1
|
Kumar S, Song K, Wang J, Baghel MS, Wong P, Cao X, Wan M. Serum Amyloid P Secreted by Bone Marrow Adipocytes Drives Skeletal Amyloidosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.15.608092. [PMID: 39211279 PMCID: PMC11361041 DOI: 10.1101/2024.08.15.608092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The accumulation of amyloid fibrils has been identified in tissues outside the brain, yet little is understood about the formation of extracerebral amyloidosis and its impact on the aging process of these organs. Here, we demonstrate that both transgenic mice modeling Alzheimer's disease (AD) and naturally aging mice exhibit accumulated senescent bone marrow adipocytes (BMAds), accompanied by amyloid deposits surrounding the BMAds. Senescent BMAds acquire a secretory phenotype, resulting in a marked increase in the secretion of serum amyloid P component (SAP), also known as pentraxin 2 (PTX2). SAP/PTX2 colocalizes with amyloid deposits around senescent BMAds in vivo and is sufficient to promote the formation of insoluble amyloid deposits from soluble Aβ peptides in in vitro and ex vivo 3D BMAd-based culture experiments. Additionally, Combined treatment with SAP/PTX2 and Aβ peptides promotes osteoclastogenesis but inhibits osteoblastogenesis of the precursor cells. Transplantation of senescent BMAds into the bone marrow cavity of healthy young mice is sufficient to induce bone loss. Finally, pharmacological depletion of SAP/PTX2 from aged mice abolishes bone marrow amyloid deposition and effectively rescues the low bone mass phenotype. Thus, senescent BMAds, through the secretion of SAP/PTX2, contribute to the age-associated development of skeletal amyloidosis and resultant bone deficits.
Collapse
|
2
|
Sharma K, Sharma M. Invitro anti-biofilm activity and the artificial chaperone activity of quinoline-based ionic liquids. Colloids Surf B Biointerfaces 2024; 235:113773. [PMID: 38350204 DOI: 10.1016/j.colsurfb.2024.113773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/19/2024] [Accepted: 01/28/2024] [Indexed: 02/15/2024]
Abstract
The maintenance of protein conformation under stressful conditions is one of the prevailing challenges. This has led to a rapid growth in the ingenious protein therapies, in the past few decades, prioritizing the investigation of the structure and function of proteins in novel environments. Ionic Liquids (ILs) are currently dominating the biomedical industry, by endowing great solubility and stability to bio-molecules, especially proteins. Recently, researchers have devoted their attention towards the artificial chaperone activity of several classes of ILs. Thus, comprehending the long-term as well as momentary stability of protein conformation in IL formulations is an absolute necessity. In this context, we present the activity of quinoline-based ionic liquids (ILs) as artificial cheperones against time-dependent, self induced fibril formation in Bovine Serum Albumin (BSA). Herein, a series of quinoline-based ILs were synthesized and characterized. The structural and morphological changes induced in BSA in the presence and absence of these ILs are corroborated using several spectroscopic measurements and in-silico studies. The anti-microbial and antibiofilm activity of these compounds demonstrating their medicinal properties is substantiated in this study. Furthermore, the present research also gives an account of the toxicity of these compounds under in vivo conditions, using C. elegans as the model organism.
Collapse
Affiliation(s)
- Kajal Sharma
- Molecular Genetics of Aging, Dr. B.R. Ambedkar Center for Biomedical Research (ACBR), University of Delhi (North Campus), Delhi 110007, India
| | - Meenakshi Sharma
- Molecular Genetics of Aging, Dr. B.R. Ambedkar Center for Biomedical Research (ACBR), University of Delhi (North Campus), Delhi 110007, India.
| |
Collapse
|
3
|
Ma YJ, Parente R, Zhong H, Sun Y, Garlanda C, Doni A. Complement-pentraxins synergy: Navigating the immune battlefield and beyond. Biomed Pharmacother 2023; 169:115878. [PMID: 37952357 DOI: 10.1016/j.biopha.2023.115878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/07/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023] Open
Abstract
The complement is a crucial immune defense system that triggers rapid immune responses and offers efficient protection against foreign invaders and unwanted host elements, acting as a sentinel. Activation of the complement system occurs upon the recognition of pathogenic microorganisms or altered self-cells by pattern-recognition molecules (PRMs) such as C1q, collectins, ficolins, and pentraxins. Recent accumulating evidence shows that pentraxins establish a cooperative network with different classes of effector PRMs, resulting in synergistic effects in complement activation. This review describes the complex interaction of pentraxins with the complement system and the implications of this cooperative network for effective host defense during pathogen invasion.
Collapse
Affiliation(s)
- Ying Jie Ma
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, DK-2800, Denmark.
| | | | - Hang Zhong
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy; Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Yi Sun
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, DK-2800, Denmark
| | - Cecilia Garlanda
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy; Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Andrea Doni
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy.
| |
Collapse
|
4
|
The Paradoxical Effects of Serum Amyloid-P Component on Disseminated Candidiasis. Pathogens 2022; 11:pathogens11111304. [PMID: 36365055 PMCID: PMC9697064 DOI: 10.3390/pathogens11111304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/25/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
Serum amyloid P component (SAP) may play an important role in human fungal diseases. SAP binds to functional amyloid on the fungal surface and masks fungi from host immune processes, skewing the macrophage population from the pro-inflammatory M1 to the quiescent M2 type. We assessed the role of SAP in a murine model of disseminated candidiasis. Mice were injected with human SAP subcutaneously (SQ) followed by intravenous injection of Candida albicans. Male, BALBcJ mice were administered 2 mg human SAP or the homologous human pro-inflammatory pentraxin CRP, SQ on day −1 followed by 1 mg on days 0 thru 4; yeast cells were administered intravenously on day 0. Mice not receiving a pentraxin were morbid on day 1, surviving 4−7 days. Mice administered SAP survived longer than mice receiving yeast cells alone (p < 0.022), although all mice died. Mice given CRP died faster than mice receiving yeast cells alone (p < 0.017). Miridesap is a molecule that avidly binds SAP, following which the complex is broken down by the liver. Miridesap administered in the drinking water removed SAP from the serum and yeast cells and significantly prolonged the life of mice (p < 0.020). Some were “cured” of candidiasis. SAP administered early in the septic process provided short-lived benefit to mice, probably by blunting cytokine secretion associated with disseminated candidiasis. The most important finding was that removal of SAP with miridesap led to prolonged survival by removing SAP and preventing its dampening effects on the host immune response.
Collapse
|
5
|
Blocking Serum Amyloid-P Component from Binding to Macrophages and Augmenting Fungal Functional Amyloid Increases Macrophage Phagocytosis of Candida albicans. Pathogens 2022; 11:pathogens11091000. [PMID: 36145432 PMCID: PMC9505788 DOI: 10.3390/pathogens11091000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/19/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Candida-macrophage interactions are important immune defense responses associated with disseminated and deep-seated candidiasis in humans. Cells of Candida spp. express functional amyloids on their surfaces during the pathogenesis of disseminated candidiasis. These amyloids become decorated with serum amyloid P-component (SAP) that binds to Candida cells and macrophages and downregulates the cellular and cytokine response to the fungi. In this report, further characterization of the interactions of SAP and fungal functional amyloid are demonstrated. Blocking the binding of SAP to macrophage FcγR1 receptors increases phagocytosis of yeast cells; seeding a pro-amyloid-forming peptide on the yeast cell surface also increases phagocytosis of yeasts by macrophages; and, lastly, miridesap, a small palindromic molecule, prevents binding of SAP to yeasts and removes SAP that is bound to C. albicans thus, potentially increasing phagocytosis of yeasts by macrophages. Some, or all, of these interventions may be useful in boosting the host immune response to disseminated candidiasis.
