1
|
Skowronski DM, Leir S, De Serres G, Murti M, Dickinson JA, Winter AL, Olsha R, Croxen MA, Drews SJ, Charest H, Martineau C, Sabaiduc S, Bastien N, Li Y, Petric M, Jassem A, Krajden M, Gubbay JB. Children under 10 years of age were more affected by the 2018/19 influenza A(H1N1)pdm09 epidemic in Canada: possible cohort effect following the 2009 influenza pandemic. ACTA ACUST UNITED AC 2020; 24. [PMID: 30994107 PMCID: PMC6470369 DOI: 10.2807/1560-7917.es.2019.24.15.1900104] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Introduction Findings from the community-based Canadian Sentinel Practitioner Surveillance Network (SPSN) suggest children were more affected by the 2018/19 influenza A(H1N1)pdm09 epidemic. Aim To compare the age distribution of A(H1N1)pdm09 cases in 2018/19 to prior seasonal influenza epidemics in Canada. Methods The age distribution of unvaccinated influenza A(H1N1)pdm09 cases and test-negative controls were compared across A(H1N1)pdm09-dominant epidemics in 2018/19, 2015/16 and 2013/14 and with the general population of SPSN provinces. Similar comparisons were undertaken for influenza A(H3N2)-dominant epidemics. Results In 2018/19, more influenza A(H1N1)pdm09 cases were under 10 years old than controls (29% vs 16%; p < 0.001). In particular, children aged 5–9 years comprised 14% of cases, greater than their contribution to controls (4%) or the general population (5%) and at least twice their contribution in 2015/16 (7%; p < 0.001) or 2013/14 (5%; p < 0.001). Conversely, children aged 10–19 years (11% of the population) were under-represented among A(H1N1)pdm09 cases versus controls in 2018/19 (7% vs 12%; p < 0.001), 2015/16 (7% vs 13%; p < 0.001) and 2013/14 (9% vs 12%; p = 0.12). Conclusion Children under 10 years old contributed more to outpatient A(H1N1)pdm09 medical visits in 2018/19 than prior seasonal epidemics in Canada. In 2018/19, all children under 10 years old were born after the 2009 A(H1N1)pdm09 pandemic and therefore lacked pandemic-induced immunity. In addition, more than half those born after 2009 now attend school (i.e. 5–9-year-olds), a socio-behavioural context that may enhance transmission and did not apply during prior A(H1N1)pdm09 epidemics.
Collapse
Affiliation(s)
- Danuta M Skowronski
- University of British Columbia, Vancouver, Canada.,British Columbia Centre for Disease Control, Vancouver, Canada
| | - Siobhan Leir
- British Columbia Centre for Disease Control, Vancouver, Canada
| | - Gaston De Serres
- Centre Hospitalier Universitaire de Québec, Quebec, Canada.,Laval University, Quebec, Canada.,Institut National de Santé Publique du Québec, Quebec, Canada
| | - Michelle Murti
- University of Toronto, Toronto, Canada.,Public Health Ontario, Toronto, Canada
| | | | | | | | - Matthew A Croxen
- University of Alberta, Edmonton, Canada.,Provincial Laboratory for Public Health, Edmonton, Canada
| | - Steven J Drews
- University of Alberta, Edmonton, Canada.,Provincial Laboratory for Public Health, Edmonton, Canada
| | - Hugues Charest
- Institut National de Santé Publique du Québec, Quebec, Canada
| | | | - Suzana Sabaiduc
- British Columbia Centre for Disease Control, Vancouver, Canada
| | - Nathalie Bastien
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
| | - Yan Li
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
| | | | - Agatha Jassem
- University of British Columbia, Vancouver, Canada.,British Columbia Centre for Disease Control, Vancouver, Canada
| | - Mel Krajden
- University of British Columbia, Vancouver, Canada.,British Columbia Centre for Disease Control, Vancouver, Canada
| | - Jonathan B Gubbay
- University of Toronto, Toronto, Canada.,Public Health Ontario, Toronto, Canada
| |
Collapse
|
2
|
Ben-Ami F. Host Age Effects in Invertebrates: Epidemiological, Ecological, and Evolutionary Implications. Trends Parasitol 2019; 35:466-480. [PMID: 31003758 DOI: 10.1016/j.pt.2019.03.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/19/2019] [Accepted: 03/21/2019] [Indexed: 12/26/2022]
Abstract
In most species, variation in age among individuals is the strongest and most visible form of phenotypic variation. Individual-level age effects on disease traits, caused by differences in the age at exposure of the host or its parents, have been widely documented in invertebrates. They can influence diverse traits, such as host susceptibility, virulence, parasite reproduction and further transmission, and may cascade to the population level, influencing disease prevalence and within-host competition. Here, I summarize what is known about the relationship between individual-level age/stage effects and infectious disease in invertebrates. I also attempt to link age effects to the theory of aging (senescence), and highlight the importance of population age structure to disease epidemiology and evolution. I conclude by identifying gaps in our understanding of individual- and population-level age effects in invertebrates. As the age structure of populations varies across space and time, age effects have strong epidemiological, ecological, and evolutionary implications for explaining variation in infectious diseases of invertebrates.
