1
|
Miao C, Cui Y, Yan Z, Jiang Y. Pilus of Streptococcus pneumoniae: structure, function and vaccine potential. Front Cell Infect Microbiol 2023; 13:1270848. [PMID: 37799336 PMCID: PMC10548224 DOI: 10.3389/fcimb.2023.1270848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/04/2023] [Indexed: 10/07/2023] Open
Abstract
The pilus is an extracellular structural part that can be detected in some Streptococcus pneumoniae (S. pneumoniae) isolates (type I pili are found in approximately 30% of strains, while type II pili are found in approximately 20%). It is anchored to the cell wall by LPXTG-like motifs on the peptidoglycan. Two kinds of pili have been discovered, namely, pilus-1 and pilus-2. The former is encoded by pilus islet 1 (PI-1) and is a polymer formed by the protein subunits RrgA, RrgB and RrgC. The latter is encoded by pilus islet 2 (PI-2) and is a polymer composed mainly of the structural protein PitB. Although pili are not necessary for the survival of S. pneumoniae, they serve as the structural basis and as virulence factors that mediate the adhesion of bacteria to host cells and play a direct role in promoting the adhesion, colonization and pathogenesis of S. pneumoniae. In addition, as candidate antigens for protein vaccines, pili have promising potential for use in vaccines with combined immunization strategies. Given the current understanding of the pili of S. pneumoniae regarding the genes, proteins, structure, biological function and epidemiological relationship with serotypes, combined with the immunoprotective efficacy of pilins as protein candidates for vaccines, we here systematically describe the research status and prospects of S. pneumoniae pili and provide new ideas for subsequent vaccine research and development.
Collapse
Affiliation(s)
- Chenglin Miao
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yali Cui
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Laboratory Medicine, Meishan Women and Children’s Hospital, Alliance Hospital of West China Second University Hospital, Sichuan University, Meishan, Sichuan, China
- Department of Laboratory Medicine, West China Second University Hospital (Tianfu), Sichuan University/Sichuan Provincial Children’s Hospital, Meishan, Sichuan, China
| | - Ziyi Yan
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yongmei Jiang
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Clonal Dissemination of Plasmid-Mediated Carbapenem and Colistin Resistance in Refugees Living in Overcrowded Camps in North Lebanon. Antibiotics (Basel) 2021; 10:antibiotics10121478. [PMID: 34943690 PMCID: PMC8698793 DOI: 10.3390/antibiotics10121478] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/22/2021] [Accepted: 11/29/2021] [Indexed: 11/26/2022] Open
Abstract
Carbapenem and colistin-resistant bacteria represent a global public health problem. Refugees carrying these bacteria and living in inadequate shelters can spread these microorganisms. The aim of this study was to investigate the intestinal carriage of these bacteria in Syrian refugees in Lebanon. Between June and July 2019, 250 rectal swabs were collected from two refugee camps in North Lebanon. Swabs were cultured on different selective media. Antibiotic susceptibility testing was performed using the disk diffusion method. Carbapenemase-encoding genes and mcr genes were investigated using real-time polymerase chain reaction (RT-PCR) and standard polymerase chain reaction (PCR). Epidemiological relatedness was studied using multilocus sequence typing (MLST). From 250 rectal swabs, 16 carbapenem-resistant, 5 colistin-resistant, and 4 colistin and carbapenem-resistant Enterobacteriaceae were isolated. The isolates exhibited multidrug-resistant phenotypes. Seven Klebsiella pneumoniae isolates harboured the blaOXA-48 gene, and in addition four K. pneumoniae had mutations in the two component systems pmrA/pmrB, phoP/phoQ and co-harboured the blaNDM-1 gene. Moreover, the blaNDM-1 gene was detected in six Escherichia coli and three Enterobacter cloacae isolates. The remaining five E. coli isolates harboured the mcr-1 gene. MLST results showed several sequence types, with a remarkable clonal dissemination. An urgent strategy needs to be adopted in order to avoid the spread of such resistance in highly crowded underserved communities.
Collapse
|
3
|
Clonal lineages and antimicrobial resistance of nonencapsulated Streptococcus pneumoniae in the post-pneumococcal conjugate vaccine era in Japan. Int J Infect Dis 2021; 105:695-701. [PMID: 33676003 DOI: 10.1016/j.ijid.2021.02.109] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVES The emergence and spread of nonencapsulated Streptococcus pneumoniae (NESp) is a public health concern in the post-pneumococcal conjugate vaccine era. We analyzed the prevalence, molecular characteristics, and antimicrobial resistance of NESp responsible for noninvasive infections in northern Japan. METHODS NESp isolates were identified using molecular and phenotypical methods among 4463 S. pneumoniae isolates from noninvasive infection cases during 4 study periods between January 2011 and January 2019. NESp isolates were analyzed for antimicrobial susceptibility, genotype, and virulence-associated genes. RESULTS Seventy-one NESp isolates were identified (1.6% of total clinical isolates) and assigned to the null capsule clade (NCC)1 (pspK+) (94.4%) or NCC2 (aliC+/aliD+) (5.6%). The dominant sequence types (STs) were ST7502 (23.9%), ST4845 (19.7%), ST16214 (11.3%), ST11379 (9.9%), and ST7786 (7.0%). These 5 dominant STs and all 7 novel STs were related to the sporadic NESp lineage ST1106 or PMEN clone Denmark14-ST230. High non-susceptibility rates of NESp were observed for trimethoprim-sulfamethoxazole, erythromycin, and tetracycline (>92.9%), and multidrug resistance was observed in 88.7% of the NESp isolates, including all ST7502, ST4845, and ST11379 isolates. CONCLUSIONS The study revealed that the dominant clonal groups of NESp were associated with a high prevalence of non-susceptibility to antimicrobials in northern Japan.