Collapse
|
6
|
Li Y, Fu Y, Zhang H, Wang X, Chen T, Wu Y, Xu X, Yang S, Ji P, Song J. Natural Plant Tissue with Bioinspired Nano Amyloid and Hydroxyapatite as Green Scaffolds for Bone Regeneration. Adv Healthc Mater 2022; 11:e2102807. [PMID: 35285169 DOI: 10.1002/adhm.202102807] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/02/2022] [Indexed: 12/17/2022]
Abstract
Bone defects have been increasingly prevalent around the globe and traditional bone substitutes are constantly limited by low abundance and biosafety due to their animal-based resources. Plant-based scaffolds are currently studied as a green candidate but the bioinertia of cellulose to mammalian cells leads to uncertain bone regeneration. Inspired by the cross-kingdom adhesion of plants and bacteria, this work proposes a concept of a novel plant bone substitute, involving coating decellularized plant with nano amyloids and nano hydroxyapatites, to bridge the plant scaffold and animal tissue regeneration. Natural microporosity of plants can guide alignment of mammalian cells into various organ-like structures. Taking advantage of the bioactive nano amyloids, the scaffolds drastically promote cell adhesion, viability, and proliferation. The enhanced bio-affinity is elucidated as positively charged nano amyloids and serum deposition on the nanostructure. Nano-hydroxyapatite crystals deposited on amyloid further prompt osteogenic differentiation of pre-osteoblasts. In vivo experiments prove successful trabeculae regeneration in the scaffold. Such a hierarchical design leverages the dedicated microstructure of natural plants and high bioactivity of nano amyloid/hydroxyapatite coatings, and addresses the abundant resource of bone substitutes. Not limited to their current application, plant materials functionalized with nano amyloid/hydroxyapatite coatings allow many cross-kingdom tissue engineering and biomedical applications.
Collapse
Affiliation(s)
- Yuzhou Li
- Stomatological Hospital of Chongqing Medical University Chongqing 401147 P.R. China
| | - Yiru Fu
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education Chongqing 401147 P.R. China
| | - He Zhang
- Stomatological Hospital of Chongqing Medical University Chongqing 401147 P.R. China
| | - Xu Wang
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences Chongqing 401147 P.R. China
| | - Tao Chen
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences Chongqing 401147 P.R. China
| | - Yanqiu Wu
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences Chongqing 401147 P.R. China
| | - Xinxin Xu
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education Chongqing 401147 P.R. China
| | - Sheng Yang
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences Chongqing 401147 P.R. China
| | - Ping Ji
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education Chongqing 401147 P.R. China
| | - Jinlin Song
- Stomatological Hospital of Chongqing Medical University Chongqing 401147 P.R. China
| |
Collapse
|
7
|
Parente R, Possetti V, Erreni M, D'Autilia F, Bottazzi B, Garlanda C, Mantovani A, Inforzato A, Doni A. Complementary Roles of Short and Long Pentraxins in the Complement-Mediated Immune Response to Aspergillus fumigatus Infections. Front Immunol 2021; 12:785883. [PMID: 34868070 PMCID: PMC8637271 DOI: 10.3389/fimmu.2021.785883] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/01/2021] [Indexed: 01/08/2023] Open
Abstract
The ubiquitous mold Aspergillus fumigatus is the major etiologic agent of invasive aspergillosis, a life-threatening infection amongst immune compromised individuals. An increasing body of evidence indicates that effective disposal of A. fumigatus requires the coordinate action of both cellular and humoral components of the innate immune system. Early recognition of the fungal pathogen, in particular, is mediated by a set of diverse soluble pattern recognition molecules (PRMs) that act as "ancestral antibodies" inasmuch as they are endowed with opsonic, pro-phagocytic and killing properties. Pivotal is, in this respect, the contribution of the complement system, which functionally cooperates with cell-borne pattern recognition receptors (PRRs) and other soluble PRMs, including pentraxins. Indeed, complement and pentraxins form an integrated system with crosstalk, synergism, and regulation, which stands as a paradigm of the interplay between PRMs in the mounting and orchestration of antifungal immunity. Following upon our past experience with the long pentraxin PTX3, a well-established immune effector in the host response to A. fumigatus, we recently reported that this fungal pathogen is targeted in vitro and in vivo by the short pentraxin Serum Amyloid P component (SAP) too. Similar to PTX3, SAP promotes phagocytosis and disposal of the fungal pathogen via complement-dependent pathways. However, the two proteins exploit different mechanisms of complement activation and receptor-mediated phagocytosis, which further extends complexity and integration of the complement-pentraxin crosstalk in the immune response to A. fumigatus. Here we revisit this crosstalk in light of the emerging roles of SAP as a novel PRM with antifungal activity.
Collapse
Affiliation(s)
- Raffaella Parente
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Milan, Italy
| | - Valentina Possetti
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Milan, Italy
| | - Marco Erreni
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Francesca D'Autilia
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Milan, Italy
| | - Barbara Bottazzi
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Milan, Italy
| | - Cecilia Garlanda
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Alberto Mantovani
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Milan, Italy.,The William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Antonio Inforzato
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Andrea Doni
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Milan, Italy
| |
Collapse
|
8
|
The Role of Macrophages in the Host's Defense against Sporothrix schenckii. Pathogens 2021; 10:pathogens10070905. [PMID: 34358055 PMCID: PMC8308788 DOI: 10.3390/pathogens10070905] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/07/2021] [Accepted: 07/14/2021] [Indexed: 01/19/2023] Open
Abstract
The role of immune cells associated with sporotrichosis caused by Sporothrix schenckii is not yet fully clarified. Macrophages through pattern recognition receptors (PRRs) can recognize pathogen-associated molecular patterns (PAMPs) of Sporothrix, engulf it, activate respiratory burst, and secrete pro-inflammatory or anti-inflammatory biological mediators to control infection. It is important to consider that the characteristics associated with S. schenckii and/or the host may influence macrophage polarization (M1/M2), cell recruitment, and the type of immune response (1, 2, and 17). Currently, with the use of new monocyte-macrophage cell lines, it is possible to evaluate different host-pathogen interaction processes, which allows for the proposal of new mechanisms in human sporotrichosis. Therefore, in order to contribute to the understanding of these host-pathogen interactions, the aim of this review is to summarize and discuss the immune responses induced by macrophage-S. schenckii interactions, as well as the PRRs and PAMPs involved during the recognition of S. schenckii that favor the immune evasion by the fungus.