Collapse
Affiliation(s)
- Frida Ben-Ami
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
3
|
Skowronski DM, Chambers C, Sabaiduc S, De Serres G, Winter AL, Dickinson JA, Gubbay JB, Drews SJ, Martineau C, Charest H, Krajden M, Bastien N, Li Y. Beyond Antigenic Match: Possible Agent-Host and Immuno-epidemiological Influences on Influenza Vaccine Effectiveness During the 2015-2016 Season in Canada. J Infect Dis 2019; 216:1487-1500. [PMID: 29029166 PMCID: PMC5853508 DOI: 10.1093/infdis/jix526] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background Vaccine effectiveness (VE) estimates for 2015-2016 seasonal influenza vaccine are reported from Canada's Sentinel Practitioner Surveillance Network (SPSN). This season was characterized by a delayed 2009 pandemic influenza A(H1N1) virus (A[H1N1]pdm09) epidemic and concurrent influenza B(Victoria) virus activity. Potential influences on VE beyond antigenic match are explored, including viral genomic variation, birth cohort effects, prior vaccination, and epidemic period. Methods VE was estimated by a test-negative design comparing the adjusted odds ratio for influenza test positivity among vaccinated compared to unvaccinated participants. Vaccine-virus relatedness was assessed by gene sequencing and hemagglutination inhibition assay. Results Analyses included 596 influenza A(H1N1)pdm09 and 305 B(Victoria) cases and 926 test-negative controls. A(H1N1)pdm09 viruses were considered antigenically related to vaccine (unchanged since 2009), despite phylogenetic clustering within emerging clade 6B.1. The adjusted VE against A(H1N1)pdm09 was 43% (95% confidence interval [CI], 25%-57%). Compared to other age groups, VE against A(H1N1)pdm09 was lower for adults born during 1957-1976 (25%; 95% CI, -16%-51%). The VE against A(H1N1)pdm09 was also lower for participants consecutively vaccinated during both the current and prior seasons (41%; 95% CI, 18%-57%) than for those vaccinated during the current season only (75%; 95% CI, 45%-88%), and the VE among participants presenting in March-April 2016 (19%; 95% CI, -15%-44%) was lower than that among those presenting during January-February 2016 (62%; 95% CI, 44%-74%). The adjusted VE for B(Victoria) viruses was 54% (95% CI, 32%-68%), despite lineage-level mismatch to B(Yamagata) vaccine. The further variation in VE as observed for A(H1N1)pdm09 was not observed for B(Victoria). Conclusions Influenza VE findings may require consideration of other agent-host and immuno-epidemiologic influences on vaccine performance beyond antigenic match, including viral genomic variation, repeat vaccination, birth (immunological) cohort effects, and potential within-season waning of vaccine protection.
