1
|
Biradar S, Agarwal Y, Lotze MT, Bility MT, Mailliard RB. The BLT Humanized Mouse Model as a Tool for Studying Human Gamma Delta T Cell-HIV Interactions In Vivo. Front Immunol 2022; 13:881607. [PMID: 35669780 PMCID: PMC9164110 DOI: 10.3389/fimmu.2022.881607] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/15/2022] [Indexed: 11/22/2022] Open
Abstract
Gamma-delta (γδ) T cells recognize antigens in a major histocompatibility complex (MHC) independent and have cytotoxic capability. Human immunodeficiency virus (HIV) infection reduces the proportion of the Vδ2 cell subset compared to the Vδ1 cell subset of γδ T cells in the blood in most infected individuals, except for elite controllers. The capacity of Vδ2 T cells to kill HIV-infected targets has been demonstrated in vitro, albeit in vivo confirmatory studies are lacking. Here, we provide the first characterization of γδ T cell-HIV interactions in bone marrow-liver-thymus (BLT) humanized mice and examined the immunotherapeutic potential of Vδ2 T cells in controlling HIV replication in vivo. We demonstrate a reduced proportion of Vδ2 T cells and an increased proportion of Vδ1 T cells in HIV-infected BLT humanized mice, like in HIV-positive individuals. HIV infection in BLT humanized mice also impaired the ex vivo expansion of Vδ2 T cells, like in HIV-positive individuals. Adoptive transfer of activated Vδ2 T cells did not control HIV replication during cell-associated HIV transmission in BLT humanized mice but instead exacerbated viremia, suggesting that Vδ2 T cells may serve as early targets for HIV replication. Our findings demonstrate that BLT humanized mice can model γδ T cell-HIV interactions in vivo.
Collapse
Affiliation(s)
- Shivkumar Biradar
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Yash Agarwal
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Michael T. Lotze
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Bioengineering, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Moses T. Bility
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Robbie B. Mailliard
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
2
|
Cavarelli M, Le Grand R. The importance of semen leukocytes in HIV-1 transmission and the development of prevention strategies. Hum Vaccin Immunother 2020; 16:2018-2032. [PMID: 32614649 PMCID: PMC7553688 DOI: 10.1080/21645515.2020.1765622] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
HIV-1 sexual transmission occurs mostly through contaminated semen, which is a complex mixture of soluble factors with immunoregulatory functions and cells. It is well established that semen cells from HIV-1-infected men are able to produce the virus and that are harnessed to efficiently interact with mucosal barriers exposed during sexual intercourse. Several cofactors contribute to semen infectivity and may enhance the risk of HIV-1 transmission to a partner by increasing local HIV-1 replication in the male genital tract, thereby increasing the number of HIV-1-infected cells and the local HIV-1 shedding in semen. The introduction of combination antiretroviral therapy has improved the life expectancy of HIV-1 infected individuals; however, there is evidence that systemic viral suppression does not always reflect full viral suppression in the seminal compartment. This review focus on the role semen leukocytes play in HIV-1 transmission and discusses implications of the increased resistance of cell-mediated transmission to immune-based prevention strategies.
