C.S.K.); (D.K.K.); (H.-J.K.)
| | - Do Kyung Kim
- Institute of Dental Science, School of Dentistry, Chosun University, Gwangju 61452, Korea; (J.-S.K.); (H.L.); (J.-Y.S.); (K.-R.K.); (S.-K.Y.); (C.S.K.); (D.K.K.); (H.-J.K.)
| | - Heung-Joong Kim
- Institute of Dental Science, School of Dentistry, Chosun University, Gwangju 61452, Korea; (J.-S.K.); (H.L.); (J.-Y.S.); (K.-R.K.); (S.-K.Y.); (C.S.K.); (D.K.K.); (H.-J.K.)
| | - Yo-Seob Seo
- Department of Oral and Maxillofacial Radiology, School of Dentistry, Chosun University, Gwangju 61452, Korea;
| | - Gyeong-Je Lee
- Department of Prosthodontics, School of Dentistry, Chosun University, Gwangju 61452, Korea;
| | - Jae-Seek You
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Chosun University, Gwangju 61452, Korea;
| | - Ji-Su Oh
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Chosun University, Gwangju 61452, Korea;
| |
Collapse
|
15
|
Al-Sayyar A, Hulme KD, Thibaut R, Bayry J, Sheedy FJ, Short KR, Alzaid F. Respiratory Tract Infections in Diabetes - Lessons From Tuberculosis and Influenza to Guide Understanding of COVID-19 Severity. Front Endocrinol (Lausanne) 2022; 13:919223. [PMID: 35957811 PMCID: PMC9363013 DOI: 10.3389/fendo.2022.919223] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
Patients with type-2 diabetes (T2D) are more likely to develop severe respiratory tract infections. Such susceptibility has gained increasing attention since the global spread of Coronavirus Disease 2019 (COVID-19) in early 2020. The earliest reports marked T2D as an important risk-factor for severe forms of disease and mortality across all adult age groups. Several mechanisms have been proposed for this increased susceptibility, including pre-existing immune dysfunction, a lack of metabolic flexibility due to insulin resistance, inadequate dietary quality or adverse interactions with antidiabetic treatments or common comorbidities. Some mechanisms that predispose patients with T2D to severe COVID-19 may indeed be shared with other previously characterized respiratory tract infections. Accordingly, in this review, we give an overview of response to Influenza A virus and to Mycobacterium tuberculosis (Mtb) infections. Similar risk factors and mechanisms are discussed between the two conditions and in the case of COVID-19. Lastly, we address emerging approaches to address research needs in infection and metabolic disease, and perspectives with regards to deployment or repositioning of metabolically active therapeutics.
Collapse
Affiliation(s)
| | - Katina D. Hulme
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Ronan Thibaut
- Institut Necker Enfants Malades (INEM), Institut National de la Santé et de la Recherche Médicale (INSERM) U1151/CNRS UMRS8253, Immunity and Metabolism of Diabetes (IMMEDIAB), Université de Paris Cité, Paris, France
| | - Jagadeesh Bayry
- Department of Biological Sciences & Engineering, Indian Institute of Technology Palakkad, Palakkad, India
| | | | - Kirsty R. Short
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, QLD, Australia
| | - Fawaz Alzaid
- Dasman Diabetes Institute, Dasman, Kuwait
- Institut Necker Enfants Malades (INEM), Institut National de la Santé et de la Recherche Médicale (INSERM) U1151/CNRS UMRS8253, Immunity and Metabolism of Diabetes (IMMEDIAB), Université de Paris Cité, Paris, France
| |
Collapse
|
16
|
Rapid GPR183-mediated recruitment of eosinophils to the lung after Mycobacterium tuberculosis infection. Cell Rep 2022; 40:111144. [PMID: 35905725 PMCID: PMC9460869 DOI: 10.1016/j.celrep.2022.111144] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/19/2022] [Accepted: 07/06/2022] [Indexed: 12/15/2022] Open
Abstract
Influx of eosinophils into the lungs is typically associated with type II responses during allergy and fungal and parasitic infections. However, we previously reported that eosinophils accumulate in lung lesions during type I inflammatory responses to Mycobacterium tuberculosis (Mtb) in humans, macaques, and mice, in which they support host resistance. Here we show eosinophils migrate into the lungs of macaques and mice as early as one week after Mtb exposure. In mice this influx is CCR3 independent and instead requires cell-intrinsic expression of the oxysterol receptor GPR183, which is highly expressed on human and macaque eosinophils. Murine eosinophils interact directly with bacilli-laden alveolar macrophages, which upregulate the oxysterol-synthesizing enzyme Ch25h, and eosinophil recruitment is impaired in Ch25h-deficient mice. Our findings show that eosinophils are among the earliest cells from circulation to sense and respond to Mtb infection of alveolar macrophages and reveal a role for GPR183 in the migration of eosinophils into lung tissue. Eosinophils are usually associated with allergy or type II responses. Here, Bohrer et al. show that eosinophils are rapidly recruited to the lungs after respiratory infection with the intracellular pathogen Mycobacterium tuberculosis through the oxysterol sensor GPR183.
