1
|
O'Ferrall AM, Musaya J, Stothard JR, Roberts AP. Aligning antimicrobial resistance surveillance with schistosomiasis research: an interlinked One Health approach. Trans R Soc Trop Med Hyg 2024; 118:498-504. [PMID: 38842743 PMCID: PMC11299544 DOI: 10.1093/trstmh/trae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 04/02/2024] [Accepted: 05/08/2024] [Indexed: 06/07/2024] Open
Abstract
One Health surveillance involves the analysis of human, animal and environmental samples, recognising their interconnectedness in health systems. Such considerations are crucial to investigate the transmission of many pathogens, including drug-resistant bacteria and parasites. The highest rates of antimicrobial resistance (AMR)-associated deaths are observed in sub-Saharan Africa, where concurrently the waterborne parasitic disease schistosomiasis can be highly endemic in both humans and animals. Although there is growing acknowledgment of significant interactions between bacteria and parasites, knowledge of relationships between schistosomes, microbes and AMR remains inadequate. In addition, newly emergent research has revealed the previously underappreciated roles of animals and the environment in both AMR and schistosomiasis transmission. We consider shared environmental drivers and colonisation linkage in this narrative review, with a focus on extended-spectrum beta-lactamase-mediated resistance among bacteria from the Enterobacteriaceae family, which is exceedingly prevalent and responsible for a high burden of AMR-associated deaths. Then we examine novel findings from Malawi, where the landscapes of AMR and schistosomiasis are rapidly evolving, and make comparisons to other geographic areas with similar co-infection epidemiology. We identify several knowledge gaps that could be addressed in future research, including the need to characterise the impact of intestinal schistosomiasis and freshwater contact on intestinal AMR colonisation, before proposing a rationale for connecting AMR surveillance and schistosomiasis research within a One Health framework.
Collapse
Affiliation(s)
- Angus M O'Ferrall
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Janelisa Musaya
- Malawi Liverpool Wellcome Clinical Research Programme, Queen Elizabeth Central Hospital, College of Medicine, P.O. Box 30096 Chichiri, Blantyre 3, Malawi
| | - J Russell Stothard
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Adam P Roberts
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| |
Collapse
|
2
|
Embo-Ibouanga AW, Nguyen M, Joly JP, Coustets M, Augereau JM, Paloque L, Vanthuyne N, Bikanga R, Robert A, Benoit-Vical F, Audran G, Mellet P, Boissier J, Marque SRA. Peptide-Alkoxyamine Drugs: An Innovative Approach to Fight Schistosomiasis: "Digging Their Graves with Their Forks". Pathogens 2024; 13:482. [PMID: 38921780 PMCID: PMC11206678 DOI: 10.3390/pathogens13060482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/27/2024] Open
Abstract
The expansion of drug resistant parasites sheds a serious concern on several neglected parasitic diseases. Our recent results on cancer led us to envision the use of peptide-alkoxyamines as a highly selective and efficient new drug against schistosome adult worms, the etiological agents of schistosomiasis. Indeed, the peptide tag of the hybrid compounds can be hydrolyzed by worm's digestive enzymes to afford a highly labile alkoxyamine which homolyzes spontaneously and instantaneously into radicals-which are then used as a drug against Schistosome adult parasites. This approach is nicely summarized as digging their graves with their forks. Several hybrid peptide-alkoxyamines were prepared and clearly showed an activity: two of the tested compounds kill 50% of the parasites in two hours at a concentration of 100 µg/mL. Importantly, the peptide and alkoxyamine fragments that are unable to generate alkyl radicals display no activity. This strong evidence validates the proposed mechanism: a specific activation of the prodrugs by the parasite proteases leading to parasite death through in situ alkyl radical generation.
Collapse
Affiliation(s)
- Ange W. Embo-Ibouanga
- Aix-Marseille University, CNRS, UMR 7273, Case 551, Avenue Escadrille Normandie-Niemen, CEDEX 20, 13397 Marseille, France; (A.W.E.-I.); (J.-P.J.)
| | - Michel Nguyen
- Laboratoire de Chimie de Coordination (LCC-CNRS) and, New Antimalarial Molecules and Pharmacological Approaches (MAAP), Inserm ERL 1289, Université de Toulouse, CNRS, 31077 Toulouse, France; (M.N.); (M.C.); (J.-M.A.); (L.P.); (A.R.); (F.B.-V.)