Collapse
Affiliation(s)
- Mariangela Cavarelli
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT) , Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Roger Le Grand
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT) , Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| |
Collapse
|
3
|
Le Tortorec A, Matusali G, Mahé D, Aubry F, Mazaud-Guittot S, Houzet L, Dejucq-Rainsford N. From Ancient to Emerging Infections: The Odyssey of Viruses in the Male Genital Tract. Physiol Rev 2020; 100:1349-1414. [PMID: 32031468 DOI: 10.1152/physrev.00021.2019] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The male genital tract (MGT) is the target of a number of viral infections that can have deleterious consequences at the individual, offspring, and population levels. These consequences include infertility, cancers of male organs, transmission to the embryo/fetal development abnormalities, and sexual dissemination of major viral pathogens such as human immunodeficiency virus (HIV) and hepatitis B virus. Lately, two emerging viruses, Zika and Ebola, have additionally revealed that the human MGT can constitute a reservoir for viruses cleared from peripheral circulation by the immune system, leading to their sexual transmission by cured men. This represents a concern for future epidemics and further underlines the need for a better understanding of the interplay between viruses and the MGT. We review here how viruses, from ancient viruses that integrated the germline during evolution through old viruses (e.g., papillomaviruses originating from Neanderthals) and more modern sexually transmitted infections (e.g., simian zoonotic HIV) to emerging viruses (e.g., Ebola and Zika) take advantage of genital tract colonization for horizontal dissemination, viral persistence, vertical transmission, and endogenization. The MGT immune responses to viruses and the impact of these infections are discussed. We summarize the latest data regarding the sources of viruses in semen and the complex role of this body fluid in sexual transmission. Finally, we introduce key animal findings that are relevant for our understanding of viral infection and persistence in the human MGT and suggest future research directions.
Collapse
Affiliation(s)
- Anna Le Tortorec
- University of Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S1085, Rennes, France
| | - Giulia Matusali
- University of Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S1085, Rennes, France
| | - Dominique Mahé
- University of Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S1085, Rennes, France
| | - Florence Aubry
- University of Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S1085, Rennes, France
| | - Séverine Mazaud-Guittot
- University of Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S1085, Rennes, France
| | - Laurent Houzet
- University of Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S1085, Rennes, France
| | - Nathalie Dejucq-Rainsford
- University of Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S1085, Rennes, France
| |
Collapse
|
4
|
Real F, Sennepin A, Ganor Y, Schmitt A, Bomsel M. Live Imaging of HIV-1 Transfer across T Cell Virological Synapse to Epithelial Cells that Promotes Stromal Macrophage Infection. Cell Rep 2019; 23:1794-1805. [PMID: 29742434 DOI: 10.1016/j.celrep.2018.04.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 02/20/2018] [Accepted: 04/04/2018] [Indexed: 12/20/2022] Open
Abstract
During sexual intercourse, HIV-1 crosses epithelial barriers composing the genital mucosa, a poorly understood feature that requires an HIV-1-infected cell vectoring efficient mucosal HIV-1 entry. Therefore, urethral mucosa comprising a polarized epithelium and a stroma composed of fibroblasts and macrophages were reconstructed in vitro. Using this system, we demonstrate by live imaging that efficient HIV-1 transmission to stromal macrophages depends on cell-mediated transfer of the virus through virological synapses formed between HIV-1-infected CD4+ T cells and the epithelial cell mucosal surface. We visualized HIV-1 translocation through mucosal epithelial cells via transcytosis in regions where virological synapses occurred. In turn, interleukin-13 is secreted and HIV-1 targets macrophages, which develop a latent state of infection reversed by lipopolysaccharide (LPS) activation. The live observation of virological synapse formation reported herein is key in the design of vaccines and antiretroviral therapies aimed at blocking HIV-1 access to cellular reservoirs in genital mucosa.
Collapse
Affiliation(s)
- Fernando Real
- Laboratory of Mucosal Entry of HIV and Mucosal Immunity, 3I Department, Institut Cochin, Université Paris Descartes, Sorbonne Paris Cité, 75014 Paris, France; CNRS, UMR8104, 75014 Paris, France; INSERM, U1016, Institut Cochin, 75014 Paris, France
| | - Alexis Sennepin
- Laboratory of Mucosal Entry of HIV and Mucosal Immunity, 3I Department, Institut Cochin, Université Paris Descartes, Sorbonne Paris Cité, 75014 Paris, France; CNRS, UMR8104, 75014 Paris, France; INSERM, U1016, Institut Cochin, 75014 Paris, France
| | - Yonatan Ganor
- Laboratory of Mucosal Entry of HIV and Mucosal Immunity, 3I Department, Institut Cochin, Université Paris Descartes, Sorbonne Paris Cité, 75014 Paris, France; CNRS, UMR8104, 75014 Paris, France; INSERM, U1016, Institut Cochin, 75014 Paris, France
| | - Alain Schmitt
- Electron Microscopy Facility, Cochin Institute, Paris Descartes University, Sorbonne Paris Cité, 75014 Paris, France; CNRS, UMR8104, 75014 Paris, France; INSERM, U1016, Institut Cochin, 75014 Paris, France
| | - Morgane Bomsel
- Laboratory of Mucosal Entry of HIV and Mucosal Immunity, 3I Department, Institut Cochin, Université Paris Descartes, Sorbonne Paris Cité, 75014 Paris, France; CNRS, UMR8104, 75014 Paris, France; INSERM, U1016, Institut Cochin, 75014 Paris, France.