Collapse
Affiliation(s)
- Danuta M Skowronski
- British Columbia Centre for Disease Control, Vancouver.,University of British Columbia, Vancouver
| | | | | | - Gaston De Serres
- Institut National de Santé Publique du Québec.,Laval University, Québec.,Centre Hospitalier Universitaire de Québec, Québec
| | | | | | | | - Steven J Drews
- Alberta Provincial Laboratory, Edmonton.,University of Alberta, Edmonton
| | | | | | - Mel Krajden
- British Columbia Centre for Disease Control, Vancouver.,University of British Columbia, Vancouver
| | - Nathalie Bastien
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
| | - Yan Li
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
| |
Collapse
|
4
|
Andrew MK, Bowles SK, Pawelec G, Haynes L, Kuchel GA, McNeil SA, McElhaney JE. Influenza Vaccination in Older Adults: Recent Innovations and Practical Applications. Drugs Aging 2019; 36:29-37. [PMID: 30411283 DOI: 10.1007/s40266-018-0597-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Influenza can lead to serious illness, particularly for older adults. In addition to short-term morbidity and mortality during the acute infection, recovery can be prolonged and often incomplete. This may lead to persistent declines in health and function, including catastrophic disability, which has dramatic implications for the well-being and support needs of older adults and their caregivers. All of this means that prevention of infection and effective treatment when illness has occurred are of paramount importance. In this narrative review, we discuss the effectiveness of influenza vaccines for the prevention of influenza illness and serious outcomes in older adults. We review evidence of vaccine effectiveness for older adults in comparison with younger age groups, and also highlight the importance of frailty as a determinant of vaccine effectiveness. We then turn our attention to the question of why older and frailer individuals have poorer vaccine responses, and consider changes in immune function and inflammatory responses. This sets the stage for a discussion of newer influenza vaccine products that have been developed with the aim of enhancing vaccine effectiveness in older adults. We review the available evidence on vaccine efficacy, effectiveness and cost benefits, consider the potential place of these innovations in clinical geriatric practice, and discuss international advisory committee recommendations on influenza vaccination in older adults. Finally, we highlight the importance of influenza prevention to support healthy aging, along with the need to improve vaccine coverage rates using available vaccine products, and to spur development of better influenza vaccines for older adults in the near future.
Collapse
Affiliation(s)
- Melissa K Andrew
- Division of Geriatric Medicine, Department of Medicine (Geriatrics), Dalhousie University, 5955 Veterans' Memorial Lane, Halifax, NS, Canada. .,Canadian Center for Vaccinology, Halifax, NS, Canada.
| | - Susan K Bowles
- Division of Geriatric Medicine, Department of Medicine (Geriatrics), Dalhousie University, 5955 Veterans' Memorial Lane, Halifax, NS, Canada.,Canadian Center for Vaccinology, Halifax, NS, Canada.,Department of Pharmacy, Nova Scotia Health Authority, Central Zone, Halifax, NS, Canada
| | - Graham Pawelec
- Second Department of Internal Medicine, University of Tübingen, Tübingen, Germany.,Health Sciences North Research Institute, Sudbury, ON, Canada
| | - Laura Haynes
- Center on Aging, University of Connecticut School of Medicine, Farmington, CT, USA
| | - George A Kuchel
- Center on Aging, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Shelly A McNeil
- Canadian Center for Vaccinology, Halifax, NS, Canada.,Department of Medicine (Infectious Diseases), Dalhousie University, Halifax, NS, Canada
| | - Janet E McElhaney
- Health Sciences North Research Institute, Northern Ontario School of Medicine, Sudbury, ON, Canada
| |
Collapse
|
5
|
Chambers C, Skowronski DM, Rose C, Serres GD, Winter AL, Dickinson JA, Jassem A, Gubbay JB, Fonseca K, Drews SJ, Charest H, Martineau C, Petric M, Krajden M. Should Sex Be Considered an Effect Modifier in the Evaluation of Influenza Vaccine Effectiveness? Open Forum Infect Dis 2018; 5:ofy211. [PMID: 30263903 PMCID: PMC6143149 DOI: 10.1093/ofid/ofy211] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 09/03/2018] [Indexed: 01/04/2023] Open
Abstract
We investigated sex as a potential modifier of influenza vaccine effectiveness (VE) between 2010–2011 and 2016–2017 in Canada. Overall VE was 49% (95% confidence interval [CI], 43% to 55%) for females and 38% (95% CI, 28% to 46%) for males (absolute difference [AD], 11%; P = .03). Sex differences were greatest for influenza A(H3N2) (AD, 17%; P = .07) and B(Victoria) (AD, 20%; P = .08) compared with A(H1N1)pdm09 (AD, 10%; P = .19) or B(Yamagata) (AD, –3%; P = .68). They were also more pronounced in older adults ≥50 years (AD, 19%; P = .03) compared with those <20 years (AD, 4%; P = .74) or 20–49 years (AD, –1%; P = .90) but with variation by subtype/lineage. More definitive investigations of VE by sex and age are warranted to elucidate these potential interactions.