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UPS), 31077 Toulouse, France
| | - Jean-Patrick Joly
- Aix-Marseille University, CNRS, UMR 7273, Case 551, Avenue Escadrille Normandie-Niemen, CEDEX 20, 13397 Marseille, France; (A.W.E.-I.); (J.-P.J.)
| | - Mathilde Coustets
- Laboratoire de Chimie de Coordination (LCC-CNRS) and, New Antimalarial Molecules and Pharmacological Approaches (MAAP), Inserm ERL 1289, Université de Toulouse, CNRS, 31077 Toulouse, France; (M.N.); (M.C.); (J.-M.A.); (L.P.); (A.R.); (F.B.-V.)
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UPS), 31077 Toulouse, France
| | - Jean-Michel Augereau
- Laboratoire de Chimie de Coordination (LCC-CNRS) and, New Antimalarial Molecules and Pharmacological Approaches (MAAP), Inserm ERL 1289, Université de Toulouse, CNRS, 31077 Toulouse, France; (M.N.); (M.C.); (J.-M.A.); (L.P.); (A.R.); (F.B.-V.)
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UPS), 31077 Toulouse, France
| | - Lucie Paloque
- Laboratoire de Chimie de Coordination (LCC-CNRS) and, New Antimalarial Molecules and Pharmacological Approaches (MAAP), Inserm ERL 1289, Université de Toulouse, CNRS, 31077 Toulouse, France; (M.N.); (M.C.); (J.-M.A.); (L.P.); (A.R.); (F.B.-V.)
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UPS), 31077 Toulouse, France
| | - Nicolas Vanthuyne
- Aix-Marseille University, CNRS, Centrale Marseille ISM2, Case 531, Avenue Escadrille Normandie-Niemen, CEDEX 20, 13397 Marseille, France
| | - Raphaël Bikanga
- Université des Sciences et Techniques de Masuku, LASNSOM, Franceville BP 901, Gabon;
| | - Anne Robert
- Laboratoire de Chimie de Coordination (LCC-CNRS) and, New Antimalarial Molecules and Pharmacological Approaches (MAAP), Inserm ERL 1289, Université de Toulouse, CNRS, 31077 Toulouse, France; (M.N.); (M.C.); (J.-M.A.); (L.P.); (A.R.); (F.B.-V.)
| | - Françoise Benoit-Vical
- Laboratoire de Chimie de Coordination (LCC-CNRS) and, New Antimalarial Molecules and Pharmacological Approaches (MAAP), Inserm ERL 1289, Université de Toulouse, CNRS, 31077 Toulouse, France; (M.N.); (M.C.); (J.-M.A.); (L.P.); (A.R.); (F.B.-V.)
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UPS), 31077 Toulouse, France
| | - Gérard Audran
- Aix-Marseille University, CNRS, UMR 7273, Case 551, Avenue Escadrille Normandie-Niemen, CEDEX 20, 13397 Marseille, France; (A.W.E.-I.); (J.-P.J.)
| | - Philippe Mellet
- Magnetic Resonance of Biological Systems, UMR 5536 CNRS-University of Bordeaux, 146 rue Leo Saignat, CEDEX, 33076 Bordeaux, France
- INSERM, 146 rue Leo Saignat, CEDEX, 33076 Bordeaux, France
| | - Jérôme Boissier
- IHPE, CNRS, Ifremer, University Perpignan Via Domitia, 66860 Perpignan, France
| | - Sylvain R. A. Marque
- Aix-Marseille University, CNRS, UMR 7273, Case 551, Avenue Escadrille Normandie-Niemen, CEDEX 20, 13397 Marseille, France; (A.W.E.-I.); (J.-P.J.)
| |
Collapse
|
3
|
Hong A, Umar A, Chen H, Yu Z, Huang J. Advances in the study of the interaction between schistosome infections and the host's intestinal microorganisms. Parasit Vectors 2024; 17:185. [PMID: 38600604 PMCID: PMC11007984 DOI: 10.1186/s13071-024-06245-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/12/2024] [Indexed: 04/12/2024] Open
Abstract
Schistosomiasis, also called bilharziasis, is a neglected tropical disease induced by schistosomes that infects hundreds of millions of people worldwide. In the life cycle of schistosomiasis, eggs are regarded as the main pathogenic factor, causing granuloma formation in the tissues and organs of hosts, which can cause severe gastrointestinal and liver granulomatous immune responses and irreversible fibrosis. Increasing evidence suggests that the gut microbiome influences the progression of schistosomiasis and plays a central role in liver disease via the gut-liver axis. When used as pharmaceutical supplements or adjunctive therapy, probiotics have shown promising results in preventing, mitigating, and even treating schistosomiasis. This review elucidates the potential mechanisms of this three-way parasite-host-microbiome interaction by summarizing schistosome-mediated intestinal flora disorders, local immune changes, and host metabolic changes, and elaborates the important role of the gut microbiome in liver disease after schistosome infection through the gut-liver axis. Understanding the mechanisms behind this interaction may aid in the discovery of probiotics as novel therapeutic targets and sustainable control strategies for schistosomiasis.