| |
Collapse
|
5
|
Tan S, Li JQ, Cheng H, Li Z, Lan Y, Zhang TT, Yang ZC, Li W, Qi T, Qiu YR, Chen Z, Li L, Liu SW. The anti-parasitic drug suramin potently inhibits formation of seminal amyloid fibrils and their interaction with HIV-1. J Biol Chem 2019; 294:13740-13754. [PMID: 31346035 DOI: 10.1074/jbc.ra118.006797] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 07/16/2019] [Indexed: 12/24/2022] Open
Abstract
Seminal amyloid fibrils are made up of naturally occurring peptide fragments and are key targets for the development of combination microbicides or antiviral drugs. Previously, we reported that the polysulfonic compound ADS-J1 is a potential candidate microbicide that not only inhibits HIV-1 entry, but also seminal fibrils. However, the carcinogenic azo moieties in ADS-J1 preclude its clinical application. Here, we screened several ADS-J1-like analogs and found that the antiparasitic drug suramin most potently inhibited seminal amyloid fibrils. Using various biochemical methods, including Congo red staining, CD analysis, transmission EM, viral infection assays, surface plasmon resonance imaging, and molecular dynamics simulations, we investigated suramin's inhibitory effects and its putative mechanism of action. We found that by forming a multivalent interaction, suramin binds to proteolytic peptides and mature fibrils, thereby inhibiting seminal fibril formation and blocking fibril-mediated enhancement of viral infection. Of note, suramin exhibited potent anti-HIV activities, and combining suramin with several antiretroviral drugs produced synergistic effects against HIV-1 in semen. Suramin also displayed a good safety profile for vaginal application. Moreover, suramin inhibited the semen-derived enhancer of viral infection (SEVI)/semen-mediated enhancement of HIV-1 transcytosis through genital epithelial cells and the subsequent infection of target cells. Collectively, suramin has great potential for further development as a combination microbicide to reduce the spread of the AIDS pandemic by targeting both viral and host factors involved in HIV-1 sexual transmission.
Collapse
Affiliation(s)
- Suiyi Tan
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jin-Qing Li
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hongyan Cheng
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhaofeng Li
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yan Lan
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ting-Ting Zhang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zi-Chao Yang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Wenjuan Li
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Tao Qi
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yu-Rong Qiu
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zhipeng Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Lin Li
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shu-Wen Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
6
|
Affiliation(s)
- Fernando Real
- Laboratoire Entrée Muqueuse du VIH et Immunité Muqueuse, Département Infection Immunité et Inflammation, Institut Cochin, Université Paris Descartes, Sorbonne Paris Cité, 22, rue Méchain, 75014 Paris, France - CNRS UMR8104, 75014 Paris, France - Inserm U1016, Institut Cochin, 22, rue Méchain, 75014 Paris, France
| | - Morgane Bomsel
- Laboratoire Entrée Muqueuse du VIH et Immunité Muqueuse, Département Infection Immunité et Inflammation, Institut Cochin, Université Paris Descartes, Sorbonne Paris Cité, 22, rue Méchain, 75014 Paris, France - CNRS UMR8104, 75014 Paris, France - Inserm U1016, Institut Cochin, 22, rue Méchain, 75014 Paris, France
| |
Collapse
|
7
|
Pedro KD, Henderson AJ, Agosto LM. Mechanisms of HIV-1 cell-to-cell transmission and the establishment of the latent reservoir. Virus Res 2019; 265:115-121. [PMID: 30905686 DOI: 10.1016/j.virusres.2019.03.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/20/2019] [Accepted: 03/20/2019] [Indexed: 02/06/2023]
Abstract
HIV-1 spreads through both the release of cell-free particles and by cell-to-cell transmission. Mounting evidence indicates that cell-to-cell transmission is more efficient than cell-free transmission of particles and likely influences the pathogenesis of HIV-1 infection. This mode of viral transmission also influences the generation and maintenance of the latent reservoir, which represents the main obstacle for curing the infection. In this review we will discuss general cell contact-dependent mechanisms that HIV-1 utilizes for its spread and the evidence pointing to cell-to-cell transmission as a mechanism for the establishment and maintenance of latent infection.