Collapse
Affiliation(s)
- Catharine Chambers
- Communicable Diseases and Immunization Service, British Columbia Centre for Disease Control, Vancouver, Canada
| | - Danuta M Skowronski
- Communicable Diseases and Immunization Service, British Columbia Centre for Disease Control, Vancouver, Canada.,School of Population and Public Health, University of British Columbia, Vancouver, Canada
| | - Caren Rose
- Communicable Diseases and Immunization Service, British Columbia Centre for Disease Control, Vancouver, Canada.,School of Population and Public Health, University of British Columbia, Vancouver, Canada
| | - Gaston De Serres
- Direction of Biological and Occupational Risks, Institut National de Santé Publique du Québec, Québec, Canada.,Department of Social and Preventive Medicine, Laval University, Quebec, Canada.,Infection and Immunity, Centre Hospitalier Universitaire de Québec, Québec, Canada
| | - Anne-Luise Winter
- Communicable Diseases, Emergency Preparedness and Response, Public Health Ontario, Toronto, Canada
| | - James A Dickinson
- Department of Family Medicine, University of Calgary, Calgary, Canada.,Department of Community Health Sciences, University of Calgary, Calgary, Canada
| | - Agatha Jassem
- British Columbia Centre for Disease Control Public Health Laboratory, Vancouver, Canada
| | - Jonathan B Gubbay
- Public Health Ontario Laboratory, Public Health Ontario, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Department of Paediatrics, University of Toronto, Toronto, Canada
| | - Kevin Fonseca
- Diagnostic Virology Alberta Provincial Laboratory, Calgary, Canada.,Diagnostic Virology University of Calgary, Calgary, Canada
| | - Steven J Drews
- Diagnostic Virology Alberta Provincial Laboratory, Edmonton, Canada.,Department of Laboratory Medicine and Pathology University of Alberta, Edmonton, Canada
| | - Hugues Charest
- Laboratoire de santé publique du Québec, Institut national de santé publique du Québec, Québec, Canada
| | | | - Martin Petric
- British Columbia Centre for Disease Control Public Health Laboratory, Vancouver, Canada
| | - Mel Krajden
- Department of Community Health Sciences, University of Calgary, Calgary, Canada.,British Columbia Centre for Disease Control Public Health Laboratory, Vancouver, Canada
| |
Collapse
|
6
|
Rondy M, Larrauri A, Casado I, Alfonsi V, Pitigoi D, Launay O, Syrjänen RK, Gefenaite G, Machado A, Vučina VV, Horváth JK, Paradowska-Stankiewicz I, Marbus SD, Gherasim A, Díaz-González JA, Rizzo C, Ivanciuc AE, Galtier F, Ikonen N, Mickiene A, Gomez V, Kurečić Filipović S, Ferenczi A, Korcinska MR, van Gageldonk-Lafeber R, Valenciano M. 2015/16 seasonal vaccine effectiveness against hospitalisation with influenza A(H1N1)pdm09 and B among elderly people in Europe: results from the I-MOVE+ project. ACTA ACUST UNITED AC 2018; 22:30580. [PMID: 28797322 PMCID: PMC5553054 DOI: 10.2807/1560-7917.es.2017.22.30.30580] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 02/08/2017] [Indexed: 11/20/2022]
Abstract
We conducted a multicentre test-negative case-control study in 27 hospitals of 11 European countries to measure 2015/16 influenza vaccine effectiveness (IVE) against hospitalised influenza A(H1N1)pdm09 and B among people aged ≥ 65 years. Patients swabbed within 7 days after onset of symptoms compatible with severe acute respiratory infection were included. Information on demographics, vaccination and underlying conditions was collected. Using logistic regression, we measured IVE adjusted for potential confounders. We included 355 influenza A(H1N1)pdm09 cases, 110 influenza B cases, and 1,274 controls. Adjusted IVE against influenza A(H1N1)pdm09 was 42% (95% confidence interval (CI): 22 to 57). It was 59% (95% CI: 23 to 78), 48% (95% CI: 5 to 71), 43% (95% CI: 8 to 65) and 39% (95% CI: 7 to 60) in patients with diabetes mellitus, cancer, lung and heart disease, respectively. Adjusted IVE against influenza B was 52% (95% CI: 24 to 70). It was 62% (95% CI: 5 to 85), 60% (95% CI: 18 to 80) and 36% (95% CI: -23 to 67) in patients with diabetes mellitus, lung and heart disease, respectively. 