Collapse
|
9
|
Holubová M, Lobaz V, Loukotová L, Rabyk M, Hromádková J, Trhlíková O, Pechrová Z, Groborz O, Štěpánek P, Hrubý M. Does polysaccharide glycogen behave as a promoter of amyloid fibril formation at physiologically relevant concentrations? SOFT MATTER 2021; 17:1628-1641. [PMID: 33355589 DOI: 10.1039/d0sm01884h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We investigated the influence of glycogen (GG), phytoglycogen (PG), mannan (MAN) and cinnamoyl-modified GG (GG-CIN) on amyloid fibril formation. We used hen egg-white lysozyme (HEWL) as a model system and amyloid beta peptide (1-42) (Aβ1-42) as an Alzheimer's disease-relevant system. For brief detection of fibrils was used thioflavin T (ThT) fluorescence assay and the results were confirmed by transmission electron microscopy (TEM). We also deal with the interaction of polysaccharides and HEWL with isothermal titration calorimetry (ITC) and dynamic light scattering (DLS). We found that all polysaccharides accelerated the formation of amyloid fibrils from both HEWL and Aβ1-42. At high but physiologically relevant concentrations of GG, amyloid fibril formation was extremely accelerated for HEWL. Therefore, on the basis of the herein presented in vitro data, we hypothesize, that dietary d-glucose intake may influence amyloid fibril formation not only by influencing regulatory pathways, but also by direct glycogen-amyloid precursor protein molecular interaction, as glycogen levels in tissues are highly dependent on d-glucose intake.
Collapse
Affiliation(s)
- Monika Holubová
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovský Sq. 2, 162 06 Prague 6, Czech Republic. and Charles University in Prague, Faculty of Science, Albertov 6, 128 43 Prague 2, Czech Republic
| | - Volodymyr Lobaz
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovský Sq. 2, 162 06 Prague 6, Czech Republic.
| | - Lenka Loukotová
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovský Sq. 2, 162 06 Prague 6, Czech Republic.
| | - Mariia Rabyk
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovský Sq. 2, 162 06 Prague 6, Czech Republic.
| | - Jiřina Hromádková
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovský Sq. 2, 162 06 Prague 6, Czech Republic.
| | - Olga Trhlíková
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovský Sq. 2, 162 06 Prague 6, Czech Republic.
| | - Zdislava Pechrová
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovský Sq. 2, 162 06 Prague 6, Czech Republic.
| | - Ondřej Groborz
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovský Sq. 2, 162 06 Prague 6, Czech Republic. and Charles University in Prague, Faculty of Science, Albertov 6, 128 43 Prague 2, Czech Republic
| | - Petr Štěpánek
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovský Sq. 2, 162 06 Prague 6, Czech Republic.
| | - Martin Hrubý
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovský Sq. 2, 162 06 Prague 6, Czech Republic.
| |
Collapse
|
10
|
González-Sanmiguel J, Schuh CMAP, Muñoz-Montesino C, Contreras-Kallens P, Aguayo LG, Aguayo S. Complex Interaction between Resident Microbiota and Misfolded Proteins: Role in Neuroinflammation and Neurodegeneration. Cells 2020; 9:E2476. [PMID: 33203002 PMCID: PMC7697492 DOI: 10.3390/cells9112476] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/02/2020] [Accepted: 11/10/2020] [Indexed: 12/13/2022] Open
Abstract
Neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD) and Creutzfeldt-Jakob disease (CJD) are brain conditions affecting millions of people worldwide. These diseases are associated with the presence of amyloid-β (Aβ), alpha synuclein (α-Syn) and prion protein (PrP) depositions in the brain, respectively, which lead to synaptic disconnection and subsequent progressive neuronal death. Although considerable progress has been made in elucidating the pathogenesis of these diseases, the specific mechanisms of their origins remain largely unknown. A body of research suggests a potential association between host microbiota, neuroinflammation and dementia, either directly due to bacterial brain invasion because of barrier leakage and production of toxins and inflammation, or indirectly by modulating the immune response. In the present review, we focus on the emerging topics of neuroinflammation and the association between components of the human microbiota and the deposition of Aβ, α-Syn and PrP in the brain. Special focus is given to gut and oral bacteria and biofilms and to the potential mechanisms associating microbiome dysbiosis and toxin production with neurodegeneration. The roles of neuroinflammation, protein misfolding and cellular mediators in membrane damage and increased permeability are also discussed.
Collapse
Affiliation(s)
| | - Christina M. A. P. Schuh
- Centro de Medicina Regenerativa, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago 7710162, Chile; (C.M.A.P.S.); (P.C.-K.)
| | - Carola Muñoz-Montesino
- Department of Physiology, Universidad de Concepción, Concepción 4070386, Chile; (J.G.-S.); (C.M.-M.)
| | - Pamina Contreras-Kallens
- Centro de Medicina Regenerativa, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago 7710162, Chile; (C.M.A.P.S.); (P.C.-K.)
| | - Luis G. Aguayo
- Department of Physiology, Universidad de Concepción, Concepción 4070386, Chile; (J.G.-S.); (C.M.-M.)
- Program on Neuroscience, Psychiatry and Mental Health, Universidad de Concepción, Concepción 4070386, Chile
| | - Sebastian Aguayo
- School of Dentistry, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| |
Collapse
|
11
|
Beg AZ, Khan AU. Motifs and interface amino acid-mediated regulation of amyloid biogenesis in microbes to humans: potential targets for intervention. Biophys Rev 2020; 12:1249-1256. [PMID: 32930961 DOI: 10.1007/s12551-020-00759-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 09/04/2020] [Indexed: 02/08/2023] Open
Abstract
Amyloids are linked to many debilitating diseases in mammals. Some organisms produce amyloids that have a functional role in the maintenance of their biological processes. Microbes utilize functional bacterial amyloids (FuBA) for pathogenicity and infections. Amyloid biogenesis is regulated differentially in various systems to avoid its toxic accumulation. A familiar feature in the process of amyloid biogenesis from humans to microbes is its regulation by protein-protein interactions (PPI). The spatial arrangement of amino acid residues in proteins generates topologies like flat interface and linear motif, which participate in protein interactions. Motifs and interface residue-mediated interactions have a direct or an indirect impact on amyloid secretion and assembly. Some motifs undergo post-translational modifications (PTM), which effects interactions and dynamics of the amyloid biogenesis cascade. Interaction-induced local changes stimulate global conformational transitions in the PPI complex, which indirectly affects amyloid formation. Perturbation of such motifs and interface residues results in amyloid abolishment. Interface residues, motifs and their respective interactive protein partners could serve as potential targets for intervention to inhibit amyloid biogenesis.
Collapse
Affiliation(s)
- Ayesha Z Beg
- Medical Microbiology and Molecular Biology, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, India
| | - Asad U Khan
- Medical Microbiology and Molecular Biology, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
12
|
Guzman Beltrán S, Sanchez Morales J, González Canto A, Escalona Montaño A, Torres Guerrero H. Human serum proteins bind to Sporothrix schenckii conidia with differential effects on phagocytosis. Braz J Microbiol 2020; 52:33-39. [PMID: 32382937 DOI: 10.1007/s42770-020-00276-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 04/16/2020] [Indexed: 01/10/2023] Open
Abstract
Serum is an important source of proteins that interact with pathogens. Once bound to the cell surface, serum proteins can stimulate the innate immune system. The phagocytosis of Sporothrix schenckii conidia by human macrophages is activated through human serum opsonisation. In this study, we have attempted to characterise human blood serum proteins that bind to the cell wall of S. schenckii conidia. We systematically observed the same four proteins independent of the plasma donor: albumin, serum amyloid protein (SAP), α-1 antitrypsin (AAT), and transferrin were identified with the help of tandem mass spectrometry. Phagocytosis depended on the concentration of the SAP or α-1 antitrypsin that was used to opsonise the conidia; however, transferrin or albumin did not have any effect on conidia internalisation. The presence of mannose did not affect macrophage phagocytosis of the conidia opsonised with SAP or α-1 antitrypsin, which suggests that these proteins are not recognised by the mannose receptor.