Collapse
Affiliation(s)
- Kyle D Pedro
- Department of Microbiology, Boston University School of Medicine, Boston, MA, USA; Department of Medicine, Section of Infectious Diseases, Boston University Medical Center, Boston, MA, USA
| | - Andrew J Henderson
- Department of Microbiology, Boston University School of Medicine, Boston, MA, USA; Department of Medicine, Section of Infectious Diseases, Boston University Medical Center, Boston, MA, USA
| | - Luis M Agosto
- Department of Medicine, Section of Infectious Diseases, Boston University Medical Center, Boston, MA, USA.
| |
Collapse
|
8
|
Neutralizing Antibody-Based Prevention of Cell-Associated HIV-1 Infection. Viruses 2018; 10:v10060333. [PMID: 29912167 PMCID: PMC6024846 DOI: 10.3390/v10060333] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/13/2018] [Accepted: 06/14/2018] [Indexed: 01/01/2023] Open
Abstract
Improved vaccine-mediated protection against HIV-1 requires a thorough understanding of the mode of HIV-1 transmission and how various immune responses control transmission. Cell-associated HIV-1 is infectious and contributes to HIV-1 transmission in humans. Non-human primate models of cell-associated SIV infection demonstrate that cell-associated SIV is more infectious than cell-free SIV. In a recently described chimeric simian–human immunodeficiency virus (SHIV) macaque model, it was demonstrated that an occult infection with cell-associated SHIV can be established that evades passive protection with a broadly neutralizing antibody (bnAb). Indeed, considerable in vitro data shows that bnAbs have less efficacy against cell-associated HIV-1 than cell-free HIV-1. Optimizing the protective capacity of immune responses such as bnAbs against cell-associated infections may be needed to maximize their protective efficacy.
Collapse
|
9
|
Higashi-Kuwata N, Ogata-Aoki H, Hattori SI, Hayashi H, Danish M, Aoki M, Shiotsu C, Kawamura T, Ihn H, Kobayashi H, Okada S, Mitsuya H. Early phase dynamics of traceable mCherry fluorescent protein-carrying HIV-1 infection in human peripheral blood mononuclear cells-transplanted NOD/SCID/Jak3 -/- mice. Antiviral Res 2017; 144:83-92. [PMID: 28392419 PMCID: PMC7900919 DOI: 10.1016/j.antiviral.2017.03.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 03/28/2017] [Accepted: 03/30/2017] [Indexed: 01/30/2023]
Abstract
We attempted to elucidate early-phase dynamics of HIV-1 infection using replication-competent, red-fluorescent-protein (mCherry)-labeled HIV-1JR-FL (HIVJR-FLmC) and NOD/SCID/Jak3-/- mice transplanted with Individual-A's human peripheral blood mononuclear cells (hPBMC)(hNOJ mice). On day 7 following HIVJR-FLmC inoculation, mCherry-signal-emitting infection foci were readily identified in the subserosa of 10 of 10 HIVJR-FLmC-inoculated hNOJ mice, although infection foci were not located without the mCherry signal in unlabeled HIV-1JR-FL-inoculated mice (n = 6). Even on day 14, infection foci were hardly located in the unlabeled HIV-1JR-FL-inoculated mice, while in all of 7 HIVJR-FLmC-inoculated hNOJ mice examined, mCherry-signal-emitting lymph nodes were easily identified, in which active viral replication was present. On day 14, a significantly larger number of mesenteric lymph nodes were seen in HIVJR-FLmC-exposed hNOJ mice than in HIVJR-FLmC-unexposed mice (P = 0.0025). The weights of mesenteric lymph nodes of those HIVJR-FLmC-exposed hNOJ mice were also greater than those of HIVJR-FLmC-unexposed mice (P = 0.0005). When hNOJ mice were inoculated with HIVJR-FLmC-exposed hPBMC from Individual-B, significantly greater viremia was seen than in cell-free HIVJR-FLmC-inoculated hNOJ mice as examined on day 7. In the lymph nodes of those mice inoculated with HIVJR-FLmC-exposed hPBMC from Individual-B, a substantial number of Individual-B's HIVJR-FLmC-infected cells were identified together with Individual-A's cells as examined on day 14. The present HIVJR-FLmC-infected mouse model represents the first system reported using traceable HIVJR-FLmC and human target cells, not using SIV or simian cells, which should be of utility in studies of early-phases of HIV-1 transmission and in evaluating the effects of potential agents for post-exposure and pre-exposure prophylaxis.