Collapse
|
4
|
Begay RL, Garrison NA, Sage F, Bauer M, Knoki-Wilson U, Begay DH, Becenti-Pigman B, Claw KG. Weaving the Strands of Life ( Iiná Bitł'ool): History of Genetic Research Involving Navajo People. Hum Biol 2020; 91:189-208. [PMID: 32549035 PMCID: PMC7895446 DOI: 10.13110/humanbiology.91.3.04] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 02/18/2020] [Indexed: 12/15/2022]
Abstract
To date, some genetic studies offer medical benefits but lack a clear pathway to benefit for people from underrepresented backgrounds. Historically, Indigenous people, including the Diné (Navajo people), have raised concerns about the lack of benefits, misuse of DNA samples, lack of consultation, and ignoring of cultural and traditional ways of knowing. Shortly after the Navajo Nation Human Research Review Board was established in 1996, the Navajo Nation recognized growing concerns about genetic research, and in 2002 they established a moratorium on human genetic research studies. The moratorium effectively has protected their citizens from potential genetic research harms. Despite the placement of the moratorium, some genetic research studies have continued using blood and DNA samples from Navajo people. To understand the history of genetic research involving Navajo people, the authors conducted a literature review of genetic or genetics-related research publications that involved Navajo people, identifying 79 articles from the years 1926 to 2018. To their knowledge, no known literature review has comprehensively examined the history of genetic research in the Navajo community. This review divides the genetic research articles into the following general classifications: bacteria or virus genetics, blood and human leukocyte antigens, complex diseases, forensics, hereditary diseases, and population genetics and migration. The authors evaluated the methods reported in each article, described the number of Navajo individuals reported, recorded the academic and tribal approval statements, and noted whether the study considered Diné cultural values. Several studies focused on severe combined immunodeficiency disease, population history, neuropathy, albinism, and eye and skin disorders that affect Navajo people. The authors contextualize Diné ways of knowing related to genetics and health with Western scientific concepts to acknowledge the complex philosophy and belief system that guides Diné people and recognizes Indigenous science. They also encourage researchers to consider cultural perspectives and traditional knowledge that has the potential to create stronger conclusions and better-informed, ethical, and respectful science.
Collapse
Affiliation(s)
- Rene L Begay
- Centers for American Indian and Alaska Native Health, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Nanibaa' A Garrison
- Institute for Society and Genetics, College of Letters and Science, University of California, Los Angeles, Los Angeles, California, USA
- Institute for Precision Health, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
- Division of General Internal Medicine and Health Services Research, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
- Navajo Nation Human Research Review Board, Window Rock, Arizona, USA
| | - Franklin Sage
- Diné Policy Institute, Navajo Nation, Tsaile, Arizona, USA
| | | | | | - David H Begay
- Navajo Nation Human Research Review Board, Window Rock, Arizona, USA
- Diné Hataałii Association, Navajo Nation, USA
| | | | - Katrina G Claw
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA,
- Colorado Center for Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
5
|
Müller A, Salmen A, Aebi S, de Gouveia L, von Gottberg A, Hathaway LJ. Pneumococcal serotype determines growth and capsule size in human cerebrospinal fluid. BMC Microbiol 2020; 20:16. [PMID: 31959125 PMCID: PMC6971925 DOI: 10.1186/s12866-020-1700-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 01/09/2020] [Indexed: 12/02/2022] Open
Abstract
Background The polysaccharide capsule is a major virulence factor of S. pneumoniae in diseases such as meningitis. While some capsular serotypes are more often found in invasive disease, high case fatality rates are associated with those serotypes more commonly found in asymptomatic colonization. We tested whether growth patterns and capsule size in human cerebrospinal fluid depends on serotype using a clinical isolate of S. pneumoniae and its capsule switch mutants. Results We found that the growth pattern differed markedly from that in culture medium by lacking the exponential and lysis phases. Growth in human cerebrospinal fluid was reduced when strains lost their capsules. When a capsule was present, growth was serotype-specific: high carriage serotypes (6B, 9 V, 19F and 23F) grew better than low carriage serotypes (7F, 14, 15B/C and 18C). Growth correlated with the case-fatality rates of serotypes reported in the literature. Capsule size in human cerebrospinal fluid also depended on serotype. Conclusions We propose that serotype-specific differences in disease severity observed in meningitis patients may, at least in part, be explained by differences in growth and capsule size in human cerebrospinal fluid. This information could be useful to guide future vaccine design.
Collapse
Affiliation(s)
- Annelies Müller
- Institute for Infectious Diseases, Faculty of Medicine, University of Bern, Friedbühlstrasse 51, CH-3001, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Anke Salmen
- Department of Neurology, Inselspital, University Hospital Bern and University of Bern, Bern, Switzerland
| | - Suzanne Aebi
- Institute for Infectious Diseases, Faculty of Medicine, University of Bern, Friedbühlstrasse 51, CH-3001, Bern, Switzerland
| | - Linda de Gouveia
- National Institute for Communicable Diseases: Division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Anne von Gottberg
- National Institute for Communicable Diseases: Division of the National Health Laboratory Service, Johannesburg, South Africa.,Faculty of Health Sciences, School of Pathology, University of Witwatersrand, Johannesburg, South Africa
| | - Lucy J Hathaway
- Institute for Infectious Diseases, Faculty of Medicine, University of Bern, Friedbühlstrasse 51, CH-3001, Bern, Switzerland.
| |
Collapse
|
6
|
Mohale T, Wolter N, Allam M, Nzenze SA, Madhi SA, du Plessis M, von Gottberg A. Genomic differences among carriage and invasive nontypeable pneumococci circulating in South Africa. Microb Genom 2019; 5. [PMID: 31617841 PMCID: PMC6861859 DOI: 10.1099/mgen.0.000299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Most pneumococci express a polysaccharide capsule, a key virulence factor and target for pneumococcal vaccines. However, pneumococci showing no serological evidence of capsule expression [nontypeable pneumococci (NTPn)] are more frequently isolated from carriage studies than in invasive disease. Limited data exist about the population structure of carriage NTPn from the African continent. We aimed to characterize carriage NTPn and compare them to previously described invasive NTPn. Carriage and invasive NTPn isolates were obtained from South African cross-sectional studies (2009 and 2012) and laboratory-based surveillance for invasive pneumococcal disease (2003–2013), respectively. Isolates were characterized by capsular locus sequence analysis, multilocus sequence typing, antimicrobial non-susceptibility patterns and phylogenetic analysis. NTPn represented 3.7 % (137/3721) of carriage isolates compared to 0.1 % (39/32 824) of invasive isolates (P<0.001), and 24 % (33/137) of individuals were co-colonized with encapsulated pneumococci. Non-susceptibility to cotrimoxazole [84 % (112/133) vs 44 % (17/39)], penicillin [77 % (102/133) vs 36 % (14/39)], erythromycin [53 % (70/133) vs 31 % (12/39)] and clindamycin [36 % (48/133) vs 18 % (7/39)] was higher (P=0.03) among carriage than invasive NTPn. Ninety-one per cent (124/137) of carriage NTPn had complete deletion of the capsular locus and 9 % (13/137) had capsule genes, compared to 44 % (17/39) and 56 % (22/39) of invasive NTPn, respectively. Carriage NTPn were slightly less diverse [Simpson’s diversity index (D)=0.92] compared to invasive NTPn [D=0.97]. Sixty-seven per cent (92/137) of carriage NTPn belonged to a lineage exclusive to NTPn strains compared to 23 % (9/39) of invasive NTPn. We identified 293 and 275 genes that were significantly associated with carriage and invasive NTPn, respectively. NTPn isolates detected in carriage differed from those causing invasive disease, which may explain their success in colonisation or in causing invasive disease.