Collapse
Affiliation(s)
- Silvia Guzman Beltrán
- Departamento de Investigación en Microbiología, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Ciudad de México, 14502, Mexico
| | - Jazmín Sanchez Morales
- Unidad de Investigación en Medicina Experimental, Micología Básica, Facultad de Medicina, Universidad Nacional Autónoma de México, Hospital General de México "Dr. Eduardo Liceaga", Ciudad de México, Mexico
| | - Augusto González Canto
- Unidad de Investigación en Medicina Experimental, Patología Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Hospital General de México "Dr. Eduardo Liceaga", Ciudad de México, Mexico
| | - Alma Escalona Montaño
- Unidad Periferica de la Facultad de Medicina, Unidad de Investigación en Medicina Traslacional. Inmunobioquímica Molecular y Cardiopatías, Ciudad de México, 14080, Mexico
| | - Haydee Torres Guerrero
- Unidad de Investigación en Medicina Experimental, Micología Básica, Facultad de Medicina, Universidad Nacional Autónoma de México, Hospital General de México "Dr. Eduardo Liceaga", Ciudad de México, Mexico.
| |
Collapse
|
13
|
Dehullu J, Valotteau C, Herman-Bausier P, Garcia-Sherman M, Mittelviefhaus M, Vorholt JA, Lipke PN, Dufrêne YF. Fluidic Force Microscopy Demonstrates That Homophilic Adhesion by Candida albicans Als Proteins Is Mediated by Amyloid Bonds between Cells. NANO LETTERS 2019; 19:3846-3853. [PMID: 31038969 PMCID: PMC6638552 DOI: 10.1021/acs.nanolett.9b01010] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The fungal pathogen Candida albicans frequently forms drug-resistant biofilms in hospital settings and in chronic disease patients. Cell adhesion and biofilm formation involve a family of cell surface Als (agglutinin-like sequence) proteins. It is now well documented that amyloid-like clusters of laterally arranged Als proteins activate cell-cell adhesion under mechanical stress, but whether amyloid-like bonds form between aggregating cells is not known. To address this issue, we measure the forces driving Als5-mediated intercellular adhesion using an innovative fluidic force microscopy platform. Strong cell-cell adhesion is dependent on expression of amyloid-forming Als5 at high cell surface density and is inhibited by a short antiamyloid peptide. Furthermore, there is greatly attenuated binding between cells expressing amyloid-forming Als5 and cells with a nonamyloid form of Als5. Thus, homophilic bonding between Als5 proteins on adhering cells is the major mode of fungal aggregation, rather than protein-ligand interactions. These results point to a model whereby amyloid-like β-sheet interactions play a dual role in cell-cell adhesion, that is, in formation of adhesin nanoclusters ( cis-interactions) and in homophilic bonding between amyloid sequences on opposing cells ( trans-interactions). Because potential amyloid-forming sequences are found in many microbial adhesins, we speculate that this novel mechanism of amyloid-based homophilic adhesion might be widespread and could represent an interesting target for treating biofilm-associated infections.
Collapse
Affiliation(s)
- Jérôme Dehullu
- Institute of Life Sciences, Université catholique de Louvain, Croix du Sud, 4-5, bte L7.07.06, B-1348 Louvain-la-Neuve, Belgium
| | - Claire Valotteau
- Institute of Life Sciences, Université catholique de Louvain, Croix du Sud, 4-5, bte L7.07.06, B-1348 Louvain-la-Neuve, Belgium
| | - Philippe Herman-Bausier
- Institute of Life Sciences, Université catholique de Louvain, Croix du Sud, 4-5, bte L7.07.06, B-1348 Louvain-la-Neuve, Belgium
| | - Melissa Garcia-Sherman
- Biology Department, City University of New York Brooklyn College, 2900 Bedford Avenue, Brooklyn, New York 11210 United States
| | | | - Julia A. Vorholt
- Institute of Microbiology, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Peter N. Lipke
- Biology Department, City University of New York Brooklyn College, 2900 Bedford Avenue, Brooklyn, New York 11210 United States
| | - Yves F. Dufrêne
- Institute of Life Sciences, Université catholique de Louvain, Croix du Sud, 4-5, bte L7.07.06, B-1348 Louvain-la-Neuve, Belgium
- Walloon Excellence in Life sciences and Biotechnology (WELBIO), 4000 Liege, Belgium
| |
Collapse
|
14
|
Serum Amyloid P Component Binds Fungal Surface Amyloid and Decreases Human Macrophage Phagocytosis and Secretion of Inflammatory Cytokines. mBio 2019; 10:mBio.00218-19. [PMID: 30862745 PMCID: PMC6414697 DOI: 10.1128/mbio.00218-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In patients with invasive fungal diseases, there is often little cellular inflammatory response. We tested the idea that binding of the human constitutive plasma protein serum amyloid P component (SAP) (also called PTX2) to Candida albicans dampens the innate immune response to this fungus. Many pathogenic fungi have cell surface amyloid-like structures important for adhesion and biofilm formation. Human SAP bound to fungi that expressed functional cell surface amyloid, but SAP had minimal binding to fungi with reduced expression of cell surface amyloid. In the absence of SAP, phagocytosis of fungi by human macrophages was potentiated by expression of amyloid on the fungi. SAP binding to fungi inhibited their phagocytosis by macrophages. Macrophages pretreated with SAP displayed reduced fungal phagocytosis, reduced secretion of inflammatory cytokines (IFN-γ, IL-6, and TNF-α), and increased secretion of the anti-inflammatory cytokine IL-10. SAP bound to fungi or added to the medium upregulated the expression of the anti-inflammatory receptor CD206 on macrophages. These findings suggest that SAP bound to amyloid-like structures on fungal cells dampens the host cellular immune response in fungal diseases such as invasive candidiasis.IMPORTANCE Macrophages are a key part of our innate immune system and are responsible for recognizing invading microbes, ingesting them, and sending appropriate signals to other immune cells. We have found that human macrophages can recognize invading yeast pathogens that have a specific molecular pattern of proteins on their surfaces: these proteins have structures similar to the structures of amyloid aggregates in neurodegenerative diseases like Alzheimer's disease. However, this surface pattern also causes the fungi to bind a serum protein called serum amyloid P component (SAP). In turn, the SAP-coated yeasts are poorly recognized and seldom ingested by the macrophages, and the macrophages have a more tolerant and less inflammatory response in the presence of SAP. Therefore, we find that surface structures on the yeast can alter how the macrophages react to invading microbes.