Collapse
Affiliation(s)
- Nobuyo Higashi-Kuwata
- Experimental Retrovirology Section, Department of Refractory Viral Infection, National Center for Global Health and Medicine Research Institute, Tokyo, Japan; Departments of Hematology and Infectious Diseases, Kumamoto University Graduate School of Biomedical Sciences, Japan
| | - Hiromi Ogata-Aoki
- Departments of Hematology and Infectious Diseases, Kumamoto University Graduate School of Biomedical Sciences, Japan; Experimental Retrovirology Section, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Shin-Ichiro Hattori
- Experimental Retrovirology Section, Department of Refractory Viral Infection, National Center for Global Health and Medicine Research Institute, Tokyo, Japan; Division of Hematopoiesis, Center for AIDS Research, Kumamoto University, Kumamoto, Japan
| | - Hironori Hayashi
- Experimental Retrovirology Section, Department of Refractory Viral Infection, National Center for Global Health and Medicine Research Institute, Tokyo, Japan; Departments of Hematology and Infectious Diseases, Kumamoto University Graduate School of Biomedical Sciences, Japan
| | - Matthew Danish
- Departments of Hematology and Infectious Diseases, Kumamoto University Graduate School of Biomedical Sciences, Japan
| | - Manabu Aoki
- Departments of Hematology and Infectious Diseases, Kumamoto University Graduate School of Biomedical Sciences, Japan; Experimental Retrovirology Section, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA; Department of Medical Technology, Kumamoto Health Science University, Kumamoto, Japan
| | - Chiemi Shiotsu
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Tatsuyoshi Kawamura
- Department of Dermatology, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Hironobu Ihn
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hisataka Kobayashi
- Molecular Imaging Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Seiji Okada
- Division of Hematopoiesis, Center for AIDS Research, Kumamoto University, Kumamoto, Japan
| | - Hiroaki Mitsuya
- Experimental Retrovirology Section, Department of Refractory Viral Infection, National Center for Global Health and Medicine Research Institute, Tokyo, Japan; Departments of Hematology and Infectious Diseases, Kumamoto University Graduate School of Biomedical Sciences, Japan; Experimental Retrovirology Section, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
10
|
Anderson DJ, Politch JA, Zeitlin L, Hiatt A, Kadasia K, Mayer KH, Ruprecht RM, Villinger F, Whaley KJ. Systemic and topical use of monoclonal antibodies to prevent the sexual transmission of HIV. AIDS 2017; 31:1505-1517. [PMID: 28463876 PMCID: PMC5619647 DOI: 10.1097/qad.0000000000001521] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
: Passive immunization, the transfer of antibodies to a nonimmune individual to provide immunological protection, has been used for over 100 years to prevent and treat human infectious diseases. The introduction of techniques to produce human mAbs has revolutionized the field, and a large number of human mAbs have been licensed for the treatment of cancer, autoimmune and inflammatory diseases. With the recent discovery and production of highly potent broadly neutralizing and other multifunctional antibodies to HIV, mAbs are now being considered for HIV therapy and prophylaxis. In this review, we briefly present recent advances in the anti-HIV mAb field and outline strategies for the selection, engineering and production of human mAbs, including the modification of their structure for optimized stability and function. We also describe results from nonhuman primate studies and phase 1 clinical trials that have tested the safety, tolerability, pharmacokinetics, and efficacy of mAb-based HIV prevention strategies, and discuss the future of parenteral and topical mAb administration for the prevention of HIV transmission.
