1
|
Serghiou IR, Webber MA, Hall LJ. An update on the current understanding of the infant skin microbiome and research challenges. Curr Opin Microbiol 2023; 75:102364. [PMID: 37586254 DOI: 10.1016/j.mib.2023.102364] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/20/2023] [Accepted: 07/20/2023] [Indexed: 08/18/2023]
Abstract
Multiple factors contribute to establishment of skin microbial communities in early life, with perturbations in these ecosystems impacting health. This review provides an update on methods used to profile the skin microbiome and how this is helping enhance our understanding of infant skin microbial communities, including factors that influence composition and disease risk. We also provide insights into new interventional studies and treatments in this area. However, it is apparent that there are still research bottlenecks that include overreliance on high-income countries for skin microbiome 'surveys', many studies still focus solely on the bacterial microbiota, and also technical issues related to the lower microbial biomass of skin sites. These points link to pertinent open-research questions, such as how the whole infant skin microbiome interacts and how microbial-associated functions shape infant skin health and immunity.
Collapse
Affiliation(s)
- Iliana R Serghiou
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk NR4 7UQ, UK; School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK.
| | - Mark A Webber
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk NR4 7UQ, UK; Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK.
| | - Lindsay J Hall
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk NR4 7UQ, UK; School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK; Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK; Intestinal Microbiome, School of Life Sciences, ZIEL - Institute for Food & Health, Technical University of Munich, Freising, Germany.
| |
Collapse
|
2
|
Cheng J, Wang Q, Hu Y, Mou T, Wang J, Wang L, Zhang Y, Wang T, Li Q. Understanding global changes of the mouse brain proteome after vaginal infection with HSV-2 using a label-free shotgun approach. Front Cell Infect Microbiol 2022; 12:942334. [PMID: 36061859 PMCID: PMC9433710 DOI: 10.3389/fcimb.2022.942334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Herpes simplex virus type 2 (HSV-2) is a common human pathogen that establishes lifelong latency in neurons of the nervous system. The number of severe central nervous system infections caused by the virus has increased recently. However, the pathogenesis of HSV-2 infection in the nervous system is not fully understood. Here, we demonstrated global proteomic changes in the brain tissue in BALB/c mice vaginally infected with HSV-2. Data are available via ProteomeXchange with identifier PXD034186. A total of 249 differentially expressed proteins were identified in infected brain tissue. The GO and KEGG enrichment analysis of these proteins indicated that they were mainly involved in the regulation of synapse formation and synaptic excitability. In addition, genes affecting autophagy, the development of other neurodegenerative diseases, and signaling pathways relevant to other neurologic diseases were identified. Additional experiments, comparing the brain tissue of asymptomatic and symptomatic mice showed a differential expression of proteins involved in synapse formation and synaptic transmission. Others were involved in autophagy, addiction, and signaling pathways of other neurologic diseases. These results suggest that changes in synaptic structure and function, as well as autophagy, may be related to the development of neurologic abnormalities that follow HSV-2 infection. We also identified a protein GluN2A encoded by Grin2a was continuously expressed at high levels after infection. We propose that GluN2A may be a key molecule in the pathogenesis of HSV-2-induced neurologic diseases.
Collapse
Affiliation(s)
- Jishuai Cheng
- Animal Zoology Department, Institute of Neuroscience, Kunming Medical University, Kunming, China
- Yunnan Key Laboratory of Vaccine Research and Development for Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medicine Sciences and Peking Union Medical College, Kunming, China
| | - Qingzhen Wang
- Animal Zoology Department, Institute of Neuroscience, Kunming Medical University, Kunming, China
| | - Yiwen Hu
- Animal Zoology Department, Institute of Neuroscience, Kunming Medical University, Kunming, China
| | - Tangwei Mou
- Yunnan Key Laboratory of Vaccine Research and Development for Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medicine Sciences and Peking Union Medical College, Kunming, China
| | - Jianbin Wang
- Yunnan Key Laboratory of Vaccine Research and Development for Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medicine Sciences and Peking Union Medical College, Kunming, China
| | - Lichun Wang
- Yunnan Key Laboratory of Vaccine Research and Development for Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medicine Sciences and Peking Union Medical College, Kunming, China
| | - Ying Zhang
- Yunnan Key Laboratory of Vaccine Research and Development for Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medicine Sciences and Peking Union Medical College, Kunming, China
| | - Tinghua Wang
- Animal Zoology Department, Institute of Neuroscience, Kunming Medical University, Kunming, China
| | - Qihan Li
- Yunnan Key Laboratory of Vaccine Research and Development for Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medicine Sciences and Peking Union Medical College, Kunming, China
| |
Collapse
|