Collapse
|
15
|
Golconda U, Sobonya RE, Klotz SA. Do Pentraxins Bind to Fungi in Invasive Human Gastrointestinal Candidiasis? J Fungi (Basel) 2018; 4:jof4030111. [PMID: 30227609 PMCID: PMC6162546 DOI: 10.3390/jof4030111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 09/14/2018] [Indexed: 11/18/2022] Open
Abstract
Tissue from 13 autopsy cases with invasive gastrointestinal candidiasis was studied for the binding of the pentraxins, C-reactive protein (CRP), pentraxin 3 (PTX3), and serum amyloid P component (SAP) to fungal surfaces. Invasive candidal infection was demonstrated using a hematoxylin and eosin stain and a Gomori methenamine silver stain (GMS). Immunohistochemistry was performed with CRP and PTX3 monoclonal antibodies and did not demonstrate CRP or PTX3 bound to fungi (0 of 13 cases), although CRP was extensively deposited on human tissue. A polyclonal antibody to SAP showed that SAP was bound to fungi in 12 of 13 cases. Although all three pentraxins have been reported to bind to fungi or bacteria, only SAP was bound to filamentous and yeast forms of Candida in human tissue, as detected by immunohistochemistry. SAP was abundantly present on fungi and may have affected the host innate immune response to the invading fungi.
Collapse
Affiliation(s)
- Umamaheshwari Golconda
- Department of Pathology, University of Arizona College of Medicine, Tucson, AZ 85724, USA.
| | - Richard E Sobonya
- Department of Pathology, University of Arizona College of Medicine, Tucson, AZ 85724, USA.
| | - Stephen A Klotz
- Division of Infections Diseases, Department of Medicine, University of Arizona College of Medicine, Tucson, AZ 85724, USA.
| |
Collapse
|
16
|
Abstract
Various fungi and bacteria can colonize in the brain and produce physical alterations seen in Alzheimer’s disease (AD). Environmental and genetic factors affect the occurrence of fungal colonization, and how fungi can grow, enter the brain, and interact with the innate immune system. The essence of AD development is the defeat of the innate immune system, whether through vulnerable patient health status or treatment that suppresses inflammation by suppressing the innate immune system. External and mechanical factors that lead to inflammation are a door for pathogenic opportunity. Current research associates the presence of fungi in the etiology of AD and is shown in cerebral tissue at autopsy. From the time of the discovery of AD, much speculation exists for an infective cause. Identifying any AD disease organism is obscured by processes that can take place over years. Amyloid protein deposits are generally considered to be evidence of an intrinsic response to stress or imbalance, but instead amyloid may be evidence of the innate immune response which exists to destroy fungal colonization through structural interference and cytotoxicity. Fungi can remain ensconced for a long time in niches or inside cells, and it is the harboring of fungi that leads to repeated reinfection and slow wider colonization that eventually leads to a grave outcome. Although many fungi and bacteria are associated with AD affected tissues, discussion here focuses on Candida albicans as the archetype of human fungal pathology because of its wide proliferation as a commensal fungus, extensive published research, numerous fungal morphologies, and majority proliferation in AD tissues.
Collapse
Affiliation(s)
- Bodo Parady
- Children's Hospital Oakland Research Institute, Oakland, CA, USA.,Visiting Scholar, University of California, Berkeley, Berkeley CA, USA
| |
Collapse
|
17
|
Amyloid-Like β-Aggregates as Force-Sensitive Switches in Fungal Biofilms and Infections. Microbiol Mol Biol Rev 2017; 82:82/1/e00035-17. [PMID: 29187516 DOI: 10.1128/mmbr.00035-17] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Cellular aggregation is an essential step in the formation of biofilms, which promote fungal survival and persistence in hosts. In many of the known yeast cell adhesion proteins, there are amino acid sequences predicted to form amyloid-like β-aggregates. These sequences mediate amyloid formation in vitro. In vivo, these sequences mediate a phase transition from a disordered state to a partially ordered state to create patches of adhesins on the cell surface. These β-aggregated protein patches are called adhesin nanodomains, and their presence greatly increases and strengthens cell-cell interactions in fungal cell aggregation. Nanodomain formation is slow (with molecular response in minutes and the consequences being evident for hours), and strong interactions lead to enhanced biofilm formation. Unique among functional amyloids, fungal adhesin β-aggregation can be triggered by the application of physical shear force, leading to cellular responses to flow-induced stress and the formation of robust biofilms that persist under flow. Bioinformatics analysis suggests that this phenomenon may be widespread. Analysis of fungal abscesses shows the presence of surface amyloids in situ, a finding which supports the idea that phase changes to an amyloid-like state occur in vivo. The amyloid-coated fungi bind the damage-associated molecular pattern receptor serum amyloid P component, and there may be a consequential modulation of innate immune responses to the fungi. Structural data now suggest mechanisms for the force-mediated induction of the phase change. We summarize and discuss evidence that the sequences function as triggers for protein aggregation and subsequent cellular aggregation, both in vitro and in vivo.
Collapse
|
18
|
Cao GJ, Xing ZF, Hua L, Ji YH, Sun JB, Zhao Z. Evaluation of the diagnostic performance of panfungal polymerase chain reaction assay in invasive fungal diseases. Exp Ther Med 2017; 14:4208-4214. [PMID: 29104637 PMCID: PMC5658737 DOI: 10.3892/etm.2017.5081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 06/02/2017] [Indexed: 11/12/2022] Open
Abstract
Timely diagnosis of invasive fungal diseases (IFDs) is important, as delays in treatment initiation are associated with increased mortality rates. However, early diagnosis of IFDs in immunocompromised patients remains difficult. The conventional diagnostic methods currently used for IFDs are not sufficiently effective. Molecular tests, such as polymerase chain reaction (PCR)-based assays, have great potential to improve the early diagnosis of IFDs due to their sensitivity and specificity. In the present study, the diagnostic performance of panfungal PCR assays in IFD patients who received bone marrow transplantation was evaluated. The results suggested that panfungal PCR assay offered a quick and convenient guide for clinical decision-making by identifying higher numbers of fungal species in comparison with the conventional blood culture method. Furthermore, panfungal PCR assay exhibited a sensitivity of 93% and a specificity of 71% in the diagnosis of IFD patients based on the EORTC/MSG criteria. Thus, the present study concluded that the reported PCR-based method was effective and sensitive in early IFD diagnosis and should be integrated into clinical decision-making for the treatment of IFDs in the future.
Collapse
Affiliation(s)
- Guo-Jun Cao
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Zhi-Fang Xing
- Department of Blood Transfusion, Minhang Hospital, Fudan University, Shanghai 201199, P.R. China
| | - Li Hua
- Department of Clinical Laboratory, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Yu-Hua Ji
- Department of Clinical Laboratory, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Jia-Bin Sun
- Department of Clinical Laboratory, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Zhen Zhao
- Department of Clinical Laboratory, Minhang Hospital, Fudan University, Shanghai 201199, P.R. China
| |
Collapse
|
19
|
Exposure to the Functional Bacterial Amyloid Protein Curli Enhances Alpha-Synuclein Aggregation in Aged Fischer 344 Rats and Caenorhabditis elegans. Sci Rep 2016; 6:34477. [PMID: 27708338 PMCID: PMC5052651 DOI: 10.1038/srep34477] [Citation(s) in RCA: 292] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 09/14/2016] [Indexed: 02/08/2023] Open
Abstract
Misfolded alpha-synuclein (AS) and other neurodegenerative disorder proteins display prion-like transmission of protein aggregation. Factors responsible for the initiation of AS aggregation are unknown. To evaluate the role of amyloid proteins made by the microbiota we exposed aged rats and transgenic C. elegans to E. coli producing the extracellular bacterial amyloid protein curli. Rats exposed to curli-producing bacteria displayed increased neuronal AS deposition in both gut and brain and enhanced microgliosis and astrogliosis compared to rats exposed to either mutant bacteria unable to synthesize curli, or to vehicle alone. Animals exposed to curli producing bacteria also had more expression of TLR2, IL-6 and TNF in the brain than the other two groups. There were no differences among the rat groups in survival, body weight, inflammation in the mouth, retina, kidneys or gut epithelia, and circulating cytokine levels. AS-expressing C. elegans fed on curli-producing bacteria also had enhanced AS aggregation. These results suggest that bacterial amyloid functions as a trigger to initiate AS aggregation through cross-seeding and also primes responses of the innate immune system.