Collapse
Affiliation(s)
- Deborah J. Anderson
- Departments of Obstetrics and Gynecology, Microbiology and Medicine, Boston University School of Medicine, Boston, MA
| | - Joseph A. Politch
- Departments of Obstetrics and Gynecology, Microbiology and Medicine, Boston University School of Medicine, Boston, MA
| | | | | | - Kadryn Kadasia
- Department of Molecular Medicine, Boston University School of Medicine, Boston MA
| | | | - Ruth M. Ruprecht
- Texas Biomedical Institute and Southwest National Primate Research Center, San Antonio TX
| | | | | |
Collapse
|
11
|
New Connections: Cell-to-Cell HIV-1 Transmission, Resistance to Broadly Neutralizing Antibodies, and an Envelope Sorting Motif. J Virol 2017; 91:JVI.00149-17. [PMID: 28250119 DOI: 10.1128/jvi.00149-17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
HIV-1 infection from cell-to-cell may provide an efficient mode of viral spread in vivo and could therefore present a significant challenge for preventative or therapeutic strategies based on broadly neutralizing antibodies. Indeed, Li et al. (H. Li, C. Zony, P. Chen, and B. K. Chen, J. Virol. 91:e02425-16, 2017, https://doi.org/10.1128/JVI.02425-16) showed that the potency and magnitude of multiple HIV-1 broadly neutralizing antibody classes are decreased during cell-to-cell infection in a context-dependent manner. A functional motif in gp41 appears to contribute to this differential susceptibility by modulating exposure of neutralization epitopes.
Collapse
|
12
|
Brako F, Mahalingam S, Rami-Abraham B, Craig DQM, Edirisinghe M. Application of nanotechnology for the development of microbicides. NANOTECHNOLOGY 2017; 28:052001. [PMID: 28032619 DOI: 10.1088/1361-6528/28/5/052001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The vaginal route is increasingly being considered for both local and systemic delivery of drugs, especially those unsuitable for oral administration. One of the opportunities offered by this route but yet to be fully utilised is the administration of microbicides. Microbicides have an unprecedented potential for mitigating the global burden from HIV infection as heterosexual contact accounts for most of the new infections occurring in sub-Saharan Africa, the region with the highest prevalent rates. Decades of efforts and massive investment of resources into developing an ideal microbicide have resulted in disappointing outcomes, as attested by several clinical trials assessing the suitability of those formulated so far. The highly complex and multi-level biochemical interactions that must occur among the virus, host cells and the drug for transmission to be halted means that a less sophisticated approach to formulating a microbicide e.g. conventional gels, etc may have to give way for a different formulation approach. Nanotechnology has been identified to offer prospects for fabricating structures with high capability of disrupting HIV transmission. In this review, predominant challenges seen in microbicide development have been highlighted and possible ways of surmounting them suggested. Furthermore, formulations utilising some of these highly promising nanostructures such as liposomes, nanofibres and nanoparticles have been discussed. A perspective on how a tripartite collaboration among governments and their agencies, the pharmaceutical industry and academic scientists to facilitate the development of an ideal microbicide in a timely manner has also been briefly deliberated.