Collapse
Affiliation(s)
- Thabo Mohale
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa.,Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Nicole Wolter
- Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
| | - Mushal Allam
- Sequencing Core Facility, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
| | - Susan A Nzenze
- Department of Science and Technology/National Research Foundation: Vaccine Preventable Diseases Research Chair, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Medical Research Council: Respiratory and Meningeal Pathogens Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Shabir A Madhi
- Department of Science and Technology/National Research Foundation: Vaccine Preventable Diseases Research Chair, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Medical Research Council: Respiratory and Meningeal Pathogens Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Mignon du Plessis
- Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
| | - Anne von Gottberg
- Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
| |
Collapse
|
7
|
Takeuchi N, Ohkusu M, Wada N, Kurosawa S, Miyabe A, Yamaguchi M, Nahm MH, Ishiwada N. Molecular typing, antibiotic susceptibility, and biofilm production in nonencapsulated Streptococcus pneumoniae isolated from children in Japan. J Infect Chemother 2019; 25:750-757. [PMID: 31235348 DOI: 10.1016/j.jiac.2019.02.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 02/04/2019] [Accepted: 02/10/2019] [Indexed: 10/26/2022]
Abstract
The prevalence of nonencapsulated Streptococcus pneumoniae (NESp) has increased with the introduction of pneumococcal conjugate vaccines in children; however, the bacteriological characteristics of NESp have not been sufficiently clarified. In this study, NESp strains isolated from the nasopharyngeal carriage of children from four nursery schools in Japan were analyzed for molecular type, antibiotic susceptibility, and biofilm productivity. A total of 152 putative S. pneumoniae strains were identified by optochin-susceptibility analysis, of which 21 were not serotypeable by slide agglutination, quellung reaction, or multiplex PCR. Among these 21 strains, three were lytA-negative and, therefore, not S. pneumoniae. The remaining 18 strains were positive for lytA, ply, pspK, and bile solubility and were confirmed as NESp. Therefore, the isolation rate of NESp in the S. pneumoniae strains in this study was 12.0% (18/149). Molecular-typing analyses classified five strains as two existing sequence types (STs; ST7502 and ST7786), and 13 strains formed four novel STs. Horizontal spread was suspected, because strains with the same ST were often isolated from the same nursery school. The NESp isolates were generally susceptible to most antimicrobials, with the exception of macrolides; however, all isolates possessed more than one abnormal penicillin-binding protein gene. Furthermore, NESp strains were more effective than encapsulated counterparts at forming biofilms, which showed obvious differences in morphology. These data indicated that NESp strains should be continuously monitored as emerging respiratory pathogens.
Collapse
Affiliation(s)
- Noriko Takeuchi
- Department of Infectious Diseases, Medical Mycology Research Center, Chiba University, Chiba, Japan.
| | - Misako Ohkusu
- Department of Infectious Diseases, Medical Mycology Research Center, Chiba University, Chiba, Japan
| | | | - Satoko Kurosawa
- Kurosawa Children's and Internal Medicine Clinic, Tokyo, Japan
| | - Akiko Miyabe
- Division of Laboratory Medicine and Clinical Genetics, Chiba University Hospital, Chiba, Japan
| | | | - Moon H Nahm
- Division of Pulmonary, Allergy & Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Naruhiko Ishiwada
- Department of Infectious Diseases, Medical Mycology Research Center, Chiba University, Chiba, Japan
| |
Collapse
|
8
|
Wyllie AL, Pannekoek Y, Bovenkerk S, van Engelsdorp Gastelaars J, Ferwerda B, van de Beek D, Sanders EAM, Trzciński K, van der Ende A. Sequencing of the variable region of rpsB to discriminate between Streptococcus pneumoniae and other streptococcal species. Open Biol 2018; 7:rsob.170074. [PMID: 28931649 PMCID: PMC5627049 DOI: 10.1098/rsob.170074] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 08/11/2017] [Indexed: 01/08/2023] Open
Abstract
The vast majority of streptococci colonizing the human upper respiratory tract are commensals, only sporadically implicated in disease. Of these, the most pathogenic is Mitis group member, Streptococcus pneumoniae Phenotypic and genetic similarities between streptococci can cause difficulties in species identification. Using ribosomal S2-gene sequences extracted from whole-genome sequences published from 501 streptococci, we developed a method to identify streptococcal species. We validated this method on non-pneumococcal isolates cultured from cases of severe streptococcal disease (n = 101) and from carriage (n = 103), and on non-typeable pneumococci from asymptomatic individuals (n = 17) and on whole-genome sequences of 1157 pneumococcal isolates from meningitis in the Netherlands. Following this, we tested 221 streptococcal isolates in molecular assays originally assumed specific for S. pneumoniae, targeting cpsA, lytA, piaB, ply, Spn9802, zmpC and capsule-type-specific genes. Cluster analysis of S2-sequences showed grouping according to species in line with published phylogenies of streptococcal core genomes. S2-typing convincingly distinguished pneumococci from non-pneumococcal species (99.2% sensitivity, 100% specificity). Molecular assays targeting regions of lytA and piaB were 100% specific for S. pneumoniae, whereas assays targeting cpsA, ply, Spn9802, zmpC and selected serotype-specific assays (but not capsular sequence typing) showed a lack of specificity. False positive results were over-represented in species associated with carriage, although no particular confounding signal was unique for carriage isolates.