Collapse
|
20
|
Curli mediate bacterial adhesion to fibronectin via tensile multiple bonds. Sci Rep 2016; 6:33909. [PMID: 27652888 PMCID: PMC5031991 DOI: 10.1038/srep33909] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 09/02/2016] [Indexed: 01/25/2023] Open
Abstract
Many enteric bacteria including pathogenic Escherichia coli and Salmonella strains produce curli fibers that bind to host surfaces, leading to bacterial internalization into host cells. By using a nanomechanical force-sensing approach, we obtained real-time information about the distribution of molecular bonds involved in the adhesion of curliated bacteria to fibronectin. We found that curliated E. coli and fibronectin formed dense quantized and multiple specific bonds with high tensile strength, resulting in tight bacterial binding. Nanomechanical recognition measurements revealed that approximately 10 bonds were disrupted either sequentially or simultaneously under force load. Thus the curli formation of bacterial surfaces leads to multi-bond structural components of fibrous nature, which may explain the strong mechanical binding of curliated bacteria to host cells and unveil the functions of these proteins in bacterial internalization and invasion.
Collapse
|
21
|
Klotz SA, Sobonya RE, Lipke PN, Garcia-Sherman MC. Serum Amyloid P Component and Systemic Fungal Infection: Does It Protect the Host or Is It a Trojan Horse? Open Forum Infect Dis 2016; 3:ofw166. [PMID: 27704020 PMCID: PMC5047411 DOI: 10.1093/ofid/ofw166] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 07/28/2016] [Indexed: 02/07/2023] Open
Abstract
It is a striking observation that tissue of patients invaded by the deep mycoses often lacks evidence of an inflammatory response. This lack of host response is often attributed to neutropenia secondary to chemotherapy. However, systematic studies do not support this simplistic explanation. However, invasive fungal lesions are characterized by abundant fungal functional amyloid, which in turn is bound by serum amyloid P component (SAP). We postulate that SAP is important in the local immune response in invasive fungal infections. The interaction between fungal functional amyloid, SAP, and the immune response in deep mycoses is discussed.
Collapse
Affiliation(s)
| | | | - Peter N Lipke
- Department of Biology , City University of New York at Brooklyn
| | | |
Collapse
|
22
|
CD4(+) T-cell survival in the GI tract requires dectin-1 during fungal infection. Mucosal Immunol 2016; 9:492-502. [PMID: 26349660 PMCID: PMC4677461 DOI: 10.1038/mi.2015.79] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 07/28/2015] [Indexed: 02/04/2023]
Abstract
Dectin-1 is an innate antifungal C-type lectin receptor necessary for protective antifungal immunity. We recently discovered that Dectin-1 is involved in controlling fungal infections of the gastrointestinal (GI) tract, but how this C-type lectin receptor mediates these activities is unknown. Here, we show that Dectin-1 is essential for driving fungal-specific CD4(+) T-cell responses in the GI tract. Loss of Dectin-1 resulted in abrogated dendritic cell responses in the mesenteric lymph nodes (mLNs) and defective T-cell co-stimulation, causing substantial increases in CD4(+) T-cell apoptosis and reductions in the cellularity of GI-associated lymphoid tissues. CD8(+) T-cell responses were unaffected by Dectin-1 deficiency. These functions of Dectin-1 have significant implications for our understanding of intestinal immunity and susceptibility to fungal infections.
Collapse
|
23
|
The Human Disease-Associated Aβ Amyloid Core Sequence Forms Functional Amyloids in a Fungal Adhesin. mBio 2016; 7:e01815-15. [PMID: 26758179 PMCID: PMC4725003 DOI: 10.1128/mbio.01815-15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
UNLABELLED There is increasing evidence that many amyloids in living cells have physiological functions. On the surfaces of fungal cells, amyloid core sequences in adhesins can aggregate into 100- to 1,000-nm-wide patches to form high-avidity adhesion nanodomains on the cell surface. The nanodomains form through interactions that have amyloid-like properties: binding of amyloid dyes, perturbation by antiamyloid agents, and interaction with homologous sequences. To test whether these functional interactions are mediated by typical amyloid interactions, we substituted an amyloid core sequence, LVFFA, from human Aβ protein for the native sequence IVIVA in the 1,419-residue Candida albicans adhesin Als5p. The chimeric protein formed cell surface nanodomains and mediated cellular aggregation. The native sequence and chimeric adhesins responded similarly to the amyloid dye thioflavin T and to amyloid perturbants. However, unlike the native protein, the nanodomains formed by the chimeric protein were not force activated and formed less-robust aggregates under flow. These results showed the similarity of amyloid interactions in the amyloid core sequences of native Als5p and Aβ, but they also highlighted emergent properties of the native sequence. Also, a peptide composed of the Aβ amyloid sequence flanked by amino acids from the adhesin formed two-dimensional sheets with sizes similar to the cell surface patches of the adhesins. These results inform an initial model for the structure of fungal cell surface amyloid nanodomains. IMPORTANCE Protein amyloid aggregates are markers of neurodegenerative diseases such as Alzheimer's and Parkinsonism. Nevertheless, there are also functional amyloids, including biofilm-associated amyloids in bacteria and fungi. In fungi, glycoprotein adhesins aggregate into cell surface patches through amyloid-like interactions, and the adhesin clustering strengthens cell-cell binding. These fungal surface amyloid nanodomains mediate biofilm persistence under flow, and they also moderate host inflammatory responses in fungal infections. To determine whether the amyloid-like properties of fungal surface nanodomains are sequence specific, we ask whether a disease-associated amyloid core sequence has properties equivalent to those of the native sequence in a fungal adhesin. A chimeric adhesin with an amyloid sequence from the Alzheimer's disease protein Aβ instead of its native sequence effectively clustered the adhesins on the cell surface, but it showed a different response to hydrodynamic shear. These results begin an analysis of the sequence dependence for newly discovered activities for fungal surface amyloid nanodomains.