Collapse
|
17
|
de Freitas FA, Levy D, Reichert CO, Cunha-Neto E, Kalil J, Bydlowski SP. Effects of Oxysterols on Immune Cells and Related Diseases. Cells 2022; 11:cells11081251. [PMID: 35455931 PMCID: PMC9031443 DOI: 10.3390/cells11081251] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/01/2022] [Accepted: 04/05/2022] [Indexed: 12/13/2022] Open
Abstract
Oxysterols are the products of cholesterol oxidation. They have a wide range of effects on several cells, organs, and systems in the body. Oxysterols also have an influence on the physiology of the immune system, from immune cell maturation and migration to innate and humoral immune responses. In this regard, oxysterols have been involved in several diseases that have an immune component, from autoimmune and neurodegenerative diseases to inflammatory diseases, atherosclerosis, and cancer. Here, we review data on the participation of oxysterols, mainly 25-hydroxycholesterol and 7α,25-dihydroxycholesterol, in the immune system and related diseases. The effects of these oxysterols and main oxysterol receptors, LXR and EBI2, in cells of the immune system (B cells, T cells, macrophages, dendritic cells, oligodendrocytes, and astrocytes), and in immune-related diseases, such as neurodegenerative diseases, intestinal diseases, cancer, respiratory diseases, and atherosclerosis, are discussed.
Collapse
Affiliation(s)
- Fábio Alessandro de Freitas
- Lipids, Oxidation and Cell Biology Team, Laboratory of Immunology (LIM19), Heart Institute (InCor), Faculdade de Medicina, Universidade de São Paulo, Sao Paulo 05403-900, SP, Brazil; (F.A.d.F.); (D.L.); (C.O.R.)
| | - Débora Levy
- Lipids, Oxidation and Cell Biology Team, Laboratory of Immunology (LIM19), Heart Institute (InCor), Faculdade de Medicina, Universidade de São Paulo, Sao Paulo 05403-900, SP, Brazil; (F.A.d.F.); (D.L.); (C.O.R.)
| | - Cadiele Oliana Reichert
- Lipids, Oxidation and Cell Biology Team, Laboratory of Immunology (LIM19), Heart Institute (InCor), Faculdade de Medicina, Universidade de São Paulo, Sao Paulo 05403-900, SP, Brazil; (F.A.d.F.); (D.L.); (C.O.R.)
| | - Edecio Cunha-Neto
- Laboratory of Clinical Immunology and Allergy (LIM60), Heart Institute (InCor), Faculdade de Medicina, Universidade de São Paulo, Sao Paulo 05403-900, SP, Brazil;
- National Institute of Science and Technology for Investigation in Immunology-III/INCT, Sao Paulo 05403-000, SP, Brazil;
| | - Jorge Kalil
- National Institute of Science and Technology for Investigation in Immunology-III/INCT, Sao Paulo 05403-000, SP, Brazil;
- Laboratory of Immunology (LIM19), Heart Institute (InCor), Faculdade de Medicina, Universidade de São Paulo, Sao Paulo 05403-900, SP, Brazil
| | - Sérgio Paulo Bydlowski
- Lipids, Oxidation and Cell Biology Team, Laboratory of Immunology (LIM19), Heart Institute (InCor), Faculdade de Medicina, Universidade de São Paulo, Sao Paulo 05403-900, SP, Brazil; (F.A.d.F.); (D.L.); (C.O.R.)
- National Institute of Science and Technology in Regenerative Medicine (INCT-Regenera), CNPq, Rio de Janeiro 21941-902, RJ, Brazil
- Correspondence:
| |
Collapse
|