Collapse
Affiliation(s)
- Anne L Wyllie
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Yvonne Pannekoek
- Department of Medical Microbiology, Academic Medical Center, Amsterdam, the Netherlands
| | - Sandra Bovenkerk
- Department of Medical Microbiology, Academic Medical Center, Amsterdam, the Netherlands
| | - Jody van Engelsdorp Gastelaars
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Bart Ferwerda
- Department of Neurology, Academic Medical Center, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Diederik van de Beek
- Department of Neurology, Academic Medical Center, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Elisabeth A M Sanders
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, the Netherlands.,Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Krzysztof Trzciński
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Arie van der Ende
- Department of Medical Microbiology, Academic Medical Center, Amsterdam, the Netherlands.,The Netherlands Reference Laboratory for Bacterial Meningitis, Academic Medical Center, Amsterdam, the Netherlands
| |
Collapse
|
9
|
Ndlangisa KM, du Plessis M, Allam M, Wolter N, Mohale T, de Gouveia L, Birkhead M, Klugman KP, von Gottberg A. Two cases of serotypeable and non-serotypeable variants of Streptococcus pneumoniae detected simultaneously during invasive disease. BMC Microbiol 2016; 16:126. [PMID: 27342074 PMCID: PMC4921036 DOI: 10.1186/s12866-016-0745-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Accepted: 06/15/2016] [Indexed: 01/13/2023] Open
Abstract
Background More than 94 serotypes of Streptococcus pneumoniae have been described to date, however the majority of disease is caused by approximately 20 serotypes. Some pneumococci do not react with commercially available antisera used for serotyping and are thus regarded as non-serotypeable (NT). These pneumococci are commonly isolated during carriage studies and very rarely cause invasive disease. Colonization may occur with more than one serotype however disease with more than one serotype is rarely detected. Thus there are limited data describing cases of pneumococcal disease caused by more than one isolate. Results In two cases of invasive pneumococcal disease in South Africa, a non-serotypeable and a serotypeable isolate were co-detected during routine serotyping. A serotype 1 and 18C isolate were each co-detected with a non-serotypeable isolate in 2009 (case A) and 2010 (case B), from cerebrospinal fluid and blood, respectively. Both patients were 10–14 years old. For case A, the serotypeable isolate could not be obtained due to low representation in the mixed culture. Using electron microscopy we confirmed lack of capsule for the non-serotypeable isolates. Comparison of the case A non-serotypeable isolate with a serotype 1 genome revealed only the presence of the rhamnose biosynthesis genes (rmlA, B, C and D) in the capsular locus, all other capsular genes were absent. Nonetheless it had a multilocus sequence type (ST) associated with serotype 1 (ST217 and ribosomal ST3462) and its core genome clustered with other ST217 isolates. The case B non-serotypeable isolate had all serotype 18C capsular genes except for variation in the wchA and wze genes, compared to the 18C isolate. Both case B isolates were ST9817 and their core genomes were identical. Conclusions The ability of pneumococci to alter capsule production is a potential vaccine escape mechanism and therefore non-serotypeable pneumococci should be monitored as such organisms may increase under vaccine pressure. Electronic supplementary material The online version of this article (doi:10.1186/s12866-016-0745-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kedibone M Ndlangisa
- Centre for Respiratory Diseases and Meningitis (CRDM), National Institute for Communicable Diseases (NICD), a division of the National Health Laboratory Service, Johannesburg, South Africa. .,School of Pathology, University of the Witwatersrand, Johannesburg, South Africa.
| | - Mignon du Plessis
- Centre for Respiratory Diseases and Meningitis (CRDM), National Institute for Communicable Diseases (NICD), a division of the National Health Laboratory Service, Johannesburg, South Africa.,School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Mushal Allam
- Centre for Respiratory Diseases and Meningitis (CRDM), National Institute for Communicable Diseases (NICD), a division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Nicole Wolter
- Centre for Respiratory Diseases and Meningitis (CRDM), National Institute for Communicable Diseases (NICD), a division of the National Health Laboratory Service, Johannesburg, South Africa.,School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Thabo Mohale
- Centre for Respiratory Diseases and Meningitis (CRDM), National Institute for Communicable Diseases (NICD), a division of the National Health Laboratory Service, Johannesburg, South Africa.,School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Linda de Gouveia
- Centre for Respiratory Diseases and Meningitis (CRDM), National Institute for Communicable Diseases (NICD), a division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Monica Birkhead
- Centre for Emerging and Zoonotic Diseases, National Institute for Communicable Diseases (NICD), a division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Keith P Klugman
- Hubert Department of Global Health, Rollins School of Public Health, and Division of Infectious Diseases, School of Medicine, Emory University, Atlanta, GA, USA
| | - Anne von Gottberg
- Centre for Respiratory Diseases and Meningitis (CRDM), National Institute for Communicable Diseases (NICD), a division of the National Health Laboratory Service, Johannesburg, South Africa.,School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
10
|
Genomic analysis of nontypeable pneumococci causing invasive pneumococcal disease in South Africa, 2003-2013. BMC Genomics 2016; 17:470. [PMID: 27334470 PMCID: PMC4928513 DOI: 10.1186/s12864-016-2808-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 05/27/2016] [Indexed: 01/18/2023] Open
Abstract
Background The capsular polysaccharide is the principal virulence factor of Streptococcus pneumoniae and a target for current pneumococcal vaccines. However, some pathogenic pneumococci are serologically nontypeable [nontypeable pneumococci (NTPn)]. Due to their relative rarity, NTPn are poorly characterized, and, as such, limited data exist which describe these organisms. We aimed to describe disease and genotypically characterize NTPn causing invasive pneumococcal disease in South Africa. Results Isolates were detected through national, laboratory-based surveillance for invasive pneumococcal disease in South Africa and characterized by whole genome analysis. We predicted ancestral serotypes (serotypes from which NTPn may have originated) for Group I NTPn using multilocus sequence typing and capsular region sequence analyses. Antimicrobial resistance patterns and mutations potentially causing nontypeability were identified. From 2003–2013, 39 (0.1 %, 39/32,824) NTPn were reported. Twenty-two (56 %) had partial capsular genes (Group I) and 17 (44 %) had complete capsular deletion of which 15 had replacement by other genes (Group II). Seventy-nine percent (31/39) of our NTPn isolates were derived from encapsulated S. pneumoniae. Ancestral serotypes 1 (27 %, 6/22) and 8 (14 %, 3/22) were most prevalent, and 59 % (13/22) of ancestral serotypes were serotypes included in the 13-valent pneumococcal conjugate vaccine. We identified a variety of mutations within the capsular region of Group I NTPn, some of which may be responsible for the nontypeable phenotype. Nonsusceptibility to tetracycline and erythromycin was higher in NTPn than encapsulated S. pneumoniae. Conclusions NTPn are currently a rare cause of invasive pneumococcal disease in South Africa and represent a genetically diverse collection of isolates. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2808-x) contains supplementary material, which is available to authorized users.
Collapse
|
11
|
Jin P, Wu L, Oftadeh S, Kudinha T, Kong F, Zeng Q. Using a practical molecular capsular serotype prediction strategy to investigate Streptococcus pneumoniae serotype distribution and antimicrobial resistance in Chinese local hospitalized children. BMC Pediatr 2016; 16:53. [PMID: 27118458 PMCID: PMC4847217 DOI: 10.1186/s12887-016-0589-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 04/16/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND China is one of ten countries with the highest prevalence rate of pneumococcal infections. However, there is limited serotype surveillance data for Streptococcus pneumoniae, especially from the community or rural regions, partly due to limited serotyping capacity because Quellung serotyping is only available in few centers in China. The aim of this study was to develop a simple, practical and economic pneumococcal serotype prediction strategy suitable for future serotype surveillance in China. METHODS In this study, 193 S. pneumoniae isolates were collected from hospitalized children, 96.9 % of whom were < 5 years old. The cpsB sequetyping, complemented by selective and modified USA CDC sequential multiplex-PCR, was performed on all the isolates, and serotypes 6A-6D specific PCRs were done on all serogroup 6 isolates. Based on systematic analysis of available GenBank cpsB sequences, we established a more comprehensive cpsB sequence database than originally published for cpsB sequetyping. Antibiotic susceptibility of all isolates was determined using the disk diffusion or E-test assays. RESULTS We built up a comprehensive S. pneumoniae serotype cpsB sequetyping database for all the 95 described serotypes first, and then developed a simple strategy for serotype prediction based on the improved cpsB sequetyping and selective multiplex-PCR. Using the developed serotype prediction strategy, 191 of 193 isolates were successfully "serotyped", and only two isolates were "non-serotypeable". Sixteen serotypes were identified among the 191 "serotypeable" isolates. The serotype distribution of the isolates from high to low was: 19 F (34.7 %), 23 F (17.1 %), 19A (11.9 %), 14 (7.3 %), 15B/15C (6.7 %), 6B (6.7 %), 6A (6.2 %), 9 V/9A (1.6 %); serotypes 6C, 3, 15 F/15A, 23A and 20 (each 1.1 %); serotypes 10B, 28 F/28A and 34 (each 0.5 %). The prevalence of parenteral penicillin resistance was 1.0 % in the non-meningitis isolates and 88.6 % in meningitis isolates. The total rate of multidrug resistance was 86.8 %. CONCLUSIONS The integrated cpsB sequetyping supplemented with selective mPCR and serotypes 6A-6D specific PCRs "cocktail" strategy is practical, simple and cost-effective for use in pneumococcal infection serotype surveillance in China. For hospitalized children with non-meningitis penicillin-susceptible pneumococcal infections, clinicians still can use narrow-spectrum and cheaper penicillin, using the parenteral route, rather than using broader-spectrum and more expensive antimicrobials.