Collapse
|
24
|
Garcia-Sherman MC, Lundberg T, Sobonya RE, Lipke PN, Klotz SA. A unique biofilm in human deep mycoses: fungal amyloid is bound by host serum amyloid P component. NPJ Biofilms Microbiomes 2015; 1. [PMID: 26366292 PMCID: PMC4563996 DOI: 10.1038/npjbiofilms.2015.9] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND/OBJECTIVES We have demonstrated the presence of Candida cell surface amyloids that are important in aggregation of fungi and adherence to tissue. Fungal amyloid was present in invasive human candidal infections and host serum amyloid P component (SAP) bound to the fungal amyloid. SAP is a protease-resistant glycoprotein that binds avidly to amyloid and interferes with host defence, especially against bacterial pathogens for which neutrophils are important. In this study, we investigated whether biofilm of fungal amyloid and SAP was a feature of other disseminated fungal infections. METHODS Tissue specimens from 15 autopsies were systematically evaluated with multiple histochemical stains including thioflavin T and Congo red (dyes that stain amyloid), as well as antibody to SAP. We studied specimens with disseminated aspergillosis, mucormycosis and coccidioidomycosis. The structure of the lesions, host inflammatory cells and the presence of fungal amyloid and SAP were determined. RESULTS The structure of the lesions was characteristic in aspergillosis ('starburst') and mucormycosis (closely apposed bundles of hyphae). Host inflammatory cells were absent or few in number within these lesions. In Coccidioides lesions, host inflammation was sparse as well. Fungal amyloid was a prominent feature of all lesions along with abundant SAP bound to hyphae and spherules. Fungal amyloid and SAP perhaps contributed to persistence in caseous necrosis lesions. SAP also bound to Aspergillus and Mucorales amyloid in vitro. CONCLUSIONS A biofilm including amyloid and SAP is present in invasive fungal infections. This biofilm may dampen host defence leading to the characteristic sparse inflammatory reaction found in these infections.
Collapse
Affiliation(s)
| | - Tracy Lundberg
- Department of Pathology, University of Arizona, Tucson, AZ, USA
| | | | - Peter N Lipke
- Department of Biology, City University of New York, Brooklyn College, Brooklyn, NY, USA
| | - Stephen A Klotz
- Department of Medicine, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
25
|
Chan CXJ, Joseph IG, Huang A, Jackson DN, Lipke PN. Quantitative Analyses of Force-Induced Amyloid Formation in Candida albicans Als5p: Activation by Standard Laboratory Procedures. PLoS One 2015; 10:e0129152. [PMID: 26047318 PMCID: PMC4457901 DOI: 10.1371/journal.pone.0129152] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 05/05/2015] [Indexed: 11/18/2022] Open
Abstract
Candida albicans adhesins have amyloid-forming sequences. In Als5p, these amyloid sequences cluster cell surface adhesins to create high avidity surface adhesion nanodomains. Such nanodomains form after force is applied to the cell surface by atomic force microscopy or laminar flow. Here we report centrifuging and resuspending S. cerevisiae cells expressing Als5p led to 1.7-fold increase in initial rate of adhesion to ligand coated beads. Furthermore, mechanical stress from vortex-mixing of Als5p cells or C. albicans cells also induced additional formation of amyloid nanodomains and consequent activation of adhesion. Vortex-mixing for 60 seconds increased the initial rate of adhesion 1.6-fold. The effects of vortex-mixing were replicated in heat-killed cells as well. Activation was accompanied by increases in thioflavin T cell surface fluorescence measured by flow cytometry or by confocal microscopy. There was no adhesion activation in cells expressing amyloid-impaired Als5pV326N or in cells incubated with inhibitory concentrations of anti-amyloid dyes. Together these results demonstrated the activation of cell surface amyloid nanodomains in yeast expressing Als adhesins, and further delineate the forces that can activate adhesion in vivo. Consequently there is quantitative support for the hypothesis that amyloid forming adhesins act as both force sensors and effectors.
Collapse
Affiliation(s)
- Cho X. J. Chan
- Biology Department, Brooklyn College City University of New York, New York, New York, United States of America
- The Graduate Center, City University of New York, New York, New York, United States of America
- Haskins Laboratories and the Department of Chemistry and Physical Sciences, Pace University, New York, New York, United States of America
| | - Ivor G. Joseph
- Biology Department, Brooklyn College City University of New York, New York, New York, United States of America
| | - Andy Huang
- Biology Department, Brooklyn College City University of New York, New York, New York, United States of America
| | - Desmond N. Jackson
- Biology Department, Brooklyn College City University of New York, New York, New York, United States of America
| | - Peter N. Lipke
- Biology Department, Brooklyn College City University of New York, New York, New York, United States of America
- The Graduate Center, City University of New York, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
26
|
Role of force-sensitive amyloid-like interactions in fungal catch bonding and biofilms. EUKARYOTIC CELL 2014; 13:1136-42. [PMID: 24681687 DOI: 10.1128/ec.00068-14] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The Candida albicans Als adhesin Als5p has an amyloid-forming sequence that is required for aggregation and formation of model biofilms on polystyrene. Because amyloid formation can be triggered by force, we investigated whether laminar flow could activate amyloid formation and increase binding to surfaces. Shearing Saccharomyces cerevisiae cells expressing Als5p or C. albicans at 0.8 dyne/cm(2) increased the quantity and strength of cell-to-surface and cell-to-cell binding compared to that at 0.02 dyne/cm(2). Thioflavin T fluorescence showed that the laminar flow also induced adhesin aggregation into surface amyloid nanodomains in Als5p-expressing cells. Inhibitory concentrations of the amyloid dyes thioflavin S and Congo red or a sequence-specific anti-amyloid peptide decreased binding and biofilm formation under flow. Shear-induced binding also led to formation of robust biofilms. There was less shear-activated increase in adhesion, thioflavin fluorescence, and biofilm formation in cells expressing the amyloid-impaired V326N-substituted Als5p. Similarly, S. cerevisiae cells expressing Flo1p or Flo11p flocculins also showed shear-dependent binding, amyloid formation, biofilm formation, and inhibition by anti-amyloid compounds. Together, these results show that laminar flow activated amyloid formation and led to enhanced adhesion of yeast cells to surfaces and to biofilm formation.
Collapse
|
27
|
Abstract
We tell of a journey that led to discovery of amyloids formed by yeast cell adhesins and their importance in biofilms and host immunity. We begin with the identification of the adhesin functional amyloid-forming sequences that mediate fiber formation in vitro. Atomic force microscopy and confocal microscopy show 2-dimensional amyloid "nanodomains" on the surface of cells that are activated for adhesion. These nanodomains are arrays of adhesin molecules that bind multivalent ligands with high avidity. Nanodomains form when adhesin molecules are stretched in the AFM or under laminar flow. Treatment with antiamyloid perturbants or mutation of the amyloid sequence prevents adhesion nanodomain formation and activation. We are now discovering biological consequences. Adhesin nanodomains promote formation and maintenance of biofilms, which are microbial communities. Also, in abscesses within candidiasis patients, we find adhesin amyloids on the surface of the fungi. In both human infection and a Caenorhabditis elegans infection model, the presence of fungal surface amyloids elicits anti-inflammatory responses. Thus, this is a story of how fungal adhesins respond to extension forces through formation of cell surface amyloid nanodomains, with key consequences for biofilm formation and host responses.