2015/16 IVE estimates against hospitalised influenza in elderly people was moderate against influenza A(H1N1)pdm09 and B, including among those with diabetes mellitus, cancer, lung or heart diseases.
Collapse
Affiliation(s)
| | - Amparo Larrauri
- National Centre of Epidemiology, Institute of Health Carlos III, Madrid, Spain.,CIBER Epidemiología y Salud Pública, Institute of Health Carlos III, Madrid, Spain
| | - Itziar Casado
- CIBER Epidemiología y Salud Pública, Institute of Health Carlos III, Madrid, Spain.,Instituto de Salud Pública de Navarra, IdiSNA, Pamplona, Spain
| | | | | | - Odile Launay
- Inserm, F-CRIN, Innovative clinical research network in vaccinology (I-REIVAC), Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, APHP, CIC Cochin-Pasteur, Paris, France
| | - Ritva K Syrjänen
- Impact Assessment Unit, National Institute for Health and Welfare, Tampere, Finland
| | - Giedre Gefenaite
- Department of Infectious diseases, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Ausenda Machado
- Epidemiology Research Unit, Epidemiology Department, National Health Institute Dr Ricardo Jorge, Lisbon, Portugal
| | | | | | | | - Sierk D Marbus
- Centre for Epidemiology and surveillance of infectious diseases, Centre for infectious disease control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Alin Gherasim
- National Centre of Epidemiology, Institute of Health Carlos III, Madrid, Spain.,CIBER Epidemiología y Salud Pública, Institute of Health Carlos III, Madrid, Spain
| | | | | | | | - Florence Galtier
- Inserm, F-CRIN, Innovative clinical research network in vaccinology (I-REIVAC), Paris, France.,CIC de Montpellier, Hôpital Saint-Eloi, CHU de Montpellier, Montpellier, France
| | - Niina Ikonen
- Viral Infections Unit, National Institute for Health and Welfare, Helsinki, Finland
| | - Aukse Mickiene
- Department of Infectious diseases, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Veronica Gomez
- Epidemiology Research Unit, Epidemiology Department, National Health Institute Dr Ricardo Jorge, Lisbon, Portugal
| | | | | | - Monika R Korcinska
- National institute of Public Health - National Institute of Hygiene, Department of Epidemiology, Warsaw, Poland
| | - Rianne van Gageldonk-Lafeber
- Centre for Epidemiology and surveillance of infectious diseases, Centre for infectious disease control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | -
- The I-MOVE+ hospital working group is listed at the end of the article
| | | |
Collapse
|
7
|
Skowronski DM, Chambers C, Gustafson R, Purych DB, Tang P, Bastien N, Krajden M, Li Y. Avian Influenza A(H7N9) Virus Infection in 2 Travelers Returning from China to Canada, January 2015. Emerg Infect Dis 2016; 22:71-4. [PMID: 26689320 PMCID: PMC4696712 DOI: 10.3201/eid2201.151330] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
In January 2015, British Columbia, Canada, reported avian influenza A(H7N9) virus infection in 2 travelers returning from China who sought outpatient care for typical influenza-like illness. There was no further spread, but serosurvey findings showed broad population susceptibility to H7N9 virus. Travel history and timely notification are critical to emerging pathogen detection and response.