Collapse
Affiliation(s)
- Ping Jin
- Pediatric Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, P. R. China.,Paediatric Intensive Care Unit, Bao'an Maternity & Child Health Hospital affiliated with Jinan University, Shenzhen, P. R. China
| | - Lijuan Wu
- Department of Clinical Laboratory, Bao'an Maternity & Child Health Hospital affiliated with Jinan University, Shenzhen, P. R. China
| | - Shahin Oftadeh
- Centre for Infectious Diseases and Microbiology Laboratory Services, ICPMR - Pathology West, University of Sydney, Westmead Hospital, Darcy Road, Westmead, NSW, Australia
| | - Timothy Kudinha
- Centre for Infectious Diseases and Microbiology Laboratory Services, ICPMR - Pathology West, University of Sydney, Westmead Hospital, Darcy Road, Westmead, NSW, Australia.,Charles Sturt University, Leeds Parade, Orange, NSW, Australia
| | - Fanrong Kong
- Centre for Infectious Diseases and Microbiology Laboratory Services, ICPMR - Pathology West, University of Sydney, Westmead Hospital, Darcy Road, Westmead, NSW, Australia
| | - Qiyi Zeng
- Pediatric Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, P. R. China.
| |
Collapse
|
12
|
Abstract
While significant protection from pneumococcal disease has been achieved by the use of polysaccharide and polysaccharide-protein conjugate vaccines, capsule-independent protection has been limited by serotype replacement along with disease caused by nonencapsulated Streptococcus pneumoniae (NESp). NESp strains compose approximately 3% to 19% of asymptomatic carriage isolates and harbor multiple antibiotic resistance genes. Surface proteins unique to NESp enhance colonization and virulence despite the lack of a capsule even though the capsule has been thought to be required for pneumococcal pathogenesis. Genes for pneumococcal surface proteins replace the capsular polysaccharide (cps) locus in some NESp isolates, and these proteins aid in pneumococcal colonization and otitis media (OM). NESp strains have been isolated from patients with invasive and noninvasive pneumococcal disease, but noninvasive diseases, specifically, conjunctivitis (85%) and OM (8%), are of higher prevalence. Conjunctival strains are commonly of the so-called classical NESp lineages defined by multilocus sequence types (STs) ST344 and ST448, while sporadic NESp lineages such as ST1106 are more commonly isolated from patients with other diseases. Interestingly, sporadic lineages have significantly higher rates of recombination than classical lineages. Higher rates of recombination can lead to increased acquisition of antibiotic resistance and virulence factors, increasing the risk of disease and hindering treatment. NESp strains are a significant proportion of the pneumococcal population, can cause disease, and may be increasing in prevalence in the population due to effects on the pneumococcal niche caused by pneumococcal vaccines. Current vaccines are ineffective against NESp, and further research is necessary to develop vaccines effective against both encapsulated and nonencapsulated pneumococci.
Collapse
|
13
|
Abstract
Streptococcus pneumoniae (the pneumococcus) is an important human pathogen. Its virulence is largely due to its polysaccharide capsule, which shields it from the host immune system, and because of this, the capsule has been extensively studied. Studies of the capsule led to the identification of DNA as the genetic material, identification of many different capsular serotypes, and identification of the serotype-specific nature of protection by adaptive immunity. Recent studies have led to the determination of capsular polysaccharide structures for many serotypes using advanced analytical technologies, complete elucidation of genetic basis for the capsular types, and the development of highly effective pneumococcal conjugate vaccines. Conjugate vaccine use has altered the serotype distribution by either serotype replacement or switching, and this has increased the need to serotype pneumococci. Due to great advances in molecular technologies and our understanding of the pneumococcal genome, molecular approaches have become powerful tools to predict pneumococcal serotypes. In addition, more-precise and -efficient serotyping methods that directly detect polysaccharide structures are emerging. These improvements in our capabilities will greatly enhance future investigations of pneumococcal epidemiology and diseases and the biology of colonization and innate immunity to pneumococcal capsules.
Collapse
|
14
|
Murrah KA, Pang B, Richardson S, Perez A, Reimche J, King L, Wren J, Swords WE. Nonencapsulated Streptococcus pneumoniae causes otitis media during single-species infection and during polymicrobial infection with nontypeable Haemophilus influenzae. Pathog Dis 2014; 73:ftu011. [PMID: 26014114 DOI: 10.1093/femspd/ftu011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2014] [Indexed: 12/29/2022] Open
Abstract
Streptococcus pneumoniae strains lacking capsular polysaccharide have been increasingly reported in carriage and disease contexts. Since most cases of otitis media involve more than one bacterial species, we aimed to determine the capacity of a nonencapsulated S. pneumoniae clinical isolate to induce disease in the context of a single-species infection and as a polymicrobial infection with nontypeable Haemophilus influenzae. Using the chinchilla model of otitis media, we found that nonencapsulated S. pneumoniae colonizes the nasopharynx following intranasal inoculation, but does not readily ascend into the middle ear. However, when we inoculated nonencapsulated S. pneumoniae directly into the middle ear, the bacteria persisted for two weeks post-inoculation and induced symptoms consistent with chronic otitis media. During coinfection with nontypeable H. influenzae, both species persisted for one week and induced polymicrobial otitis media. We also observed that nontypeable H. influenzae conferred passive protection from killing by amoxicillin upon S. pneumoniae from within polymicrobial biofilms in vitro. Therefore, based on these results, we conclude that nonencapsulated pneumococci are a potential causative agent of chronic/recurrent otitis media, and can also cause mutualistic infection with other opportunists, which could complicate treatment outcomes.