Collapse
Affiliation(s)
- Francis Brako
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK. University College London, School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK
| | | | | | | | | |
Collapse
|
13
|
Buckner LR, Amedee AM, Albritton HL, Kozlowski PA, Lacour N, McGowin CL, Schust DJ, Quayle AJ. Chlamydia trachomatis Infection of Endocervical Epithelial Cells Enhances Early HIV Transmission Events. PLoS One 2016; 11:e0146663. [PMID: 26730599 PMCID: PMC4701475 DOI: 10.1371/journal.pone.0146663] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 12/21/2015] [Indexed: 01/20/2023] Open
Abstract
Chlamydia trachomatis causes a predominantly asymptomatic, but generally inflammatory, genital infection that is associated with an increased risk for HIV acquisition. Endocervical epithelial cells provide the major niche for this obligate intracellular bacterium in women, and the endocervix is also a tissue in which HIV transmission can occur. The mechanism by which CT infection enhances HIV susceptibility at this site, however, is not well understood. Utilizing the A2EN immortalized endocervical epithelial cell line grown on cell culture inserts, we evaluated the direct role that CT-infected epithelial cells play in facilitating HIV transmission events. We determined that CT infection significantly enhanced the apical-to-basolateral migration of cell-associated, but not cell-free, HIVBaL, a CCR5-tropic strain of virus, across the endocervical epithelial barrier. We also established that basolateral supernatants from CT-infected A2EN cells significantly enhanced HIV replication in peripheral mononuclear cells and a CCR5+ T cell line. These results suggest that CT infection of endocervical epithelial cells could facilitate both HIV crossing the mucosal barrier and subsequent infection or replication in underlying target cells. Our studies provide a mechanism by which this common STI could potentially promote the establishment of founder virus populations and the maintenance of local HIV reservoirs in the endocervix. Development of an HIV/STI co-infection model also provides a tool to further explore the role of other sexually transmitted infections in enhancing HIV acquisition.
Collapse
Affiliation(s)
- Lyndsey R. Buckner
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, United States of America
| | - Angela M. Amedee
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, United States of America
| | - Hannah L. Albritton
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, United States of America
| | - Pamela A. Kozlowski
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, United States of America
| | - Nedra Lacour
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, United States of America
| | - Chris L. McGowin
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, United States of America
- Department of Medicine, Section of Infectious Diseases, Louisiana State University Health Sciences Center, New Orleans, Louisiana, 70112, United States of America
| | - Danny J. Schust
- Department of Obstetrics, Gynecology and Women’s Health, University of Missouri, Columbia, MO 65201, United States of America
| | - Alison J. Quayle
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, United States of America
| |
Collapse
|
14
|
Anderson DJ, Le Grand R. Cell-associated HIV mucosal transmission: the neglected pathway. J Infect Dis 2015; 210 Suppl 3:S606-8. [PMID: 25414413 DOI: 10.1093/infdis/jiu538] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This supplement to The Journal of Infectious Diseases is devoted to the important and understudied topic of cell-associated human immunodeficiency virus Type 1 (HIV) mucosal transmission. It stems from a workshop held in Boston, Massachusetts, in October 2013, in which scientists discussed their research and insights regarding cell-associated HIV mucosal transmission. The 10 articles in this supplement present the case for cell-associated HIV transmission as an important element contributing to the HIV epidemic, review evidence for the efficacy of current HIV prevention strategies against cell-associated HIV transmission and opportunities for further development, and describe in vitro, ex vivo, and animal cell-associated transmission models that can be used to further elucidate the molecular mechanisms of cell-associated HIV mucosal transmission and test HIV prevention strategies. We hope that these articles will help to inform and invigorate the HIV prevention field and contribute to the development of more-effective vaccine, treatment, and microbicide strategies for HIV prevention.
Collapse
Affiliation(s)
- Deborah J Anderson
- Department of Obstetrics and Gynecology Department of Microbiology Department of Medicine, Boston University School of Medicine, Massachusetts
| | - Roger Le Grand
- CEA, Division of Immunovirology, IDMIT Center, iMETI/DSV, Fontenay-aux-Roses UMR-E1, Université Paris-Sud 11, Orsay, France
| |
Collapse
|