Collapse
|
8
|
Barron MA, Frank DN, Claypool D, Ir D, Ning MF, Curtis D, Weinberg A. Antibody responses to influenza a H1N1 vaccine compared to the circulating strain in influenza vaccine recipients during the 2013/2014 season in North America. J Clin Virol 2016; 83:56-60. [PMID: 27591557 DOI: 10.1016/j.jcv.2016.08.296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Revised: 08/16/2016] [Accepted: 08/23/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND Influenza strain A/California/07/2009 H1N1 (H1N1-09) reemerged in 2013/2014 as the predominant cause of illness. We sought to determine if antigenic drift may have contributed to the decreased responses to influenza vaccine. METHODS Fifty adults who received trivalent inactivated influenza vaccine (IIV3) and 56 children who received live attenuated quadrivalent influenza vaccine (LAIV4) had hemagglutination inhibition (HAI) and microneutralizing (MN) antibodies measured in plasma against H1N1-09 and H1N1 2013/2014 (H1N1-14) influenza. Partial sequencing of the hemagglutinin gene (nt 280-780) was performed on 38 clinical isolates and the vaccine prototype. RESULTS In IIV3 recipients, HAI and MN titers against H1N1-14 were significantly lower than against H1N1-09 (p<0.0001 and 0.04, respectively). In LAIV4 recipients, only MN titers were significantly lower (p=0.02) for H1N1-09 compared with H1N1-14. A combined analysis showed significantly lower HAI and MN titers for H1N1-14 compared with H1N1-09 (p=0. 016 and 0.008, respectively). All 38 clinical isolates encoded the HA gene K166Q non-synonymous substitution; other non-synonymous substitutions were observed in <10% of the clinical isolates. CONCLUSIONS 2013/2014 IIV3 and LAIV4 recipients had consistently lower MN antibody titers against H1N1-14 compared with H1N1-09. The HA K166Q mutation, located in a neutralizing epitope, probably contributed to these findings.
Collapse
Affiliation(s)
- Michelle A Barron
- Department of Medicine, Division of Infectious Diseases, University of Colorado Denver, Aurora, CO 80045, United States
| | - Daniel N Frank
- Department of Medicine, Division of Infectious Diseases, University of Colorado Denver, Aurora, CO 80045, United States
| | - David Claypool
- Department of Pediatrics, Division of Infectious Diseases, University of Colorado Denver, Aurora, CO 80045, United States
| | - Diana Ir
- Department of Medicine, Division of Infectious Diseases, University of Colorado Denver, Aurora, CO 80045, United States
| | - Mariangeli F Ning
- Department of Pediatrics, Division of Infectious Diseases, University of Colorado Denver, Aurora, CO 80045, United States
| | - Donna Curtis
- Department of Pediatrics, Division of Infectious Diseases, University of Colorado Denver, Aurora, CO 80045, United States
| | - Adriana Weinberg
- Department of Pediatrics, Division of Infectious Diseases, University of Colorado Denver, Aurora, CO 80045, United States.
| |
Collapse
|
9
|
Barr IG, Vijaykrishna D, Sullivan SG. Differential age susceptibility to influenza B/Victoria lineage viruses in the 2015 Australian influenza season. ACTA ACUST UNITED AC 2016; 21:30118. [PMID: 26848118 DOI: 10.2807/1560-7917.es.2016.21.4.30118] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 01/26/2016] [Indexed: 01/19/2023]
Abstract
Influenza B viruses make up an important part of the burden from seasonal influenza globally. The 2015 season in Australia saw an unusual predominance of influenza B with a distinctive switch during the season from B/Yamagata/16/88 lineage viruses to B/Victoria/2/87 lineage viruses. We also noted significant differences in the age groups infected by the different B lineages, with B/Victoria infecting a younger population than B/Yamagata, that could not be explained by potential prior exposure.