Collapse
Affiliation(s)
- Kyle A Murrah
- Department of Microbiology and Immunology, Wake Forest School of Medicine, 2E-034 Wake Forest Biotech Place, 575 North Patterson Avenue, Winston-Salem, NC 27101, USA
| | - Bing Pang
- Department of Microbiology and Immunology, Wake Forest School of Medicine, 2E-034 Wake Forest Biotech Place, 575 North Patterson Avenue, Winston-Salem, NC 27101, USA
| | - Stephen Richardson
- Department of Microbiology and Immunology, Wake Forest School of Medicine, 2E-034 Wake Forest Biotech Place, 575 North Patterson Avenue, Winston-Salem, NC 27101, USA
| | - Antonia Perez
- Department of Microbiology and Immunology, Wake Forest School of Medicine, 2E-034 Wake Forest Biotech Place, 575 North Patterson Avenue, Winston-Salem, NC 27101, USA
| | - Jennifer Reimche
- Department of Microbiology and Immunology, Wake Forest School of Medicine, 2E-034 Wake Forest Biotech Place, 575 North Patterson Avenue, Winston-Salem, NC 27101, USA
| | - Lauren King
- Department of Microbiology and Immunology, Wake Forest School of Medicine, 2E-034 Wake Forest Biotech Place, 575 North Patterson Avenue, Winston-Salem, NC 27101, USA
| | - John Wren
- Department of Microbiology and Immunology, Wake Forest School of Medicine, 2E-034 Wake Forest Biotech Place, 575 North Patterson Avenue, Winston-Salem, NC 27101, USA
| | - W Edward Swords
- Department of Microbiology and Immunology, Wake Forest School of Medicine, 2E-034 Wake Forest Biotech Place, 575 North Patterson Avenue, Winston-Salem, NC 27101, USA
| |
Collapse
|
15
|
Andam CP, Hanage WP. Mechanisms of genome evolution of Streptococcus. INFECTION GENETICS AND EVOLUTION 2014; 33:334-42. [PMID: 25461843 DOI: 10.1016/j.meegid.2014.11.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 11/05/2014] [Accepted: 11/07/2014] [Indexed: 10/24/2022]
Abstract
The genus Streptococcus contains 104 recognized species, many of which are associated with human or animal hosts. A globally prevalent human pathogen in this group is Streptococcus pneumoniae (the pneumococcus). While being a common resident of the upper respiratory tract, it is also a major cause of otitis media, pneumonia, bacteremia and meningitis, accounting for a high burden of morbidity and mortality worldwide. Recent findings demonstrate the importance of recombination and selection in driving the population dynamics and evolution of different pneumococcal lineages, allowing them to successfully evade the impacts of selective pressures such as vaccination and antibiotic treatment. We highlight the ability of pneumococci to respond to these pressures through processes including serotype replacement, capsular switching and horizontal gene transfer (HGT) of antibiotic resistance genes. The challenge in controlling this pathogen also lies in the exceptional genetic and phenotypic variation among different pneumococcal lineages, particularly in terms of their pathogenicity and resistance to current therapeutic strategies. The widespread use of pneumococcal conjugate vaccines, which target only a small subset of the more than 90 pneumococcal serotypes, provides us with a unique opportunity to elucidate how the processes of selection and recombination interact to generate a remarkable level of plasticity and heterogeneity in the pneumococcal genome. These processes also play an important role in the emergence and spread of multi-resistant strains, which continues to pose a challenge in disease control and/or eradication. The application of population of genomic approaches at different spatial and temporal scales will help improve strategies to control this global pathogen, and potentially other pathogenic streptococci.
Collapse
Affiliation(s)
- Cheryl P Andam
- Department of Epidemiology, Harvard School of Public Health, Boston, MA 02115, USA
| | - William P Hanage
- Department of Epidemiology, Harvard School of Public Health, Boston, MA 02115, USA.
| |
Collapse
|
16
|
Tavares DA, Simões AS, Bootsma HJ, Hermans PWM, de Lencastre H, Sá-Leão R. Non-typeable pneumococci circulating in Portugal are of cps type NCC2 and have genomic features typical of encapsulated isolates. BMC Genomics 2014; 15:863. [PMID: 25283442 PMCID: PMC4200197 DOI: 10.1186/1471-2164-15-863] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 09/29/2014] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Pneumococcus is a major human pathogen and the polysaccharide capsule is considered its main virulence factor. Nevertheless, strains lacking a capsule, named non-typeable pneumococcus (NT), are maintained in nature and frequently colonise the human nasopharynx. Interest in these strains, not targeted by any of the currently available pneumococcal vaccines, has been rising as they seem to play an important role in the evolution of the species. Currently, there is a paucity of data regarding this group of pneumococci. Also, questions have been raised on whether they are true pneumococci. We aimed to obtain insights in the genetic content of NT and the mechanisms leading to non-typeability and to genetic diversity. RESULTS A collection of 52 NT isolates representative of the lineages circulating in Portugal between 1997 and 2007, as determined by pulsed-field gel electrophoresis and multilocus sequence typing, was analysed. The capsular region was sequenced and comparative genomic hybridisation (CGH) using a microarray covering the genome of 10 pneumococcal strains was carried out. The presence of mobile elements was investigated as source of intraclonal variation. NT circulating in Portugal were found to have similar capsular regions, of cps type NCC2, i.e., having aliB-like ORF1 and aliB-like ORF2 genes. The core genome of NT was essentially similar to that of encapsulated strains. Also, competence genes and most virulence genes were present. The few virulence genes absent in all NT were the capsular genes, type-I and type-II pili, choline-binding protein A (cbpA/pspC), and pneumococcal surface protein A (pspA). Intraclonal variation could not be entirely explained by the presence of prophages and other mobile elements. CONCLUSIONS NT circulating in Portugal are a homogeneous group belonging to cps type NCC2. Our observations support the theory that they are bona-fide pneumococcal isolates that do not express the capsule but are otherwise essentially similar to encapsulated pneumococci. Thus we propose that NT should be routinely identified and reported in surveillance studies.