Collapse
|
28
|
Peptide detection of fungal functional amyloids in infected tissue. PLoS One 2014; 9:e86067. [PMID: 24465872 PMCID: PMC3897640 DOI: 10.1371/journal.pone.0086067] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 12/09/2013] [Indexed: 01/09/2023] Open
Abstract
Many fungal cell adhesion proteins form functional amyloid patches on the surface of adhering cells. The Candida albicansAgglutinin-like sequence (Als) adhesins are exemplars for this phenomenon, and have amyloid forming sequences that are conserved between family members. The Als5p amyloid sequence mediates amyloid fibril formation and is critical for cell adhesion and biofilm formation, and is also present in the related adhesins Als1p and Als3p. We have developed a fluorescent peptide probe containing the conserved Als amyloid-forming sequence. This peptide bound specifically to yeast expressing Als5p, but not to cells lacking the adhesin. The probe bound to both yeast and hyphal forms of C. albicans. Δals1/Δals3 single and double deletion strains exhibited reduced fluorescence, indicating that probe binding required expression of these proteins. Additionally, the Als peptide specifically stained fungal cells in abscesses in autopsy sections. Counterstaining with calcofluor white showed colocalization with the amyloid peptide. In addition, fungi in autopsy sections derived from the gastrointestinal tract showed colocalization of the amyloid-specific dye thioflavin T and the fluorescent peptide. Collectively, our data demonstrate that we can exploit amyloid sequence specificity for detection of functional amyloids in situ.
Collapse
|
29
|
Garcia M, Lipke P, Klotz S. Pathogenic microbial amyloids: Their function and the host response. OA MICROBIOLOGY 2013; 1:2. [PMID: 25419543 PMCID: PMC4238391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Functional microbial amyloids are ubiquitous in nature and some contribute to the pathogenesis of infectious diseases. Three pathogenic microbial amyloids are compared and their contribution to the disease process explained. The recent demonstration and visualization of fungal amyloid in human invasive candidiasis is discussed. Moreover, the binding of host serum amyloid P component to Candida functional amyloid in invasive human disease is presented in light of its possible role of masking fungi from the host defenses.
Collapse
Affiliation(s)
- Mc Garcia
- Department of Biology, Brooklyn College of City University of New York, Brooklyn, NY
| | - Pn Lipke
- Department of Medicine, University of Arizona, Tucson, AZ
| | | |
Collapse
|
30
|
Veszelka S, Laszy J, Pázmány T, Németh L, Obál I, Fábián L, Szabó G, Abrahám CS, Deli MA, Urbányi Z. Efflux transport of serum amyloid P component at the blood-brain barrier. Eur J Microbiol Immunol (Bp) 2013; 3:281-9. [PMID: 24294499 DOI: 10.1556/eujmi.3.2013.4.8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 10/18/2013] [Indexed: 01/09/2023] Open
Abstract
Serum amyloid P component (SAP), a member of the innate immune system, does not penetrate the brain in physiological conditions; however, SAP is a stabilizing component of the amyloid plaques in neurodegenerative diseases. We investigated the cerebrovascular transport of human SAP in animal experiments and in culture blood-brain barrier (BBB) models. After intravenous injection, no SAP could be detected by immunohistochemistry or ELISA in healthy rat brains. Salmonella typhimurium lipopolysaccharide injection increased BBB permeability for SAP and the number of cerebral vessels labeled with fluorescein isothiocyanate (FITC)-SAP in mice. Furthermore, when SAP was injected to the rat hippocampus, a time-dependent decrease in brain concentration was seen demonstrating a rapid SAP efflux transport in vivo. A temperature-dependent bidirectional transport of FITC-SAP was observed in rat brain endothelial monolayers. The permeability coefficient for FITC-SAP was significantly higher in abluminal to luminal (brain to blood) than in the opposite direction. The luminal release of FITC-SAP from loaded endothelial cells was also significantly higher than the abluminal one. Our data indicate the presence of BBB efflux transport mechanisms protecting the brain from SAP penetration. Damaged BBB integrity due to pathological insults may increase brain SAP concentration contributing to development of neurodegenerative diseases.
Collapse
|
31
|
Du Clos TW. Pentraxins: structure, function, and role in inflammation. ISRN INFLAMMATION 2013; 2013:379040. [PMID: 24167754 PMCID: PMC3791837 DOI: 10.1155/2013/379040] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 08/19/2013] [Indexed: 12/03/2022]
Abstract
The pentraxins are an ancient family of proteins with a unique architecture found as far back in evolution as the Horseshoe crab. In humans the two members of this family are C-reactive protein and serum amyloid P. Pentraxins are defined by their sequence homology, their pentameric structure and their calcium-dependent binding to their ligands. Pentraxins function as soluble pattern recognition molecules and one of the earliest and most important roles for these proteins is host defense primarily against pathogenic bacteria. They function as opsonins for pathogens through activation of the complement pathway and through binding to Fc gamma receptors. Pentraxins also recognize membrane phospholipids and nuclear components exposed on or released by damaged cells. CRP has a specific interaction with small nuclear ribonucleoproteins whereas SAP is a major recognition molecule for DNA, two nuclear autoantigens. Studies in autoimmune and inflammatory disease models suggest that pentraxins interact with macrophage Fc receptors to regulate the inflammatory response. Because CRP is a strong acute phase reactant it is widely used as a marker of inflammation and infection.
Collapse
Affiliation(s)
- Terry W. Du Clos
- The Department of Veterans Affairs Medical Center, Research Service 151, 1501 San Pedro SE, Albuquerque, NM 87108, USA
- Department of Internal Medicine, The University of New Mexico School of Medicine, Albuquerque, NM 87108, USA
| |
Collapse
|
32
|
Does Candida albicans Als5p amyloid play a role in commensalism in Caenorhabditis elegans? EUKARYOTIC CELL 2013; 12:703-11. [PMID: 23475704 DOI: 10.1128/ec.00020-13] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Candida albicans, a dimorphic fungus and an opportunistic pathogen, possesses a myriad of adherence factors, including members of the agglutinin-like sequence (Als) family of mannoproteins. The adhesin Als5p mediates adhesion to many substrates and is upregulated during commensal interactions but is downregulated during active C. albicans infections. An amyloid-forming core sequence at residues 325 to 331 is important for Als5p function, because a single-amino-acid substitution at position 326 (V326N) greatly reduces Als5p-mediated adherence. We evaluated the role of Als5p in host-microbe interactions by using Caenorhabditis elegans nematodes as a host model and feeding them Saccharomyces cerevisiae expressing Als5p on the surface. Als5p-expressing yeast had 8.5- and 3.5-fold-increased intestinal accumulation rates compared to Als5p-nonexpressing S. cerevisiae or yeast expressing amyloid-deficient Als5p(V326N), respectively. Surprisingly, this accumulation delayed S. cerevisiae-induced killing of C. elegans. The median survival time was nearly twice as long as that of nematodes fed nonexpressing or non-amyloid-forming Als5p(V326N)-expressing S. cerevisiae. Treatment with the amyloid-inhibiting dye Congo red or repression of Als5p expression abrogated the protective effect of Als5p. Furthermore, Als5p had no effect on oocyte quantity or quality, since nematodes fed either empty vector (EV)- or Als5p(V326N)-expressing S. cerevisiae had similar egg-laying and egg-hatching rates. This study is the first, to our knowledge, to show that expression of an amyloid-forming protein can attenuate pathogenicity in C. elegans.
Collapse
|