Collapse
Affiliation(s)
- Ao Hong
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, China
- Human Microbiome and Health Group, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Abdulrahim Umar
- Human Microbiome and Health Group, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Hao Chen
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, China
- Human Microbiome and Health Group, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Zheng Yu
- Human Microbiome and Health Group, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, Hunan, China
| | - Jing Huang
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, China.
- Human Microbiome and Health Group, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China.
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, Hunan, China.
| |
Collapse
|
4
|
McCann P, McFarland C, Megaw J, Siu-Ting K, Cantacessi C, Rinaldi G, Gobert GN. Assessing the microbiota of the snail intermediate host of trematodes, Galba truncatula. Parasit Vectors 2024; 17:31. [PMID: 38263069 PMCID: PMC10807216 DOI: 10.1186/s13071-024-06118-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/02/2024] [Indexed: 01/25/2024] Open
Abstract
BACKGROUND The microbiome is known to play key roles in health and disease, including host susceptibility to parasite infections. The freshwater snail Galba truncatula is the intermediate host for many trematode species, including the liver and rumen flukes Fasciola hepatica and Calicophoron daubneyi, respectively. The snail-parasite system has previously been investigated. However, the specific interaction between the snail-associated microbiota and intra-snail developmental stages of trematodes has yet to be explored. METHODS Galba truncatula snails were collected from farms in Northern Ireland and trematode infection was diagnosed using PCR. High-throughput sequencing analysis of the bacterial 16S ribosomal DNA V3-V4 hypervariable regions was subsequently applied to characterise the microbiota of both uninfected and infected snails. RESULTS We first showed that the snail harboured microbiota that was distinct for its environment. The microbiota of infected snails was found to differ significantly from that of uninfected snails. In particular, the bacterial genera Mycoplasma and Methylotenera were significantly more abundant in infected snails, while genera Sphingomonas and Nocardioides were predominantly associated with uninfected snails. CONCLUSION These findings pave the way to future studies on the functional roles of bacteria in host-parasite relationships.
Collapse
Affiliation(s)
- Peter McCann
- School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | | | - Julianne Megaw
- School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | - Karen Siu-Ting
- School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | - Cinzia Cantacessi
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Gabriel Rinaldi
- Department of Life Sciences, University of Aberystwyth, Aberystwyth, UK
| | - Geoffrey N Gobert
- School of Biological Sciences, Queen's University Belfast, Belfast, UK.
| |
Collapse
|
5
|
Rinaldi G, Paz Meseguer C, Cantacessi C, Cortés A. Form and Function in the Digenea, with an Emphasis on Host-Parasite and Parasite-Bacteria Interactions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1454:3-45. [PMID: 39008262 DOI: 10.1007/978-3-031-60121-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
This review covers the general aspects of the anatomy and physiology of the major body systems in digenetic trematodes, with an emphasis on new knowledge of the area acquired since the publication of the second edition of this book in 2019. In addition to reporting on key recent advances in the morphology and physiology of tegumentary, sensory, neuromuscular, digestive, excretory, and reproductive systems, and their roles in host-parasite interactions, this edition includes a section discussing the known and putative roles of bacteria in digenean biology and physiology. Furthermore, a brief discussion of current trends in the development of novel treatment and control strategies based on a better understanding of the trematode body systems and associated bacteria is provided.
Collapse
Affiliation(s)
- Gabriel Rinaldi
- Department of Life Sciences, Edward Llwyd Building, Aberystwyth University, Aberystwyth, UK
| | - Carla Paz Meseguer
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, School of Pharmacy and Food Sciences, Universitat de València, Valencia, Spain
| | - Cinzia Cantacessi
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Alba Cortés
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, School of Pharmacy and Food Sciences, Universitat de València, Valencia, Spain.
| |
Collapse
|