Collapse
Affiliation(s)
- Débora A Tavares
- />Laboratory of Molecular Microbiology of Human Pathogens, Instituto de Tecnologia Química e Biológica (ITQB) António Xavier, Universidade Nova de Lisboa (UNL), Oeiras, Portugal
| | - Alexandra S Simões
- />Laboratory of Molecular Microbiology of Human Pathogens, Instituto de Tecnologia Química e Biológica (ITQB) António Xavier, Universidade Nova de Lisboa (UNL), Oeiras, Portugal
| | - Hester J Bootsma
- />Laboratory of Paediatric Infectious Diseases, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - Peter WM Hermans
- />Laboratory of Paediatric Infectious Diseases, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
- />Crucell – Johnson and Johnson, Leiden, the Netherlands
| | - Hermínia de Lencastre
- />Laboratory of Molecular Genetics, ITQB, UNL, Oeiras, Portugal
- />Laboratory of Microbiology and Infectious Diseases, The Rockefeller University, New York, NY USA
| | - Raquel Sá-Leão
- />Laboratory of Molecular Microbiology of Human Pathogens, Instituto de Tecnologia Química e Biológica (ITQB) António Xavier, Universidade Nova de Lisboa (UNL), Oeiras, Portugal
| |
Collapse
|
17
|
Population-based analysis of invasive nontypeable pneumococci reveals that most have defective capsule synthesis genes. PLoS One 2014; 9:e97825. [PMID: 24831650 PMCID: PMC4022640 DOI: 10.1371/journal.pone.0097825] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 04/23/2014] [Indexed: 01/04/2023] Open
Abstract
Since nasopharyngeal carriage of pneumococcus precedes invasive pneumococcal disease, characteristics of carriage isolates could be incorrectly assumed to reflect those of invasive isolates. While most pneumococci express a capsular polysaccharide, nontypeable pneumococci are sometimes isolated. Carriage nontypeables tend to encode novel surface proteins in place of a capsular polysaccharide synthetic locus, the cps locus. In contrast, capsular polysaccharide is believed to be indispensable for invasive pneumococcal disease, and nontypeables from population-based invasive pneumococcal disease surveillance have not been extensively characterized. We received 14,328 invasive pneumococcal isolates through the Active Bacterial Core surveillance program during 2006–2009. Isolates that were nontypeable by Quellung serotyping were characterized by PCR serotyping, sequence analyses of the cps locus, and multilocus sequence typing. Eighty-eight isolates were Quellung-nontypeable (0.61%). Of these, 79 (89.8%) contained cps loci. Twenty-two nontypeables exhibited serotype 8 cps loci with defects, primarily within wchA. Six of the remaining nine isolates contained previously-described aliB homologs in place of cps loci. Multilocus sequence typing revealed that most nontypeables that lacked capsular biosynthetic genes were related to established non-encapsulated lineages. Thus, invasive pneumococcal disease caused by nontypeable pneumococcus remains rare in the United States, and while carriage nontypeables lacking cps loci are frequently isolated, such nontypeable are extremely rare in invasive pneumococcal disease. Most invasive nontypeable pneumococci possess defective cps locus genes, with an over-representation of defective serotype 8 cps variants.
Collapse
|
18
|
Song JY, Nahm MH, Cheong HJ, Kim WJ. Impact of preceding flu-like illness on the serotype distribution of pneumococcal pneumonia. PLoS One 2014; 9:e93477. [PMID: 24691515 PMCID: PMC3972234 DOI: 10.1371/journal.pone.0093477] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 03/03/2014] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Even though the pathogenicity and invasiveness of pneumococcus largely depend on capsular types, the impact of serotypes on post-viral pneumococcal pneumonia is unknown. METHODS AND FINDINGS This study was performed to evaluate the impact of capsular serotypes on the development of pneumococcal pneumonia after preceding respiratory viral infections. Patients with a diagnosis of pneumococcal pneumonia were identified. Pneumonia patients were divided into two groups (post-viral pneumococcal pneumonia versus primary pneumococcal pneumonia), and then their pneumococcal serotypes were compared. Nine hundred and nineteen patients with pneumococcal pneumonia were identified during the study period, including 327 (35.6%) cases with post-viral pneumococcal pneumonia and 592 (64.4%) cases with primary pneumococcal pneumonia. Overall, serotypes 3 and 19A were the most prevalent, followed by serotypes 19F, 6A, and 11A/11E. Although relatively uncommon (33 cases, 3.6%), infrequently colonizing invasive serotypes (4, 5, 7F/7A, 8, 9V/9A, 12F, and 18C) were significantly associated with preceding respiratory viral infections (69.7%, P<0.01). Multivariate analysis revealed several statistically significant risk factors for post-viral pneumococcal pneumonia: immunodeficiency (OR 1.66; 95% CI, 1.10-2.53), chronic lung diseases (OR 1.43; 95% CI, 1.09-1.93) and ICI serotypes (OR 4.66; 95% CI, 2.07-10.47). CONCLUSIONS Infrequently colonizing invasive serotypes would be more likely to cause pneumococcal pneumonia after preceding respiratory viral illness, particularly in patients with immunodeficiency or chronic lung diseases.
Collapse
Affiliation(s)
- Joon Young Song
- Department of Pathology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of medicine, Seoul, Republic of Korea
| | - Moon H. Nahm
- Department of Pathology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Department of Microbiology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Hee Jin Cheong
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of medicine, Seoul, Republic of Korea
| | - Woo Joo Kim
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of medicine, Seoul, Republic of Korea
| |
Collapse
|
19
|
Raymond F, Boucher N, Allary R, Robitaille L, Lefebvre B, Tremblay C, Corbeil J, Gervaix A. Serotyping of Streptococcus pneumoniae based on capsular genes polymorphisms. PLoS One 2013; 8:e76197. [PMID: 24086706 PMCID: PMC3782451 DOI: 10.1371/journal.pone.0076197] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 08/20/2013] [Indexed: 11/18/2022] Open
Abstract
Streptococcus pneumoniae serotype epidemiology is essential since serotype replacement is a concern when introducing new polysaccharide-conjugate vaccines. A novel PCR-based automated microarray assay was developed to assist in the tracking of the serotypes. Autolysin, pneumolysin and eight genes located in the capsular operon were amplified using multiplex PCR. This step was followed by a tagged fluorescent primer extension step targeting serotype-specific polymorphisms. The tagged primers were then hybridized to a microarray. Results were exported to an expert system to identify capsular serotypes. The assay was validated on 166 cultured S. pneumoniae samples from 63 different serotypes as determined by the Quellung method. We show that typing only 12 polymorphisms located in the capsular operon allows the identification at the serotype level of 22 serotypes and the assignation of 24 other serotypes to a subgroup of serotypes. Overall, 126 samples (75.9%) were correctly serotyped, 14 were assigned to a member of the same serogroup, 8 rare serotypes were erroneously serotyped, and 18 gave negative serotyping results. Most of the discrepancies involved rare serotypes or serotypes that are difficult to discriminate using a DNA-based approach, for example 6A and 6B. The assay was also tested on clinical specimens including 43 cerebrospinal fluid samples from patients with meningitis and 59 nasopharyngeal aspirates from bacterial pneumonia patients. Overall, 89% of specimens positive for pneumolysin were serotyped, demonstrating that this method does not require culture to serotype clinical specimens. The assay showed no cross-reactivity for 24 relevant bacterial species found in these types of samples. The limit of detection for serotyping and S. pneumoniae detection was 100 genome equivalent per reaction. This automated assay is amenable to clinical testing and does not require any culturing of the samples. The assay will be useful for the evaluation of serotype prevalence changes after new conjugate vaccines introduction.