Collapse
Affiliation(s)
- Ian G Barr
- WHO Collaborating Centre for Reference and Research on Influenza, VIDRL, Doherty Institute, Melbourne, Australia
| | | | | |
Collapse
|
10
|
Rao S, Torok MR, Bagdure D, Cunningham MA, Williams JTB, Curtis DJ, Wilson K, Dominguez SR. A comparison of H1N1 influenza among pediatric inpatients in the pandemic and post pandemic era. J Clin Virol 2015; 71:44-50. [PMID: 26370314 DOI: 10.1016/j.jcv.2015.07.308] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 07/24/2015] [Accepted: 07/25/2015] [Indexed: 10/23/2022]
Abstract
BACKGROUND The novel influenza A H1N1 (A[H1N1]pdm09) strain emerged in 2009, contributing to significant morbidity and mortality. It is not known whether illness associated with A(H1N1) pdm09 in the post-pandemic era exhibits a similar disease profile. OBJECTIVE The objectives of this study were to compare the burden of disease of A(H1N1) pdm09 influenza from the 2009 pandemic year to the post-pandemic years (2010-2014), and to explore potential reasons for any differences. STUDY DESIGN We conducted a retrospective cohort study of inpatients admitted to Children's Hospital Colorado with a positive respiratory specimen for influenza from May-December, 2009 and December, 2010-April, 2014. Univariate and multivariate analyses were conducted to compare the demographics and clinical characteristics of patients with H1N1 during the two periods. RESULTS There were 388 inpatients with influenza A(H1N1) pdm09 in 2009, and 117 during the post-pandemic years. Ninety-four percent of all H1N1 during the post-pandemic era was observed during the 2013-2014 influenza season. Patients with A(H1N1) pdm09 during the post-pandemic year were less likely to have an underlying medical condition (P<0.01). Patients admitted to the ICU during the post-pandemic year had a lower median age (5 vs 8 years, P=0.01) and a lower proportion of patients were intubated, had mental status changes, and ARDS compared with the pandemic years, (P<0.01 for all), with decreased mortality (P=0.02). CONCLUSION Patients with influenza A(H1N1) pdm09 during the post-pandemic years appeared to have less severe disease than patients with A(H1N1) pdm09 during the pandemic year. The reasons for this difference are likely multifactorial.
Collapse
Affiliation(s)
- Suchitra Rao
- Department of Pediatrics (Hospital Medicine and Infectious Diseases), University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO, USA.
| | - Michelle R Torok
- University of Colorado School of Medicine, Adult and Child Center for Health Outcomes Research and Delivery Science, Aurora, CO, USA
| | - Dayanand Bagdure
- Department of Pediatrics, University of Maryland School of Medicine, MD, USA
| | - Maureen A Cunningham
- Department of Pediatrics (Hospital Medicine), University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO, USA
| | - Joshua T B Williams
- Department of Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO, USA
| | - Donna J Curtis
- Department of Pediatrics (Infectious Diseases), University of Colorado School Of Medicine and Children's Hospital Colorado, Aurora, CO, USA
| | - Karen Wilson
- Department of Pediatrics (Hospital Medicine), University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO, USA
| | - Samuel R Dominguez
- Department of Pediatrics (Infectious Diseases), University of Colorado School Of Medicine and Children's Hospital Colorado, Aurora, CO, USA
| |
Collapse
|
11
|
Abstract
To assess the potential transmission for zoonotic influenza, sero-antibodies against two kinds of influenza viruses—classical swine H1N1 and human H1N1pdm09 virus were detected in persons whose profession involved contact with swine in Guangdong province, China. Compared to the non-exposed control group, a significantly higher proportion of subjects with occupational contact to pigs exhibited positive seroreaction against the classical H1N1 SIV. Participants aged 26–50 years were at high risk of classic swine H1N1 infections. Seropositive rate to 2009 pandemic H1N1 virus among swine workers was similar with controls. The major impact of age was apparent for younger populations. Our present study has documented evidence for swine influenza virus infection among persons with occupational swine exposures. The differences of seroreactivity for the two tested influenza subtypes emphasize the necessity of regular surveillance both in pigs and human.