Collapse
Affiliation(s)
- Frédéric Raymond
- Centre de Recherche en Infectiologie and Département de Microbiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Québec, Canada
- * E-mail:
| | - Nancy Boucher
- Centre de Recherche en Infectiologie and Département de Microbiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Québec, Canada
| | - Robin Allary
- Centre de Recherche en Infectiologie and Département de Microbiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Québec, Canada
| | - Lynda Robitaille
- Centre de Recherche en Infectiologie and Département de Microbiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Québec, Canada
| | - Brigitte Lefebvre
- Laboratoire de Santé Publique du Québec, Institut National de Santé Publique, Ste-Anne-de-Bellevue, Québec, Canada
| | - Cécile Tremblay
- Laboratoire de Santé Publique du Québec, Institut National de Santé Publique, Ste-Anne-de-Bellevue, Québec, Canada
| | - Jacques Corbeil
- Centre de Recherche en Infectiologie and Département de Microbiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Québec, Canada
| | - Alain Gervaix
- Department of Pediatrics, University Hospitals of Geneva, Geneva, Switzerland
| |
Collapse
|
20
|
A prospective study of agents associated with acute respiratory infection among young American Indian children. Pediatr Infect Dis J 2013; 32:e324-33. [PMID: 23470677 PMCID: PMC3753779 DOI: 10.1097/inf.0b013e31828ff4bc] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Native American children have higher rates of morbidity associated with acute respiratory infection than children in the general US population, yet detailed information is lacking regarding their principal clinical presentations and infectious etiologies. METHODS We pursued a comprehensive molecular survey of bacteria and viruses in nasal wash specimens from children with acute respiratory disease collected prospectively over 1 year (January 1 through December 31, 2009) from 915 Navajo and White Mountain Apache children in their second or third year of life who had been enrolled in an efficacy study of a respiratory syncytial virus monoclonal antibody in the first year of life. RESULTS During the surveillance period, 1476 episodes of disease were detected in 669 children. Rates of outpatient and inpatient lower respiratory tract illness were 391 and 79 per 1000 child-years, respectively, and were most commonly diagnosed as pneumonia. Potential pathogens were detected in 88% of specimens. Viruses most commonly detected were respiratory syncytial virus and human rhinovirus; the 2009 pandemic influenza A (H1N1) illnesses primarily occurred in the fall. Streptococcus pneumoniae was detected in 60% of subjects; only human rhinovirus was significantly associated with S. pneumoniae carriage. The presence of influenza virus, human rhinovirus or S. pneumoniae was not associated with increased risk for lower respiratory tract involvement or hospitalization. CONCLUSIONS Acute lower respiratory illnesses occur at disproportionately high rates among young American Indian children and are associated with a range of common pathogens. This study provides critical evidence to support reducing the disproportionate burden of acute respiratory disease among young Native Americans.
Collapse
|
21
|
Rolo D, S. Simões A, Domenech A, Fenoll A, Liñares J, de Lencastre H, Ardanuy C, Sá-Leão R. Disease isolates of Streptococcus pseudopneumoniae and non-typeable S. pneumoniae presumptively identified as atypical S. pneumoniae in Spain. PLoS One 2013; 8:e57047. [PMID: 23437306 PMCID: PMC3578818 DOI: 10.1371/journal.pone.0057047] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 01/16/2013] [Indexed: 11/27/2022] Open
Abstract
We aimed to obtain insights on the nature of a collection of isolates presumptively identified as atypical Streptococcus pneumoniae recovered from invasive and non-invasive infections in Spain. One-hundred and thirty-two isolates were characterized by: optochin susceptibility in ambient and CO2-enriched atmosphere; bile solubility; PCR-based assays targeting pneumococcal genes lytA, ply, pspA, cpsA, Spn9802, aliB-like ORF2, and a specific 16S rRNA region; multilocus sequence analysis; and antimicrobial susceptibility. By multilocus sequence analysis, 61 isolates were S. pseudopneumoniae, 34 were pneumococci, 13 were S. mitis, and 24 remained unclassified as non-pneumococci. Among S. pseudopneumoniae isolates, 51 (83.6%) were collected from respiratory tract samples; eight isolates were obtained from sterile sources. High frequency of non-susceptibility to penicillin (60.7%) and erythromycin (42.6%) was found. Only 50.8% of the S. pseudopneumoniae isolates displayed the typical optochin phenotype originally described for this species. None harbored the cpsA gene or the pneumococcal typical lytA restriction fragment length polymorphism. The Spn9802 and the specific 16S rRNA regions were detected among the majority of the S. pseudopneumoniae isolates (n = 59 and n = 49, respectively). The ply and pspA genes were rarely found. A high genetic diversity was found and 59 profiles were identified. Among the S. pneumoniae, 23 were capsulated and 11 were non-typeable. Three non-typeable isolates, associated to international non-capsulated lineages, were recovered from invasive disease sources. In conclusion, half of the atypical pneumococcal clinical isolates were, in fact, S. pseudopneumoniae and one-fourth were other streptococci. We identified S. pseudopneumoniae and non-typeable pneumococci as cause of disease in Spain including invasive disease.
Collapse
Affiliation(s)
- Dora Rolo
- Institut d'Investigació Biomèdica de Bellvitge, Hospital Universitari de Bellvitge, Microbiology Department, Universistat de Barcelona, Barcelona, Spain
- Centro de investigación en red de enfermedades respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Alexandra S. Simões
- Laboratory of Molecular Genetics, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
- Laboratory of Molecular Microbiology of Human Pathogens, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Arnau Domenech
- Institut d'Investigació Biomèdica de Bellvitge, Hospital Universitari de Bellvitge, Microbiology Department, Universistat de Barcelona, Barcelona, Spain
- Centro de investigación en red de enfermedades respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Asunción Fenoll
- National Center for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Josefina Liñares
- Institut d'Investigació Biomèdica de Bellvitge, Hospital Universitari de Bellvitge, Microbiology Department, Universistat de Barcelona, Barcelona, Spain
- Centro de investigación en red de enfermedades respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Hermínia de Lencastre
- Laboratory of Molecular Genetics, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
- Laboratory of Microbiology, The Rockefeller University, New York, New York, United States of America
| | - Carmen Ardanuy
- Institut d'Investigació Biomèdica de Bellvitge, Hospital Universitari de Bellvitge, Microbiology Department, Universistat de Barcelona, Barcelona, Spain
- Centro de investigación en red de enfermedades respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Raquel Sá-Leão
- Laboratory of Molecular Genetics, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
- Laboratory of Molecular Microbiology of Human Pathogens, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
- * E-mail:
| |
Collapse
|