Collapse
|
12
|
Skowronski DM, Chambers C, Sabaiduc S, De Serres G, Winter AL, Dickinson JA, Gubbay J, Fonseca K, Charest H, Krajden M, Petric M, Mahmud SM, Van Caeseele P, Bastien N, Eshaghi A, Li Y. Integrated Sentinel Surveillance Linking Genetic, Antigenic, and Epidemiologic Monitoring of Influenza Vaccine-Virus Relatedness and Effectiveness During the 2013-2014 Influenza Season. J Infect Dis 2015; 212:726-39. [PMID: 25784728 DOI: 10.1093/infdis/jiv177] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 03/04/2015] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Canada's Sentinel Physician Surveillance Network links genetic, antigenic, and vaccine effectiveness (VE) measures in an integrated platform of influenza monitoring, described here for the 2013-2014 influenza season of resurgent A(H1N1)pdm09 and late-season type B activity. METHODS VE was estimated as [1 - odds ratio] × 100% and compared vaccination status between individuals who tested positive (cases) and those who tested negative (controls) for influenza virus. Vaccine-virus relatedness was assessed by genomic sequence analysis and hemagglutination inhibition assays. RESULTS Analyses included 1037 controls (of whom 33% were vaccinated) and 663 cases (of whom 14% were vaccinated). A total of 415 cases tested positive for A(H1N1)pdm09 virus, 15 tested positive for A(H3N2) virus, 191 tested positive for B/Yamagata-lineage virus, 6 tested positive for B/Victoria-lineage virus, and 36 tested positive for viruses of unknown subtype or lineage. A(H1N1)pdm09 viruses belonged to clade 6B, distinguished by a K163Q substitution, but remained antigenically similar to the A/California/07/2009-like vaccine strain, with an adjusted VE of 71% (95% confidence interval [CI], 58%-80%). Most B/Yamagata-lineage viruses (83%) clustered phylogenetically with the prior (ie, 2012-2013) season's B/Wisconsin/01/2010-like clade 3 vaccine strain, while only 17% clustered with the current (ie, 2013-2014) season's B/Massachusetts/02/2012-like clade 2 vaccine strain. The adjusted VE for B/Yamagata-lineage virus was 73% (95% CI, 57%-84%), with a lower VE obtained after partial calendar-time adjustment for clade-mismatched B/Wisconsin/01/2010-like virus (VE, 63%; 95% CI, 41%-77%), compared with that for clade-matched B/Massachusetts/02/2012-like virus (VE, 88%; 95% CI, 48%-97%). No A(H3N2) viruses clustered with the A/Texas/50/2012-like clade 3C.1 vaccine strain, and more than half were antigenically mismatched, but sparse data did not support VE estimation. CONCLUSIONS VE corresponded with antigenically conserved A(H1N1)pdm09 and lineage-matched B/Yamagata viruses with clade-level variation. Surveillance linking genotypic, phenotypic, and epidemiologic measures of vaccine-virus relatedness and effectiveness could better inform predictions of vaccine performance and reformulation.
Collapse
Affiliation(s)
- Danuta M Skowronski
- British Columbia Centre for Disease Control University of British Columbia, Vancouver
| | | | | | - Gaston De Serres
- Institut national de santé publique du Québec Laval University, Québec
| | | | | | | | - Kevin Fonseca
- University of Calgary Provincial Laboratory of Public Health, Calgary, Alberta
| | - Hugues Charest
- Institut national de santé publique du Québec Universite de Montréal, Québec
| | - Mel Krajden
- British Columbia Centre for Disease Control University of British Columbia, Vancouver
| | | | | | | | | | | | - Yan Li
- University of Manitoba National Microbiology Laboratory, Winnipeg, Canada
| |
Collapse
|